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ABSTRACT
Druid is an open source1, real-time analytical data store that sup-

ports fast ad-hoc queries on large-scale data sets. The system com-

bines a column-oriented data layout, a shared-nothing architecture,

and an advanced indexing structure to allow for the arbitrary explo-

ration of billion-row tables with sub-second latencies. Druid scales

horizontally and is the core engine of the Metamarkets data ana-

lytics platform. In this paper, we detail Druid’s architecture, and

describe how it supports real-time data ingestion and interactive an-

alytical queries.

1. INTRODUCTION
Enterprises routinely collect diverse data sets that can contain up

to terabytes of information per day. Companies are increasingly

realizing the importance of efficiently storing and analyzing this

data in order to increase both productivity and profitability. Nu-

merous database systems (e.g., IBM’s Netezza [28], HP’s Vertica

[4], EMC’s Greenplum [24]) and several research papers [3, 6, 10]

offer solutions for how to store and extract information from large

data sets. However, many of these Relational Database Manage-

ment Systems (RDBMS) and NoSQL architectures do not support

interactive queries and real-time data ingestion.

Metamarkets built Druid to directly address the need for a real-

time analytical data store in the big-data ecosystem. Druid shares

some similarities with main-memory databases [12] and interactive

query systems such as Dremel [23] and PowerDrill [15]. Druid’s

focus is fast aggregations, arbitrarily deep data exploration, and

low-latency data ingestion. Furthermore, Druid is highly config-

urable and allows users to easily adjust fault tolerance and perfor-

mance properties. Queries on in-memory data typically complete

in millseconds, and real-time data ingestion means that new events

are immediately available for analysis.

1https://github.com/metamx/druid

In this paper, we make the following contributions:

• Wedescribe Druid’s real-time data ingestion implementation.

• Wedetail how the architecture enables fast multi-dimensional

data exploration.

• We present Druid performance benchmarks.

The outline is as follows: Section 2 describes the Druid data

model. Section 3 presents an overview of the components of a

Druid cluster. Section 4 outlines the query API. Section 5 describes

data storage format in greater detail. Section 6 discusses Druid ro-

bustness and failure responsiveness. Section 7 presents experiments

benchmarking query performance. Section 8 discusses related work

and Section 9 presents our conclusions.

2. DATA MODEL
The fundamental storage unit in Druid is the segment. Each table

in Druid (called a data source) is partitioned into a collection of

segments, each typically comprising 5–10 million rows. A sample

table containing advertising data is shown in Table 1. Many core

Druid concepts can be described using this simple table.

Druid always requires a timestamp column as a method of sim-

plifying data distribution policies, data retention policies, and first-

level query pruning. Druid partitions its data sources into well-

defined time intervals, typically an hour or a day, and may further

partition on values from other columns to achieve the desired seg-

ment size. Segments are uniquely identified by a data source iden-

tifer, the time interval of the data, a version string that increases

whenever a new segment is created, and a partition number. This

segment metadata is used by the system for concurrency control;

read operations always access data in a particular time range from

the segments with the latest version identifier for that time range.

Most segments in a Druid cluster are immutable historical seg-

ments. Such segments are persisted on local disk or in a distributed

filesystem (”deep” storage) such as S3 [9] or HDFS [27]. All his-

torical segments have associated metadata describing properties of

the segment such as size in bytes, compression format, and location

in deep storage. Data for intervals covered by historical segments

can be updated by creating new historical segments that obsolete

the old ones.

Segments covering very recent intervals are mutable real-time

segments. Real-time segments are incrementally updated as new

events are ingested, and are available for queries throughout the in-

cremental indexing process. Periodically, real-time segments are

1

https://github.com/metamx/druid


Table 1: Sample Druid data

Timestamp Publisher Advertiser Gender Country Impressions Clicks Revenue

2011-01-01T01:00:00Z bieberfever.com google.com Male USA 1800 25 15.70

2011-01-01T01:00:00Z bieberfever.com google.com Male USA 2912 42 29.18

2011-01-01T02:00:00Z ultratrimfast.com google.com Male USA 1953 17 17.31

2011-01-01T02:00:00Z ultratrimfast.com google.com Male USA 3194 170 34.01

converted into historical segments through a finalization and hand-

off process described in Section 3.2.

Druid is best used for aggregating event streams, and both his-

torical and real-time segments are built through an incremental in-

dexing process that takes advantage of this assumption. Incremen-

tal indexing works by computing running aggregates of interesting

metrics (e.g. number of impressions, sum of revenue from the data

in Table 1) across all rows that have identical attributes (e.g. pub-

lisher, advertiser). This often produces an order of magnitude com-

pression in the data without sacrificing analytical value. Of course,

this comes at the cost of not being able to support queries over the

non-aggregated metrics.

3. CLUSTER
A Druid cluster consists of different types of nodes, each per-

forming a specific function. The composition of a Druid cluster is

shown in Figure 1.

Recall that the Druid data model has the notion of historical and

real-time segments. The Druid cluster is architected to reflect this

conceptual separation of data. Real-time nodes are responsible for

ingesting, storing, and responding to queries for the most recent

events. Similarly, historical compute nodes are responsible for load-

ing and responding to queries for historical events.

Data in Druid is stored on storage nodes. Storage nodes can be

either compute or real-time nodes. Queries to access this data will

typically first hit a layer of broker nodes. Broker nodes are respon-

sible for finding and routing queries down to the storage nodes that

host the pertinent data. The storage nodes compute their portion

of the query response in parallel and return their results to the bro-

kers. Broker nodes, compute nodes, and realtime nodes are jointly

classified as queryable nodes.

Druid also has a set of coordination nodes to manage load as-

signment, distribution, and replication. Coordination nodes are not

queryable and instead focus on maintaining cluster stability. Coor-

dination nodes have an external dependency on aMySQL database.

Druid relies on Apache Zookeeper [16] for coordination. Most

intra-cluster communication is over Zookeeper, although queries

are typically forwarded over HTTP.

3.1 Historical Compute Nodes
Historical compute nodes are the main workers of a Druid cluster

and are self-contained and self-sufficient. Compute nodes load his-

torical segments from permanent/deep storage and expose them for

querying. There is no single point of contention between the nodes

and nodes have no knowledge of one another. Compute nodes are

operationally simple; they only know how to perform the tasks they

are assigned. To help other services discover compute nodes and the

data they hold, every compute node maintains a constant Zookeeper

connection. Compute nodes announce their online state and the seg-

ments they serve by creating ephemeral nodes under specifically

configured Zookeeper paths. Instructions for a given compute node

to load new segments or drop existing segments are sent by creat-

ing ephemeral znodes under a special “load queue” path associated

with the compute node. Figure 2 illustrates a simple compute node

and Zookeeper interaction. Each compute node announces them-

selves under an ”announcements” path when they come online and

each compute has a load queue path associated with it.

To expose a segment for querying, a compute nodemust first pos-

sess a local copy of the segment. Before a compute node downloads

a segment from deep storage, it first checks a local disk directory

(cache) to see if the segment already exists in local storage. If no

cache information about the segment is present, the compute node

will download metadata about the segment from Zookeeper. This

metadata includes information about where the segment is located

in deep storage and about how to decompress and process the seg-

ment. Once a compute node completes processing a segment, the

node announces (in Zookeeper) that it is serving the segment. At

this point, the segment is queryable.

3.1.1 Tiers
Compute nodes can be grouped in different tiers, where all nodes

in a given tier are identically configured. Different performance and

fault-tolerance parameters can be set for each tier. The purpose of

tiered nodes is to enable higher or lower priority segments to be dis-

tributed according to their importance. For example, it is possible

to spin up a “hot” tier of compute nodes that have a high number

of cores and a large RAM capacity. The “hot” cluster can be con-

figured to download more frequently accessed segments. A parallel

“cold” cluster can also be created with much less powerful backing

hardware. The “cold” cluster would only contain less frequently

accessed segments.

3.2 Real-time Nodes
Real-time nodes encapsulate the functionality to ingest and query

real-time data streams. Data indexed via these nodes is immediately

available for querying. Real-time nodes are a consumer of data and

require a corresponding producer to provide the data stream. Typ-

ically, for data durability purposes, a message bus such as Kafka

[18] sits between the producer and the real-time node as shown in

Figure 3.

The purpose of the message bus in Figure 3 is to act as a buffer for

incoming events. The message bus can maintain offsets indicating

the position in an event stream that a real-time node has read up to

and real-time nodes can update these offsets periodically. The mes-

sage bus also acts as backup storage for recent events. Real-time

nodes ingest data by reading events from the message bus. The time

from event creation to message bus storage to event consumption is

on the order of hundreds of milliseconds.

Real-time nodes maintain an in-memory index buffer for all in-

coming events. These indexes are incrementally populated as new

events appear on the message bus. The indexes are also directly

queryable. Real-time nodes persist their indexes to disk either pe-

riodically or after some maximum row limit is reached. After each

persist, a real-time node updates the message bus with the offset

of the last event of the most recently persisted index. Each per-

sisted index is immutable. If a real-time node fails and recovers, it

can simply reload any indexes that were persisted to disk and con-

tinue reading the message bus from the point the last offset was
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Figure 1: An overview of a Druid cluster.

Figure 2: Compute nodes create ephemeral znodes under

specifically configured Zookeeper paths.

committed. Periodically committing offsets reduces the number of

messages a real-time node has to rescan after a failure scenario.

Real-time nodes maintain a consolidated view of the currently

updating index and of all indexes persisted to disk. This unified

view allows all indexes on a node to be queried. On a periodic ba-

sis, the nodes will schedule a background task that searches for all

persisted indexes of a data source. The task merges these indexes

together and builds a historical segment. The nodes will upload the

segment to deep storage and provide a signal for the historical com-

pute nodes to begin serving the segment. The ingest, persist, merge,

and handoff steps are fluid; there is no data loss as a real-time node

converts a real-time segment to a historical one. Figure 4 illustrates

the process.

Similar to compute nodes, real-time nodes announce segments

in Zookeeper. Unlike historical segments, real-time segments may

represent a period of time that extends into the future. For example,

a real-time node may announce it is serving a segment that contains

data for the current hour. Before the end of the hour, the real-time

node continues to collect data for the hour. Every 10 minutes (the

persist period is configurable), the node will flush and persist its in-

memory index to disk. At the end of the current hour, the real-time

node prepares to serve data for the next hour by creating a new in-

dex and announcing a new segment for the next hour. The node

does not immediately merge and build a historical segment for the

previous hour until after some window period has passed. Having

a window period allows for straggling data points to come in and

minimizes the risk of data loss. At the end of the window period,

Figure 3: Real-time data ingestion.

the real-time nodewill merge all persisted indexes, build a historical

segment for the previous hour, and hand the segment off to histori-

cal nodes to serve. Once the segment is queryable on the historical

nodes, the real-time node flushes all information about the segment

and unannounces it is serving the segment.

Real-time nodes are highly scalable. If the data volume and in-

gestion rates for a given data source exceed the maximum capa-

bilities of a single node, additional nodes can be added. Multiple

nodes can consume events from the same stream, and every indi-

vidual node only holds a portion of the total number of events. This

creates natural partitions across nodes. Each node announces the

real-time segment it is serving and each real-time segment has a

partition number. Data from individual nodes will be merged at the

broker level. To our knowledge, the largest production level real-

time Druid cluster is consuming approximately 500MB/s (150,000

events/s or 2 TB/hour of raw data).

3.3 Broker Nodes
Broker nodes act as query routers to other queryable nodes such

as compute and real-time nodes. Broker nodes understand themeta-

data published in Zookeeper about what segments exist and on what

nodes the segments are stored. Broker nodes route incoming queries

such that the queries hit the right storage nodes. Broker nodes also

merge partial results from storage nodes before returning a final

consolidated result to the caller. Additionally, brokers provide an

extra level of data durability as they maintain a cache of recent re-

sults. In the event that multiple storage nodes fail and all copies of

a segment are somehow lost, it is still possible that segment results
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Figure 4: Real-time data durability

can still be returned if that information exists in the cache.

3.3.1 Timeline
To determine the correct nodes to forward queries to, brokers first

build a view of the world from information in Zookeeper. Recall

that Druid uses Zookeeper to maintain information about all com-

pute and real-time nodes in a cluster and the segments those nodes

are serving. For every data source in Zookeeper, the broker node

builds a timeline of segments for the data source and the nodes that

serve them. A timeline consists of segments and represents which

segments contain data for what ranges of time. Druid may have

multiple segments where the data source and interval are the same

but versions differ. The timeline view will always surface segments

with the most recent version identifier for a time range. If two seg-

ments intervals overlap, the segment with the more recent version

always has precedence. When queries are received for a specific

data source and interval, the broker node performs a lookup on the

timeline associated with the query data source for the query interval

and retrieves the segments that contain data for the query. The bro-

ker node maps these segments to the storage nodes that serve them

and forwards the query down to the respective nodes.

3.3.2 Caching
Broker nodes employ a distributed cache with a LRU [25, 17]

cache invalidation strategy. The broker cache stores per segment re-

sults. The cache can be local to each broker node or shared across

multiple nodes using an external distributed cache such as mem-

cached [14]. Recall that each time a broker node receives a query,

it first maps the query to a set of segments. A subset of these seg-

ment results may already exist in the cache and the results can be

directly pulled from the cache. For any segment results that do not

exist in the cache, the broker node will forward the query to the

compute nodes. Once the compute nodes return their results, the

broker will store those results in the cache. Real-time segments are

never cached and hence requests for real-time data will always be

forwarded to real-time nodes. Real-time data is perpetually chang-

ing and caching the results would be unreliable.

3.4 Coordination (Master) Nodes
TheDruid coordination ormaster nodes are primarily in charge of

segment management and distribution. The Druid master is respon-

sible for loading new segments, dropping outdated segments, man-

aging segment replication, and balancing segment load. Druid uses

a multi-version concurrency control swapping protocol for manag-

ing segments in order to maintain stable views.

The Druid master runs periodically to determine the current state

of the cluster. It makes decisions by comparing the expected state

of the cluster with the actual state of the cluster at the time of the

run. As with all Druid nodes, the Druid master maintains a con-

nection to Zookeeper for current cluster information. The master

also maintains a connection to a MySQL database that contains ad-

ditional operational parameters and configurations. One of the key

pieces of information located in the MySQL database is a segment

table that contains a list of historical segments that should be served.

This table can be updated by any service that creates historical seg-

ments. The MySQL database also contains a rule table that governs

how segments are created, destroyed, and replicated in the cluster.

The master does not directly communicate with a compute node

when assigning it work; instead the master creates an ephemeral

znode in Zookeeper containing information about what the compute

node should do. The compute node maintains a similar connection

to Zookeeper to monitor for new work.

3.4.1 Rules
Rules govern how historical segments are loaded and dropped

from the cluster. Rules indicate how segments should be assigned to

different compute node tiers and how many replicates of a segment

should exist in each tier. Rules may also indicate when segments

should be dropped entirely from the cluster. Rules are usually set

for a period of time. For example, a user may use rules to load the

most recent one month’s worth of segments into a ”hot” cluster, the

most recent one year’s worth of segments into a ”cold” cluster, and

drop any segments that are older.

The master loads a set of rules from a rule table in the MySQL

database. Rules may be specific to a certain data source and/or a de-

fault set of rules may be configured. The master will cycle through

all available segments and match each segment with the first rule

that applies to it.

3.4.2 Load Balancing
In a typical production environment, queries often hit dozens or

even hundreds of data segments. Since each compute node has lim-

ited resources, historical segments must be distributed among the

cluster to ensure that the cluster load is not too imbalanced. Deter-

mining optimal load distribution requires some knowledge about

query patterns and speeds. Typically, queries cover recent data

spanning contiguous time intervals for a single data source. On

average, queries that access smaller segments are faster.

These query patterns suggest replicating recent historical seg-

ments at a higher rate, spreading out large segments that are close in

time to different compute nodes, and co-locating segments from dif-

ferent data sources. To optimally distribute and balance segments

among the cluster, we developed a cost-based optimization proce-

dure that takes into account the segment data source, recency, and

size. The exact details of the algorithm are beyond the scope of this

paper and may be discussed in future literature.

4. QUERY API
Druid has its own query language and accepts queries as POST

requests. All queryable Druid nodes share the same query API.

The body of the POST request is a JSON object containing key-

value pairs specifying various query parameters. A typical query

will contain the data source name, the granularity of the result data,

time range of interest, the type of request, and the metrics to ag-

gregate over. The result will also be a JSON object containing the

aggregated metrics over the time period.

Most query types will also support a filter set. A filter set is a

Boolean expression of dimension name and value pairs. Any num-

ber and combination of dimensions and values may be specified.

When a filter set is provided, only the subset of the data that per-

tains to the filter set will be scanned. The ability to handle complex

nested filter sets is what enables Druid to drill into data at any depth.
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The exact query syntax depends on the query type and the infor-

mation requested. A sample time series query is shown below:

{
"queryType" : "timeseries",
"dataSource" : "sample_data",
"intervals" : "2013-01-01/2013-01-02",
"filter" : {
"type" : "selector",
"dimension" : "poets",
"value" : "Ke$ha"

},
"granularity" : "day",
"aggregations" : [
{
"type" : "count",
"fieldName" : "row",
"name" : "row"

}
]

}

It is beyond the scope of this paper to fully describe the query

API. We are also in the process of extending the Druid API to un-

derstand SQL.

5. STORAGE
Druid is a column-oriented data store. When considering aggre-

gates over a large number of events, the advantages storing data as

columns rather than rows are well documented [5]. Column storage

allows for more efficient CPU usage as only what is needed is actu-

ally loaded and scanned. In a row oriented data store, all columns

associated with a row must be scanned as part of an aggregation.

The additional scan time can introduce performance degradations

as high as 250% [4].

5.1 Column Types
Druid has multiple column types to represent the various column

value formats. Depending on the column type, different compres-

sion methods are used to reduce the cost of storing a column in

memory and on disk. In the example given in Table 1, the pub-

lisher, advertiser, gender, and country columns only contain strings.

String columns can be dictionary encoded. Dictionary encoding is

a common method to compress data and has been used in other data

stores such as PowerDrill [15]. In the example in Table 1, we can

map each publisher to an unique integer identifier.

bieberfever.com -> 0
ultratrimfast.com -> 1

This mapping allows us to represent the publisher column as an

integer array where the array indices correspond to the rows of the

original data set. For the publisher column, we can represent the

unique publishers as follows:

[0, 0, 1, 1]

The resulting integer array lends itself very well to compression

methods. Generic compression algorithms on top of encodings are

extremely common in column-stores. Druid uses the LZF [20] com-

pression algorithm.

Similar compressionmethods can be applied to numeric columns.

For example, the clicks and revenue columns in Table 1 can also be

expressed as individual arrays.

Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)Integer array size (bytes)
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Figure 5: Integer array size versus Concise set size.

Clicks -> [25, 42, 17, 170]
Revenue -> [15.70, 29.18, 17.31, 34.01]

In this case we compress the raw values as opposed to their dictio-

nary representations.

5.2 Filters
To support arbitrary filter sets, Druid creates additional lookup

indices for string columns. These lookup indices are compressed

and Druid operates over the indices in their compressed form. Fil-

ters can be expressed as Boolean equations of multiple lookup in-

dices. Boolean operations of indices in their compressed form is

both performance and space efficient.

Let us consider the publisher column in Table 1. For each unique

publisher in Table 1, we can form some representation indicating

which table rows a particular publisher is seen. We can store this

information in a binary array where the array indices represent our

rows. If a particular publisher is seen in a certain row, that array

index is marked as 1. For example:

bieberfever.com -> rows [0, 1] -> [1][1][0][0]
ultratrimfast.com -> rows [2, 3] -> [0][0][1][1]

bieberfever.com is seen in rows 0 and 1. This mapping of

column values to row indices forms an inverted index [30]. To know

which rows contain bieberfever.com or ultratrimfast.com,
we can OR together the two arrays.

[0][1][0][1] OR [1][0][1][0] = [1][1][1][1]

This approach of performing Boolean operations on large bitmap

sets is commonly used in search engines. Bitmap compression al-

gorithms are a well-defined area of research and often utilize run-

length encoding. Popular algorithms include Byte-aligned Bitmap

Code [2], Word-Aligned Hybrid (WAH) code [34], and Partitioned

Word-Aligned Hybrid (PWAH) compression [32]. Druid opted to

use the Concise algorithm [8] as it can outperform WAH by reduc-

ing the size of the compressed bitmaps by up to 50%. Figure 5

illustrates the number of bytes using Concise compression versus

using an integer array. The results were generated on a cc2.8xlarge

systemwith a single thread, 2G heap, 512m young gen, and a forced

GC between each run. The data set is a single day’s worth of data

collected from the Twitter garden hose [31] data stream. The data

set contains 2,272,295 rows and 12 dimensions of varying cardinal-

ity. As an additional comparison, we also resorted the data set rows

to maximize compression.

5

http://bieberfever.com


In the unsorted case, the total Concise size was 53,451,144 bytes

and the total integer array size was 127,248,520 bytes. Overall,

Concise compressed sets are about 42% smaller than integer ar-

rays. In the sorted case, the total Concise compressed size was

43,832,884 bytes and the total integer array size was 127,248,520

bytes. What is interesting to note is that after sorting, global com-

pression only increased minimally. The total Concise set size to

total integer array size is 34%. It is also interesting to note that as

the cardinality of a dimension approaches the total number of rows

in a data set, integer arrays require less space than Concise sets and

become a better alternative.

5.3 Storage Engine
Druid’s persistence components allows for different storage en-

gines to be plugged in, similar to Dynamo [9]. These storage en-

gines may store data in in-memory structures such as the JVM heap

or in memory-mapped structures. The ability to swap storage en-

gines allows for Druid to be configured depending on a particular

application’s specifications. An in-memory storage engine may be

operationally more expensive than a memory-mapped storage en-

gine but could be a better alternative if performance is critical. At

Metamarkets, we commonly use a memory-mapped storage engine.

6. ROBUSTNESS
To achieve high system availability and data durability, Druid

employs several fault recovery techniques. Druid has no single

point of failure.

6.1 Replication
Druid replicates historical segments on multiple hosts. The num-

ber of replicates in each tier of the historical compute cluster is fully

configurable. Setups that require high levels of fault tolerance can

be configured to have a high number of replicates. Replicates are

assigned to compute nodes by coordination nodes using the same

load distribution algorithm discussed in Section 3.3.2. Broker nodes

forward queries to the first node they find that contain a segment re-

quired for the query.

Real-time segments follow a different replication model as real-

time segments are mutable. Multiple real-time nodes can read from

the same message bus and event stream if each node maintains a

unique offset and consumer id, hence creating multiple copies of

a real-time segment. This is conceptually different than multiple

nodes reading from the same event stream and sharing the same

offset and consumer id, doing so would create multiple segment

partitions. If a real-time node fails and recovers, it can reload any

indexes that were persisted to disk and read from the message bus

from the point it last committed an offset.

6.2 Failure Detection
If a compute node completely fails and becomes unavailable, the

ephemeral Zookeeper znodes it created are deleted. The master

node will notice that certain segments are insufficiently replicated

or missing altogether. Additional replicates will be created and re-

distributed throughout the cluster.

We are moving towards building out infrastructure to support

programmatic creation of real-time nodes. In the near future, the

master node or a similar service will notice if real-time segments are

insufficiently replicated and automatically create additional real-

time nodes as redundant backups.

Coordination and broker nodes always have redundant backup

nodes in the event the primary fails. The backup nodes are usually

idle until Zookeeper changes alert them to assume the responsibil-

ities of their primary counterparts.
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scaling from 25 nodes.

6.3 Adding and Removing Nodes
Starting and removing Druid nodes is done by starting and stop-

ping Java processes. There is minimal operational overhead with

adding nodes in batches. Scaling down the cluster is usually done

one node at a time with some time lapse between shutdowns. This

allows the master to have ample time to redistribute load and create

additional replicates. Shutting down nodes in batches is not recom-

mended as it may destroy all copies of a segment, which would lead

to data loss.

7. PERFORMANCE BENCHMARKS
To benchmark Druid performance, we created a large test cluster

with 6TB of uncompressed data, representing tens of billions of fact

rows. The data set contained more than a dozen dimensions, with

cardinalities ranging from the double digits to tens of millions. We

computed four metrics for each row (counts, sums, and averages).

The data was sharded first on timestamp then on dimension values,

creating thousands of shards roughly 8 million fact rows apiece.

The cluster used in the benchmark consisted of 100 historical

compute nodes, each with 16 cores, 60GB of RAM, 10 GigE Eth-

ernet, and 1TB of disk space. Collectively, the cluster comprised of

1600 cores, 6TB or RAM, sufficiently fast Ethernet and more than

enough disk space.

SQL statements are included in Table 2 to describe the purpose

of each of the queries. Please note:

• The timestamp range of the queries encompassed all data.

• Each machine was a 16-core machine with 60GB RAM and

1TB of local disk. The machine was configured to only use

15 threads for processing queries.

• A memory-mapped storage engine was used (the machine

was configured to memory map the data instead of loading

it into the Java heap.)

Figure 6 shows the cluster scan rate and Figure 7 shows the core

scan rate. In Figure 6 we also include projected linear scaling based

on the results of the 25 core cluster. In particular, we observe di-

minishing marginal returns to performance in the size of the cluster.

Under linear scaling, SQL query 1 would have achieved a speed of

37 billion rows per second on our 75 node cluster. In fact, the speed

was 26 billion rows per second. However, queries 2-6 maintain a

near-linear speedup up to 50 nodes: the core scan rates in Figure 7
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Table 2: Druid Queries

Query # Query

1 SELECT count(*) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ?
2 SELECT count(*), sum(metric1) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ?
3 SELECT count(*), sum(metric1), sum(metric2), sum(metric3), sum(metric4) FROM _table_ WHERE

timestamp ≥ ? AND timestamp < ?
4 SELECT high_card_dimension, count(*) AS cnt FROM _table_ WHERE timestamp ≥ ? AND

timestamp < ? GROUP BY high_card_dimension ORDER BY cnt limit 100
5 SELECT high_card_dimension, count(*) AS cnt, sum(metric1) FROM _table_ WHERE timestamp ≥

? AND timestamp < ? GROUP BY high_card_dimension ORDER BY cnt limit 100
6 SELECT high_card_dimension, count(*) AS cnt, sum(metric1), sum(metric2), sum(metric3),

sum(metric4) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ? GROUP BY
high_card_dimension ORDER BY cnt limit 100
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Figure 7: Druid core scan rate.

remain nearly constant. The increase in speed of a parallel com-

puting system is often limited by the time needed for the sequential

operations of the system, in accordance with Amdahl’s law [1].

The first query listed in Table 2 is a simple count, achieving scan

rates of 33M rows/second/core. We believe the 75 node cluster was

actually overprovisioned for the test dataset, explaining the modest

improvement over the 50 node cluster. Druid’s concurrency model

is based on shards: one thread will scan one shard. If the number of

segments on a compute node modulo the number of cores is small

(e.g. 17 segments and 15 cores), then many of the cores will be idle

during the last round of the computation.

When we include more aggregations we see performance de-

grade. This is because of the column-oriented storage format Druid

employs. For the count(*) queries, Druid only has to check the

timestamp column to satisfy the “where” clause. Aswe addmetrics,

it has to also load those metric values and scan over them, increas-

ing the amount of memory scanned.

8. RELATED WORK
Cattell [5] maintains a great summary about existing Scalable

SQL and NoSQL data stores. Druid feature-wise sits somewhere

betweenGoogle’s Dremel [23] and PowerDrill [15]. Druid hasmost

of the features implemented in Dremel (Dremel handles arbitrary

nested data structures while Druid only allows for a single level of

array-based nesting) and many of the interesting compression algo-

rithms mentioned in PowerDrill.

Although Druid builds on many of the same principles as other

distributed columnar data stores [13], most existing data stores are

designed to be key-value stores [19], or document/extensible record

stores [29]. Such data stores are great solutions for traditional data

warehouse needs and general back-office/reporting usage. Typi-

cally, analysts will query these data stores and build reports from

the results. In-memory databases such as SAP’s HANA [12] and

VoltDB [33] are examples of other data stores that are highly suited

for traditional data warehousing needs. Druid is a front-office sys-

tem designed such that user-facing dashboards can be built on top

of it. Similar to [26], Druid has analytical features built in. The

main features Druid offers over traditional data warehousing solu-

tions are real-time data ingestion, interactive queries and interactive

query latencies. In terms of real-time ingestion and processing of

data, Trident/Storm [22] and Streaming Spark [35] are other popular

real-time computation systems, although they lack the data storage

capabilities of Druid. Spark/Shark [11] are also doing similar work

in the area of fast data analysis on large scale data sets. Cloudera

Impala [7] is another system focused on optimizing querying per-

formance, but more so in Hadoop environments.

Druid leverages a unique combination of algorithms in its archi-

tecture. Although we believe no other data store has the same set

of functionality as Druid, some of Druid’s optimization techniques

such as using inverted indices to perform fast filters are also used in

other data stores [21].

9. CONCLUSIONS
In this paper, we presented Druid, a distributed, column-oriented,

real-time analytical data store. Druid is a highly customizable so-

lution that is optimized for fast query latencies. Druid ingests data

in real-time and is fault-tolerant. We discussed the performance of

Druid on billion row data sets. We summarized key Druid architec-

ture aspects such as the storage format, query language and general

execution. In the future, we plan to cover more in depth the differ-

ent algorithms we’ve developed for Druid and how other systems

may plug into Druid to achieve powerful use cases.
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