Once you have a realtime node working, it is time to load your own data to see how Druid performs. Druid can ingest data in three ways: via Kafka and a realtime node, via the indexing service, and via the Hadoop batch loader. Data is ingested in realtime using a [[Firehose]]. ## Create Config Directories ## Each type of node needs its own config file and directory, so create them as subdirectories under the druid directory. ```bash mkdir config mkdir config/realtime mkdir config/master mkdir config/compute mkdir config/broker ``` ## Loading Data with Kafka ## [KafkaFirehoseFactory](https://github.com/metamx/druid/blob/master/realtime/src/main/java/com/metamx/druid/realtime/firehose/KafkaFirehoseFactory.java) is how druid communicates with Kafka. Using this [[Firehose]] with the right configuration, we can import data into Druid in realtime without writing any code. To load data to a realtime node via Kafka, we'll first need to initialize Zookeeper and Kafka, and then configure and initialize a [[Realtime]] node. ### Booting Kafka ### Instructions for booting a Zookeeper and then Kafka cluster are available [here](http://kafka.apache.org/07/quickstart.html). 1. Download Apache Kafka 0.7.2 from [http://kafka.apache.org/downloads.html](http://kafka.apache.org/downloads.html) ```bash wget http://apache.spinellicreations.com/incubator/kafka/kafka-0.7.2-incubating/kafka-0.7.2-incubating-src.tgz tar -xvzf kafka-0.7.2-incubating-src.tgz cd kafka-0.7.2-incubating-src ``` 2. Build Kafka ```bash ./sbt update ./sbt package ``` 3. Boot Kafka ```bash cat config/zookeeper.properties bin/zookeeper-server-start.sh config/zookeeper.properties # in a new console bin/kafka-server-start.sh config/server.properties ``` 4. Launch the console producer (so you can type in JSON kafka messages in a bit) ```bash bin/kafka-console-producer.sh --zookeeper localhost:2181 --topic druidtest ``` ### Launching a Realtime Node 1. Create a valid configuration file similar to this called config/realtime/runtime.properties: ``` druid.host=0.0.0.0:8080 druid.port=8080 com.metamx.emitter.logging=true druid.processing.formatString=processing_%s druid.processing.numThreads=1 druid.processing.buffer.sizeBytes=10000000 #emitting, opaque marker druid.service=example druid.request.logging.dir=/tmp/example/log druid.realtime.specFile=realtime.spec com.metamx.emitter.logging=true com.metamx.emitter.logging.level=debug # below are dummy values when operating a realtime only node druid.processing.numThreads=3 com.metamx.aws.accessKey=dummy_access_key com.metamx.aws.secretKey=dummy_secret_key druid.pusher.s3.bucket=dummy_s3_bucket druid.zk.service.host=localhost druid.server.maxSize=300000000000 druid.zk.paths.base=/druid druid.database.segmentTable=prod_segments druid.database.user=user druid.database.password=diurd druid.database.connectURI= druid.host=127.0.0.1:8080 ``` 2. Create a valid realtime configuration file similar to this called realtime.spec: ```json [{ "schema" : { "dataSource":"druidtest", "aggregators":[ {"type":"count", "name":"impressions"}, {"type":"doubleSum","name":"wp","fieldName":"wp"}], "indexGranularity":"minute", "shardSpec" : { "type": "none" } }, "config" : { "maxRowsInMemory" : 500000, "intermediatePersistPeriod" : "PT10m" }, "firehose" : { "type" : "kafka-0.7.2", "consumerProps" : { "zk.connect" : "localhost:2181", "zk.connectiontimeout.ms" : "15000", "zk.sessiontimeout.ms" : "15000", "zk.synctime.ms" : "5000", "groupid" : "topic-pixel-local", "fetch.size" : "1048586", "autooffset.reset" : "largest", "autocommit.enable" : "false" }, "feed" : "druidtest", "parser" : { "timestampSpec" : { "column" : "utcdt", "format" : "iso" }, "data" : { "format" : "json" }, "dimensionExclusions" : ["wp"] } }, "plumber" : { "type" : "realtime", "windowPeriod" : "PT10m", "segmentGranularity":"hour", "basePersistDirectory" : "/tmp/realtime/basePersist", "rejectionPolicy": {"type": "messageTime"} } }] ``` 3. Launch the realtime node ```bash java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \ -Ddruid.realtime.specFile=config/realtime/realtime.spec \ -classpath lib/*:config/realtime com.metamx.druid.realtime.RealtimeMain ``` 4. Paste data into the Kafka console producer ```json {"utcdt": "2010-01-01T01:01:01", "wp": 1000, "gender": "male", "age": 100} {"utcdt": "2010-01-01T01:01:02", "wp": 2000, "gender": "female", "age": 50} {"utcdt": "2010-01-01T01:01:03", "wp": 3000, "gender": "male", "age": 20} {"utcdt": "2010-01-01T01:01:04", "wp": 4000, "gender": "female", "age": 30} {"utcdt": "2010-01-01T01:01:05", "wp": 5000, "gender": "male", "age": 40} ``` 5. Watch the events as they are ingested by Druid's realtime node ```bash ... 2013-06-17 21:41:55,569 INFO [Global--0] com.metamx.emitter.core.LoggingEmitter - Event [{"feed":"metrics","timestamp":"2013-06-17T21:41:55.569Z","service":"example","host":"127.0.0.1","metric":"events/processed","value":5,"user2":"druidtest"}] ... ``` 6. In a new console, edit a file called query.body: ```json { "queryType": "groupBy", "dataSource": "druidtest", "granularity": "all", "dimensions": [], "aggregations": [ { "type": "count", "name": "rows" }, {"type": "longSum", "name": "imps", "fieldName": "impressions"}, {"type": "doubleSum", "name": "wp", "fieldName": "wp"} ], "intervals": ["2010-01-01T00:00/2020-01-01T00"] } ``` 7. Submit the query via curl ```bash curl -X POST "http://localhost:8080/druid/v2/?pretty" \ -H 'content-type: application/json' -d @query.body ``` 8. View Result! ```json [ { "timestamp" : "2010-01-01T01:01:00.000Z", "result" : { "imps" : 20, "wp" : 60000.0, "rows" : 5 } } ] ``` Now you're ready for [[Querying Your Data]]! ## Loading Data with the HadoopDruidIndexer ## Historical data can be loaded via a Hadoop job. The setup for a single node, 'standalone' Hadoop cluster is available at [http://hadoop.apache.org/docs/stable/single_node_setup.html](http://hadoop.apache.org/docs/stable/single_node_setup.html). ### Setup MySQL ### 1. If you don't already have it, download MySQL Community Server here: [http://dev.mysql.com/downloads/mysql/](http://dev.mysql.com/downloads/mysql/) 2. Install MySQL 3. Create a druid user and database ```bash mysql -u root ``` ```sql GRANT ALL ON druid.* TO 'druid'@'localhost' IDENTIFIED BY 'diurd'; CREATE database druid; ``` The [[Master]] node will create the tables it needs based on its configuration. ### Make sure you have ZooKeeper Running ### Make sure that you have a zookeeper instance running. If you followed the instructions for Kafka, it is probably running. If you are unsure if you have zookeeper running, try running ```bash ps auxww | grep zoo | grep -v grep ``` If you get any result back, then zookeeper is most likely running. If you haven't setup Kafka or do not have zookeeper running, then you can download it and start it up with ```bash curl http://www.motorlogy.com/apache/zookeeper/zookeeper-3.4.5/zookeeper-3.4.5.tar.gz -o zookeeper-3.4.5.tar.gz tar xzf zookeeper-3.4.5.tar.gz cd zookeeper-3.4.5 cp conf/zoo_sample.cfg conf/zoo.cfg ./bin/zkServer.sh start cd .. ``` ### Launch a Master Node ### If you've already setup a realtime node, be aware that although you can run multiple node types on one physical computer, you must assign them unique ports. Having used 8080 for the [[Realtime]] node, we use 8081 for the [[Master]]. 1. Setup a configuration file called config/master/runtime.properties similar to: ```bash druid.host=0.0.0.0:8081 druid.port=8081 com.metamx.emitter.logging=true druid.processing.formatString=processing_%s druid.processing.numThreads=1 druid.processing.buffer.sizeBytes=10000000 #emitting, opaque marker druid.service=example druid.master.startDelay=PT60s druid.request.logging.dir=/tmp/example/log druid.realtime.specFile=realtime.spec com.metamx.emitter.logging=true com.metamx.emitter.logging.level=debug # below are dummy values when operating a realtime only node druid.processing.numThreads=3 com.metamx.aws.accessKey=dummy_access_key com.metamx.aws.secretKey=dummy_secret_key druid.pusher.s3.bucket=dummy_s3_bucket druid.zk.service.host=localhost druid.server.maxSize=300000000000 druid.zk.paths.base=/druid druid.database.segmentTable=prod_segments druid.database.user=druid druid.database.password=diurd druid.database.connectURI=jdbc:mysql://localhost:3306/druid druid.zk.paths.discoveryPath=/druid/discoveryPath druid.database.ruleTable=rules druid.database.configTable=config # Path on local FS for storage of segments; dir will be created if needed druid.paths.indexCache=/tmp/druid/indexCache # Path on local FS for storage of segment metadata; dir will be created if needed druid.paths.segmentInfoCache=/tmp/druid/segmentInfoCache ``` 2. Launch the [[Master]] node ```bash java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \ -classpath lib/*:config/master \ com.metamx.druid.http.MasterMain ``` ### Launch a Compute/Historical Node ### 1. Create a configuration file in config/compute/runtime.properties similar to: ```bash druid.host=0.0.0.0:8082 druid.port=8082 com.metamx.emitter.logging=true druid.processing.formatString=processing_%s druid.processing.numThreads=1 druid.processing.buffer.sizeBytes=10000000 #emitting, opaque marker druid.service=example druid.request.logging.dir=/tmp/example/log druid.realtime.specFile=realtime.spec com.metamx.emitter.logging=true com.metamx.emitter.logging.level=debug # below are dummy values when operating a realtime only node druid.processing.numThreads=3 com.metamx.aws.accessKey=dummy_access_key com.metamx.aws.secretKey=dummy_secret_key druid.pusher.s3.bucket=dummy_s3_bucket druid.zk.service.host=localhost druid.server.maxSize=300000000000 druid.zk.paths.base=/druid druid.database.segmentTable=prod_segments druid.database.user=druid druid.database.password=diurd druid.database.connectURI=jdbc:mysql://localhost:3306/druid druid.zk.paths.discoveryPath=/druid/discoveryPath druid.database.ruleTable=rules druid.database.configTable=config # Path on local FS for storage of segments; dir will be created if needed druid.paths.indexCache=/tmp/druid/indexCache # Path on local FS for storage of segment metadata; dir will be created if needed druid.paths.segmentInfoCache=/tmp/druid/segmentInfoCache # Setup local storage mode druid.pusher.local.storageDirectory=/tmp/druid/localStorage druid.pusher.local=true ``` 2. Launch the compute node: ```bash java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \ -classpath lib/*:config/compute \ com.metamx.druid.http.ComputeMain ``` ### Create a File of Records ### We can use the same records we have been, in a file called records.json: ```json {"utcdt": "2010-01-01T01:01:01", "wp": 1000, "gender": "male", "age": 100} {"utcdt": "2010-01-01T01:01:02", "wp": 2000, "gender": "female", "age": 50} {"utcdt": "2010-01-01T01:01:03", "wp": 3000, "gender": "male", "age": 20} {"utcdt": "2010-01-01T01:01:04", "wp": 4000, "gender": "female", "age": 30} {"utcdt": "2010-01-01T01:01:05", "wp": 5000, "gender": "male", "age": 40} ``` ### Run the Hadoop Job ### Now its time to run the Hadoop [[Batch-ingestion]] job, HadoopDruidIndexer, which will fill a historical [[Compute]] node with data. First we'll need to configure the job. 1. Create a config called batchConfig.json similar to: ```json { "dataSource": "druidtest", "timestampColumn": "utcdt", "timestampFormat": "iso", "dataSpec": { "format": "json", "dimensions": ["gender", "age"] }, "granularitySpec": { "type":"uniform", "intervals":["2010-01-01T01/PT1H"], "gran":"hour" }, "pathSpec": { "type": "static", "paths": "/Users/rjurney/Software/druid/records.json" }, "rollupSpec": { "aggs":[ {"type":"count", "name":"impressions"}, {"type":"doubleSum","name":"wp","fieldName":"wp"} ], "rollupGranularity": "minute"}, "workingPath": "/tmp/working_path", "segmentOutputPath": "/tmp/segments", "leaveIntermediate": "false", "partitionsSpec": { "targetPartitionSize": 5000000 }, "updaterJobSpec": { "type":"db", "connectURI":"jdbc:mysql://localhost:3306/druid", "user":"druid", "password":"diurd", "segmentTable":"prod_segments" } } ``` 2. Now run the job, with the config pointing at batchConfig.json: ```bash java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 -Ddruid.realtime.specFile=realtime.spec -classpath lib/* com.metamx.druid.indexer.HadoopDruidIndexerMain batchConfig.json ``` You can now move on to [[Querying Your Data]]!