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ABSTRACT
Druid is an open source1 data store designed for real-time exploratory

analytics on large data sets. The system combines a column-oriented

storage layout, a distributed, shared-nothing architecture, and an

advanced indexing structure to allow for the arbitrary exploration

of billion-row tables with sub-second latencies. In this paper, we

describe Druid’s architecture, and detail how it supports fast aggre-

gations, flexible filters, and low latency data ingestion.

1. INTRODUCTION
In recent years, the proliferation of internet technology has created a

surge in machine-generated events. Individually, these events con-

tain minimal useful information and are of low value. Given the

time and resources required to extract meaning from large collec-

tions of events, many companies were willing to discard this data

instead. Although infrastructure has been built handle event based

data (e.g. IBM’s Netezza[32], HP’s Vertica[6], and EMC’s Green-

plum[28]), they are largely sold at high price points and are only

targeted towards those companies who can afford the offerings.

A few years ago, Google introducedMapReduce [11] as their mech-

anism of leveraging commodity hardware to index the internet and

analyze logs. TheHadoop [31] project soon followed andwas largely

patterned after the insights that came out of the original MapRe-

duce paper. Hadoop is currently deployed in many organizations

to store and analyze large amounts of log data. Hadoop has con-

tributed much to helping companies convert their low-value event

streams into high-value aggregates for a variety of applications such

as business intelligence and A-B testing.

As with a lot of great systems, Hadoop has opened our eyes to a new

space of problems. Specifically, Hadoop excels at storing and pro-

viding access to large amounts of data, however, it does not make

any performance guarantees around how quickly that data can be

accessed. Furthermore, although Hadoop is a highly available sys-

tem, performance degrades under heavy concurrent load. Lastly,

while Hadoop works well for storing data, it is not optimized for

ingesting data and making that data immediately readable.

Early on in the development of the Metamarkets product, we ran

into each of these issues and came to the realization that Hadoop is

a great back-office, batch processing, and data warehousing system.

However, as a company that has product-level guarantees around

query performance and data availability in a highly concurrent en-

vironment (1000+ users), Hadoop wasn’t going to meet our needs.

We explored different solutions in the space, and after trying both

1https://github.com/metamx/druid

Relational Database Management Systems and NoSQL architec-

tures, we came to the conclusion that there was nothing in the open

source world that could be fully leveraged for our requirements.

We ended up creating Druid, an open-source, distributed, column-

oriented, realtime analytical data store. In many ways, Druid shares

similarities with other interactive query systems [27], main-memory

databases [14], and widely-known distributed data stores such as

BigTable [8], Dynamo [12], and Cassandra [22]. The distribution

and query model also borrow ideas from current generation search

infrastructure [24, 4, 5].

This paper describes the architecture of Druid, explores the various

design decisions made in creating an always-on production system

that powers a hosted service, and attempts to help inform anyone

who faces a similar problem about a potential method of solving it.

Druid is deployed in production at several technology companies2.

The structure of the paper is as follows: we first describe the prob-

lem in Section 2. Next, we detail system architecture from the point

of view of how data flows through the system in Section 3. We then

discuss how and why data gets converted into a binary format in

Section 4. We briefly describe the query API in Section 5. Lastly,

we leave off with some benchmarks in Section 6, related work in

Section 7 and conclusions are Section 8.

2. PROBLEM DEFINITION
Druid was originally designed to solve problems around ingesting

and exploring large quantities of transactional events (log data).

This form of timeseries data is commonly found in OLAP work-

flows and the nature of the data tends to be very append heavy. For

example, consider the data shown in Table 1. Table 1 contains data

for edits that have occurred on Wikipedia. Each time a user edits

a page in Wikipedia, an event is generated that contains metadata

about the edit. This metadata is comprised of 3 distinct compo-

nents. First, there is a timestamp column indicating when the edit

was made. Next, there are a set dimension columns indicating var-

ious attributes about the edit such as the page that was edited, the

user who made the edit, and the location of the user. Finally, there

are a set of metric columns that contain values (usually numeric) to

aggregate over, such as the number of characters added or removed

in an edit.

Our goal is to rapidly compute drill-downs and aggregates over this

data. Wewant to answer questions like “Howmany edits weremade

on the page Justin Bieber frommales in San Francisco?” and “What

is the average number of characters that were added by people from

2http://druid.io/druid.html
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Table 1: Sample Druid data for edits that have occurred on Wikipedia.

Timestamp Page Username Gender City Characters Added Characters Removed

2011-01-01T01:00:00Z Justin Bieber Boxer Male San Francisco 1800 25

2011-01-01T01:00:00Z Justin Bieber Reach Male Waterloo 2912 42

2011-01-01T02:00:00Z Ke$ha Helz Male Calgary 1953 17

2011-01-01T02:00:00Z Ke$ha Xeno Male Taiyuan 3194 170

Calgary over the span of a month?”. We also want queries over

any arbitrary combination of dimensions to return with sub-second

latencies.

The need for Druid was facilitated by the fact that existing open

source Relational DatabaseManagement Systems andNoSQLkey/value

stores were unable to provide a low latency data ingestion and query

platform for interactive applications [35]. In the early days ofMetamarkets,

we were focused on building a hosted dashboard that would allow

users to arbitrary explore and visualize event streams. The data

store powering the dashboard needed to return queries fast enough

that the data visualizations built on top of it could provide users with

an interactive experience.

In addition to the query latency needs, the system had to be multi-

tenant and highly available. The Metamarkets product is used in a

highly concurrent environment. Downtime is costly andmany busi-

nesses cannot afford to wait if a system is unavailable in the face of

software upgrades or network failure. Downtime for startups, who

often lack proper internal operations management, can determine

business success or failure.

Finally, another key problem that Metamarkets faced in its early

days was to allow users and alerting systems to be able to make

business decisions in ”real-time”. The time from when an event is

created to when that event is queryable determines how fast users

and systems are able to react to potentially catastrophic occurrences

in their systems. Popular open source data warehousing systems

such as Hadoop were unable to provide the sub-second data inges-

tion latencies we required.

The problems of data exploration, ingestion, and availability span

multiple industries. Since Druid was open sourced in October 2012,

it been deployed as a video, network monitoring, operations mon-

itoring, and online advertising analytics platform in multiple com-

panies.

3. ARCHITECTURE
A Druid cluster consists of different types of nodes and each node

type is designed to perform a specific set of things. We believe this

design separates concerns and simplifies the complexity of the sys-

tem. The different node types operate fairly independent of each

other and there is minimal interaction between them. Hence, intra-

cluster communication failures have minimal impact on data avail-

ability. To solve complex data analysis problems, the different node

types come together to form a fully working system. The name

Druid comes from the Druid class in many role-playing games: it is

a shape-shifter, capable of taking on many different forms to fulfill

various different roles in a group. The composition of and flow of

data in a Druid cluster are shown in Figure 1.

3.1 Real-time Nodes
Real-time nodes encapsulate the functionality to ingest and query

event streams. Events indexed via these nodes are immediately

available for querying. The nodes are only concerned with events

for some small time range and periodically hand off immutable

batches of events they’ve collected over this small time range to

other nodes in the Druid cluster that are specialized in dealing with

batches of immutable events. Real-time nodes leverage Zookeeper

[19] for coordination with the rest of the Druid cluster. The nodes

announce their online state and the data they are serving in Zookeeper.

Real-time nodes maintain an in-memory index buffer for all in-

coming events. These indexes are incrementally populated as new

events are ingested and the indexes are also directly queryable. Druid

virtually behaves as a row store for queries on events that exist in

this JVM heap-based buffer. To avoid heap overflow problems,

real-time nodes persist their in-memory indexes to disk either peri-

odically or after some maximum row limit is reached. This persist

process converts data stored in the in-memory buffer to a column

oriented storage format described in Section 4. Each persisted in-

dex is immutable and real-time nodes load persisted indexes into

off-heap memory such that they can still be queried. Figure 2 illus-

trates the process.

On a periodic basis, each real-time node will schedule a background

task that searches for all locally persisted indexes. The task merges

these indexes together and builds an immutable block of data that

contains all the events that have ingested by a real-time node for

some span of time. We refer to this block of data as a ”segment”.

During the handoff stage, a real-time node uploads this segment to

a permanent backup storage, typically a distributed file system such

as S3 [12] or HDFS [31], which Druid refers to as ”deep storage”.

The ingest, persist, merge, and handoff steps are fluid; there is no

data loss during any of the processes.

To better understand the flow of data through a real-time node, con-

sider the following example. First, we start a real-time node at

13:37. The node will only accept events for the current hour or the

next hour. When the node begins ingesting events, it will announce

that it is serving a segment of data for a time window from 13:00

to 14:00. Every 10 minutes (the persist period is configurable), the

node will flush and persist its in-memory buffer to disk. Near the

end of the hour, the node will likely see events with timestamps

from 14:00 to 15:00. When this occurs, the node prepares to serve

data for the next hour and creates a new in-memory index. The

node then announces that it is also serving a segment for data from

14:00 to 15:00. The node does not immediately merge the indexes

it persisted from 13:00 to 14:00, instead it waits for a configurable

window period for straggling events from 13:00 to 14:00 to come

in. Having a window period minimizes the risk of data loss from

delays in event delivery. At the end of the window period, the real-

time node merges all persisted indexes from 13:00 to 14:00 into a

single immutable segment and hands the segment off. Once this

segment is loaded and queryable somewhere else in the Druid clus-

ter, the real-time node flushes all information about the data it col-

lected for 13:00 to 14:00 and unannounces it is serving this data.

This process is shown in Figure 3.



Figure 1: An overview of a Druid cluster and the flow of data through the cluster.

Figure 2: Real-time nodes first buffer events in memory. On a

periodic basis, the in-memory index is persisted to disk. On an-

other periodic basis, all persisted indexes are merged together

and handed off. Queries for data will hit the in-memory index

and the persisted indexes.

3.1.1 Availability and Scalability
Real-time nodes are a consumer of data and require a corresponding

producer to provide the data stream. Commonly, for data durability

purposes, a message bus such as Kafka [21] sits between the pro-

ducer and the real-time node as shown in Figure 4. Real-time nodes

ingest data by reading events from the message bus. The time from

event creation to event consumption is ordinarily on the order of

hundreds of milliseconds.

The purpose of the message bus in Figure 4 is two-fold. First, the

message bus acts as a buffer for incoming events. A message bus

such as Kafka maintains offsets indicating the position in an event

stream that a consumer (a real-time node) has read up to and con-

sumers can programmatically update these offsets. Typically, real-

time nodes update this offset each time they persist their in-memory

buffers to disk. In a fail and recover scenario, if a node has not lost

disk, it can reload all persisted indexes from disk and continue read-

ing events from the last offset it committed. Ingesting events from

a recently committed offset greatly reduces a node’s recovery time.

In practice, we see real-time nodes recover from such failure sce-

narios in an order of seconds.

The second purpose of the message bus is to act as a single endpoint

fromwhich multiple real-time nodes can read events. Multiple real-

time nodes can ingest the same set of events from the bus, thus cre-

ating a replication of events. In a scenario where a node completely

fails and does not recover, replicated streams ensure that no data is

lost. A single ingestion endpoint also allows for data streams for be

partitioned such that multiple real-time nodes each ingest a portion

of a stream. This allows additional real-time nodes to be seamlessly

added. In practice, this model has allowed one of the largest produc-

tion Druid clusters to be able to consume raw data at approximately

500 MB/s (150,000 events/s or 2 TB/hour).

3.2 Historical Nodes
Historical nodes encapsulate the functionality to load and serve the

immutable blocks of data (segments) created by real-time nodes. In

many real-world workflows, most of the data loaded in a Druid clus-

ter is immutable and hence, historical nodes are typically the main

workers of aDruid cluster. Historical nodes follow a shared-nothing

architecture and there is no single point of contention among the

nodes. The nodes have no knowledge of one another and are op-

erationally simple; they only know how to load, drop, and serve



Figure 3: The node starts, ingests data, persists, and periodically hands data off. This process repeats indefinitely. The time intervals

between different real-time node operations are configurable.

Figure 4: Multiple real-time nodes can read from the samemes-

sage bus. Each node maintains its own offset.

immutable segments.

Similar to real-time nodes, historical nodes announce their online

state and the data they are serving in Zookeeper. Instructions to

load and drop segments are sent over Zookeeper and contain infor-

mation about where the segment is located in deep storage and how

to decompress and process the segment. Before a historical node

downloads a particular segment from deep storage, it first checks a

local cache that maintains information about what segments already

exist on the node. If information about a segment is not present in

the cache, the historical node will proceed to download the segment

from deep storage. This process is shown in Figure 5. Once pro-

cessing is complete, the segment is announced in Zookeeper. At

this point, the segment is queryable. The local cache also allows

for historical nodes to be quickly updated and restarted. On startup,

the node examines its cache and immediately serves whatever data

it finds.

Historical nodes can support read consistency because they only

deal with immutable data. Immutable data blocks also enable a sim-

ple parallelization model: historical nodes can concurrently scan

and aggregate immutable blocks without blocking.

Figure 5: Historical nodes download immutable segments from

deep storage. Segments must be loaded in memory before they

can be queried.

3.2.1 Tiers
Historical nodes can be grouped in different tiers, where all nodes in

a given tier are identically configured. Different performance and

fault-tolerance parameters can be set for each tier. The purpose of

tiered nodes is to enable higher or lower priority segments to be dis-

tributed according to their importance. For example, it is possible

to spin up a “hot” tier of historical nodes that have a high num-

ber of cores and large memory capacity. The “hot” cluster can be

configured to download more frequently accessed data. A parallel

“cold” cluster can also be created with much less powerful backing

hardware. The “cold” cluster would only contain less frequently

accessed segments.

3.2.2 Availability
Historical nodes depend on Zookeeper for segment load and unload

instructions. If Zookeeper becomes unavailable, historical nodes

are no longer able to serve new data and drop outdated data, how-

ever, because the queries are served over HTTP, historical nodes are



still be able to respond to query requests for the data they are cur-

rently serving. This means that Zookeeper outages do not impact

current data availability on historical nodes.

3.3 Broker Nodes
Broker nodes act as query routers to historical and real-time nodes.

Broker nodes understand themetadata published in Zookeeper about

what segments are queryable and where those segments are located.

Broker nodes route incoming queries such that the queries hit the

right historical or real-time nodes. Broker nodes also merge partial

results from historical and real-time nodes before returning a final

consolidated result to the caller.

3.3.1 Caching
Broker nodes contain a cachewith a LRU [29, 20] invalidation strat-

egy. The cache can use local heapmemory or an external distributed

key/value store such as memcached [16]. Each time a broker node

receives a query, it first maps the query to a set of segments. Results

for certain segments may already exist in the cache and there is no

need to recompute them. For any results that do not exist in the

cache, the broker node will forward the query to the correct histor-

ical and real-time nodes. Once historical nodes return their results,

the broker will cache these results on a per segment basis for future

use. This process is illustrated in Figure 6. Real-time data is never

cached and hence requests for real-time data will always be for-

warded to real-time nodes. Real-time data is perpetually changing

and caching the results would be unreliable.

The cache also acts as an additional level of data durability. In the

event that all historical nodes fail, it is still possible to query results

if those results already exist in the cache.

3.3.2 Availability
In the event of a total Zookeeper outage, data is still queryable. If

broker nodes are unable to communicate to Zookeeper, they use

their last known view of the cluster and continue to forward queries

to real-time and historical nodes. Broker nodes make the assump-

tion that the structure of the cluster is the same as it was before the

outage. In practice, this availability model has allowed our Druid

cluster to continue serving queries for a significant period of time

while we diagnosed Zookeeper outages.

3.4 Coordinator Nodes
Druid coordinator nodes are primarily in charge of data manage-

ment and distribution on historical nodes. The coordinator nodes

tell historical nodes to load new data, drop outdated data, replicate

data, and move data to load balance. Druid uses a multi-version

concurrency control swapping protocol for managing immutable

segments in order to maintain stable views. If any immutable seg-

ment contains data that is wholly obseleted by newer segments, the

outdated segment is dropped from the cluster. Coordinator nodes

undergo a leader-election process that determines a single node that

runs the coordinator functionality. The remaining coordinator nodes

act as redundant backups.

A coordinator node runs periodically to determine the current state

of the cluster. It makes decisions by comparing the expected state of

the cluster with the actual state of the cluster at the time of the run.

As with all Druid nodes, coordinator nodes maintain a Zookeeper

connection for current cluster information. Coordinator nodes also

maintain a connection to aMySQL database that contains additional

operational parameters and configurations. One of the key pieces

of information located in the MySQL database is a table that con-

tains a list of all segments that should be served by historical nodes.

This table can be updated by any service that creates segments, for

example, real-time nodes. The MySQL database also contains a

rule table that governs how segments are created, destroyed, and

replicated in the cluster.

3.4.1 Rules
Rules govern how historical segments are loaded and dropped from

the cluster. Rules indicate how segments should be assigned to dif-

ferent historical node tiers and how many replicates of a segment

should exist in each tier. Rules may also indicate when segments

should be dropped entirely from the cluster. Rules are usually set

for a period of time. For example, a user may use rules to load the

most recent one month’s worth of segments into a ”hot” cluster, the

most recent one year’s worth of segments into a ”cold” cluster, and

drop any segments that are older.

The coordinator nodes load a set of rules from a rule table in the

MySQL database. Rules may be specific to a certain data source

and/or a default set of rules may be configured. The coordinator

node will cycle through all available segments and match each seg-

ment with the first rule that applies to it.

3.4.2 Load Balancing
In a typical production environment, queries often hit dozens or

even hundreds of segments. Since each historical node has limited

resources, segments must be distributed among the cluster to en-

sure that the cluster load is not too imbalanced. Determining opti-

mal load distribution requires some knowledge about query patterns

and speeds. Typically, queries cover recent segments spanning con-

tiguous time intervals for a single data source. On average, queries

that access smaller segments are faster.

These query patterns suggest replicating recent historical segments

at a higher rate, spreading out large segments that are close in time to

different historical nodes, and co-locating segments from different

data sources. To optimally distribute and balance segments among

the cluster, we developed a cost-based optimization procedure that

takes into account the segment data source, recency, and size. The

exact details of the algorithm are beyond the scope of this paper and

may be discussed in future literature.

3.4.3 Replication
Coordinator nodes may tell different historical nodes to load copies

of the same segment. The number of replicates in each tier of the

historical compute cluster is fully configurable. Setups that require

high levels of fault tolerance can be configured to have a high num-

ber of replicas. Replicated segments are treated the same as the

originals and follow the same load distribution algorithm. By repli-

cating segments, single historical node failures are transparent in the

Druid cluster. We use this property for software upgrades. We can

seamlessly take a historical node offline, update it, bring it back up,

and repeat the process for every historical node in a cluster. Over the

last two years, we have never taken downtime in our Druid cluster

for software upgrades.

3.4.4 Availability
Druid coordinator nodes have two external dependencies: Zookeeper

and MySQL. Coordinator nodes rely on Zookeeper to determine

what historical nodes already exist in the cluster. If Zookeeper be-

comes unavailable, the coordinator will no longer be able to send



Figure 6: Broker nodes cache per segment results. Every Druid query is mapped to a set of segments. Queries often combine cached

segment results with those that need to be computed on historical and real-time nodes.

instructions to assign, balance, and drop segments. However, these

operations do not affect data availability at all.

The design principle for responding to MySQL and Zookeeper fail-

ures is the same: if an external dependency responsible for coordi-

nation fails, the clustermaintains the status quo. Druid usesMySQL

to store operational management information and segment meta-

data information about what segments should exist in the cluster. If

MySQL goes down, this information becomes unavailable to coor-

dinator nodes. However, this does not mean data itself is unavail-

able. If coordinator nodes cannot communicate to MySQL, they

will cease to assign new segments and drop outdated ones. Bro-

ker, historical and real-time nodes are still queryable duringMySQL

outages.

4. STORAGE FORMAT
Data tables in Druid (called data sources) are collections of times-

tamped events and partitioned into a set of segments, where each

segment is typically 5–10 million rows. Formally, we define a seg-

ment as a collection of rows of data that span some period in time.

Segments represent the fundamental storage unit in Druid and repli-

cation and distribution are done at a segment level.

Druid always requires a timestamp column as a method of simplify-

ing data distribution policies, data retention policies, and first-level

query pruning. Druid partitions its data sources into well-defined

time intervals, typically an hour or a day, and may further partition

on values from other columns to achieve the desired segment size.

For example, partitioning the data in Table 1 by hour results in two

segments for 2011-01-01, and partitioning the data by day results

in a single segment. The time granularity to partition segments is a

function of data volume and time range. A data set with timestamps

spread over a year is better partitioned by day, and a data set with

timestamps spread over a day is better partitioned by hour.

Segments are uniquely identified by a data source identifer, the time

interval of the data, and a version string that increases whenever a

new segment is created. The version string indicates the freshness

of segment data; segments with later versions have newer views of

data (over some time range) than segmentswith older versions. This

segment metadata is used by the system for concurrency control;

read operations always access data in a particular time range from

the segments with the latest version identifiers for that time range.

Druid segments are stored in a column orientation. Given that Druid

is best used for aggregating event streams (all data going into Druid

must have a timestamp), the advantages storing aggregate informa-

tion as columns rather than rows are well documented [1]. Column

storage allows for more efficient CPU usage as only what is needed

is actually loaded and scanned. In a row oriented data store, all

columns associated with a row must be scanned as part of an ag-

gregation. The additional scan time can introduce signficant per-

formance degradations [1].

Druid has multiple column types to represent various data formats.

Depending on the column type, different compression methods are

used to reduce the cost of storing a column in memory and on disk.

In the example given in Table 1, the page, user, gender, and city

columns only contain strings. Storing strings directly is unneces-

sarily costly and string columns can be dictionary encoded instead.

Dictionary encoding is a common method to compress data and has

been used in other data stores such as PowerDrill [17]. In the exam-

ple in Table 1, we can map each page to an unique integer identifier.

Justin Bieber -> 0
Ke$ha -> 1

This mapping allows us to represent the page column as an integer

array where the array indices correspond to the rows of the original

data set. For the page column, we can represent the unique pages

as follows:

[0, 0, 1, 1]

The resulting integer array lends itself very well to compression

methods. Generic compression algorithms on top of encodings are

extremely common in column-stores. Druid uses the LZF [23] com-

pression algorithm.

Similar compression methods can be applied to numeric columns.

For example, the characters added and characters removed columns

in Table 1 can also be expressed as individual arrays.

Characters Added -> [1800, 2912, 1953, 3194]
Characters Removed -> [25, 42, 17, 170]

In this case, we compress the raw values as opposed to their dictio-

nary representations.

4.1 Indices for Filtering Data
In many real world OLAP workflows, queries are issued for the ag-

gregated results of some set of metrics where some set of dimension

specifications are met. An example query may be asked is: ”How

manyWikipedia edits were done by users in San Francisco who are

also male?”. This query is filtering the Wikipedia data set in Ta-

ble 1 based on a Boolean expression of dimension values. In many

real world data sets, dimension columns contain strings and metric

columns contain numeric values. Druid creates additional lookup

indices for string columns such that only those rows that pertain to

a particular query filter are ever scanned.

Let us consider the page column in Table 1. For each unique page

in Table 1, we can form some representation indicating in which
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Figure 7: Integer array size versus Concise set size.

table rows a particular page is seen. We can store this information

in a binary array where the array indices represent our rows. If a

particular page is seen in a certain row, that array index is marked

as 1. For example:

Justin Bieber -> rows [0, 1] -> [1][1][0][0]
Ke$ha -> rows [2, 3] -> [0][0][1][1]

Justin Bieber is seen in rows 0 and 1. This mapping of column
values to row indices forms an inverted index [34]. To know which

rows contain Justin Bieber or Ke$ha, we can OR together the

two arrays.

[0][1][0][1] OR [1][0][1][0] = [1][1][1][1]

This approach of performing Boolean operations on large bitmap

sets is commonly used in search engines. Bitmap compression al-

gorithms are a well-defined area of research and often utilize run-

length encoding. Popular algorithms include Byte-aligned Bitmap

Code [3], Word-Aligned Hybrid (WAH) code [39], and Partitioned

Word-Aligned Hybrid (PWAH) compression [37]. Druid opted to

use the Concise algorithm [10] as it can outperform WAH by re-

ducing the size of the compressed bitmaps by up to 50%. Figure 7

illustrates the number of bytes using Concise compression versus

using an integer array. The results were generated on a cc2.8xlarge

systemwith a single thread, 2G heap, 512m young gen, and a forced

GC between each run. The data set is a single day’s worth of data

collected from the Twitter garden hose [36] data stream. The data

set contains 2,272,295 rows and 12 dimensions of varying cardinal-

ity. As an additional comparison, we also resorted the data set rows

to maximize compression.

In the unsorted case, the total Concise size was 53,451,144 bytes

and the total integer array size was 127,248,520 bytes. Overall,

Concise compressed sets are about 42% smaller than integer ar-

rays. In the sorted case, the total Concise compressed size was

43,832,884 bytes and the total integer array size was 127,248,520

bytes. What is interesting to note is that after sorting, global com-

pression only increased minimally. The total Concise set size to

total integer array size is 34%. It is also interesting to note that as

the cardinality of a dimension approaches the total number of rows

in a data set, integer arrays require less space than Concise sets and

become a better alternative.

4.2 Storage Engine
Druid’s persistence components allows for different storage engines

to be plugged in, similar to Dynamo [12]. These storage engines

may store data in an entirely in-memory structure such as the JVM

heap or in memory-mapped structures. The ability to swap storage

engines allows for Druid to be configured depending on a particular

application’s specifications. An in-memory storage engine may be

operationally more expensive than a memory-mapped storage en-

gine but could be a better alternative if performance is critical. By

default, a memory-mapped storage engine is used.

When using a memory-mapped storage engine, Druid relies on the

operating system to page segments in and out of memory. Given

that segments can only be scanned if they are loaded in memory,

a memory-mapped storage engine allows recent segments to retain

in memory whereas segments that are never queried are paged out.

The main drawback with using the memory-mapped storage engine

is when a query requires more segments to be paged into memory

than a given node has capacity for. In this case, query performance

will suffer from the cost of paging segments in and out of memory.

5. QUERY API
Druid has its own query language and accepts queries as POST re-

quests. Broker, historical, and real-time nodes all share the same

query API.

The body of the POST request is a JSON object containing key-

value pairs specifying various query parameters. A typical query

will contain the data source name, the granularity of the result data,

time range of interest, the type of request, and the metrics to ag-

gregate over. The result will also be a JSON object containing the

aggregated metrics over the time period.

Most query types will also support a filter set. A filter set is a

Boolean expression of dimension name and value pairs. Any num-

ber and combination of dimensions and values may be specified.

When a filter set is provided, only the subset of the data that per-

tains to the filter set will be scanned. The ability to handle complex

nested filter sets is what enables Druid to drill into data at any depth.

The exact query syntax depends on the query type and the informa-

tion requested. A sample count query over a week of data is shown

below:

{
"queryType" : "timeseries",
"dataSource" : "wikipedia",
"intervals" : "2013-01-01/2013-01-08",
"filter" : {
"type" : "selector",
"dimension" : "page",
"value" : "Ke$ha"

},
"granularity" : "day",
"aggregations" : [ {

"type" : "count",
"name" : "rows"

} ]
}



The query shown above will return a count of the number of rows in

the Wikipedia datasource from 2013-01-01 to 2013-01-08, filtered

for only those rowswhere the value of the ”page” dimension is equal

to ”Ke$ha”. The results will be bucketed by day and will be a JSON

array of the following form:

[ {
"timestamp": "2012-01-01T00:00:00.000Z",
"result": {
"rows": 393298

}
},
{
"timestamp": "2012-01-02T00:00:00.000Z",
"result": {
"rows": 382932

}
},
...
{
"timestamp": "2012-01-07T00:00:00.000Z",
"result": {
"rows": 1337

}
} ]

Druid supports many types of aggregations including double sums,

long sums, minimums, maximums, and several others. Druid also

supports complex aggregations such as cardinality estimation and

approximate quantile estimation. The results of aggregations can be

combined in mathematical expressions to form other aggregations.

The query API is highly customizable and can be extended to fil-

ter and group results based on almost any arbitrary condition. It is

beyond the scope of this paper to fully describe the query API but

more information can be found online3. We are also in the process

of extending the Druid API to understand SQL.

6. PERFORMANCE BENCHMARKS
To illustrate Druid’s performance, we conducted a series of exper-

iments that focused on measuring Druid’s query and data ingestion

capabilities.

6.1 Query Performance
To benchmark Druid query performance, we created a large test

cluster with 6TB of uncompressed data, representing tens of bil-

lions of fact rows. The data set contained more than a dozen di-

mensions, with cardinalities ranging from the double digits to tens

of millions. We computed four metrics for each row (counts, sums,

and averages). The data was sharded first on timestamp and then

on dimension values, creating thousands of shards roughly 8 mil-

lion fact rows apiece.

The cluster used in the benchmark consisted of 100 historical nodes,

each with 16 cores, 60GB of RAM, 10 GigE Ethernet, and 1TB of

disk space. Collectively, the cluster comprised of 1600 cores, 6TB

or RAM, sufficiently fast Ethernet andmore than enough disk space.

SQL statements are included in Table 2. These queries are meant

to represent some common queries that are made against Druid for

typical data analysis workflows. Although Druid has its own query

3http://druid.io/docs/latest/Querying.html
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Figure 8: Druid cluster scan rate with lines indicating linear

scaling from 25 nodes.
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Figure 9: Druid core scan rate.

language, we choose to translate the queries into SQL to better de-

scribe what the queries are doing. Please note:

• The timestamp range of the queries encompassed all data.

• Each machine was a 16-core machine with 60GB RAM and

1TB of local disk. The machine was configured to only use

15 threads for processing queries.

• A memory-mapped storage engine was used (the machine

was configured to memory map the data instead of loading

it into the Java heap.)

Figure 8 shows the cluster scan rate and Figure 9 shows the core

scan rate. In Figure 8 we also include projected linear scaling based

on the results of the 25 core cluster. In particular, we observe di-

minishing marginal returns to performance in the size of the clus-

ter. Under linear scaling, the first SQL count query (query 1) would

have achieved a speed of 37 billion rows per second on our 75 node

cluster. In fact, the speed was 26 billion rows per second. How-

ever, queries 2-6 maintain a near-linear speedup up to 50 nodes:

the core scan rates in Figure 9 remain nearly constant. The increase

in speed of a parallel computing system is often limited by the time

needed for the sequential operations of the system, in accordance

with Amdahl’s law [2].

http://druid.io/docs/latest/Querying.html


Table 2: Druid Queries

Query # Query

1 SELECT count(*) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ?
2 SELECT count(*), sum(metric1) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ?
3 SELECT count(*), sum(metric1), sum(metric2), sum(metric3), sum(metric4) FROM _table_ WHERE

timestamp ≥ ? AND timestamp < ?
4 SELECT high_card_dimension, count(*) AS cnt FROM _table_ WHERE timestamp ≥ ? AND

timestamp < ? GROUP BY high_card_dimension ORDER BY cnt limit 100
5 SELECT high_card_dimension, count(*) AS cnt, sum(metric1) FROM _table_ WHERE timestamp ≥

? AND timestamp < ? GROUP BY high_card_dimension ORDER BY cnt limit 100
6 SELECT high_card_dimension, count(*) AS cnt, sum(metric1), sum(metric2), sum(metric3),

sum(metric4) FROM _table_ WHERE timestamp ≥ ? AND timestamp < ? GROUP BY
high_card_dimension ORDER BY cnt limit 100

The first query listed in Table 2 is a simple count, achieving scan

rates of 33M rows/second/core. We believe the 75 node cluster was

actually overprovisioned for the test dataset, explaining the modest

improvement over the 50 node cluster. Druid’s concurrency model

is based on shards: one thread will scan one shard. If the number of

segments on a historical node modulo the number of cores is small

(e.g. 17 segments and 15 cores), then many of the cores will be idle

during the last round of the computation.

When we include more aggregations we see performance degrade.

This is because of the column-oriented storage format Druid em-

ploys. For the count(*) queries, Druid only has to check the times-
tamp column to satisfy the “where” clause. As we add metrics, it

has to also load those metric values and scan over them, increasing

the amount of memory scanned.

6.2 Data Ingestion Performance
To measure Druid’s data latency latency, we spun up a single real-

time node with the following configurations:

• JVM arguments: -Xmx2g -Duser.timezone=UTC -Dfile.en-

coding=UTF-8 -XX:+HeapDumpOnOutOfMemoryError

• CPU: 2.3 GHz Intel Core i7

Druid’s data ingestion latency is heavily dependent on the complex-

ity of the data set being ingested. The data complexity is determined

by the number of dimensions in each event, the number of metrics

in each event, and the types of aggregations we want to perform

on those metrics. With the most basic data set (one that only has

a timestamp column), our setup can ingest data at a rate of 800k

events/sec/node, which is really just a measurement of how fast we

can deserialize events. Real world data sets are never this simple.

To simulate real-world ingestion rates, we created a data set with 5

dimensions and a single metric. 4 out of the 5 dimensions have a

cardinality less than 100, and we varied the cardinality of the final

dimension. The results of varying the cardinality of a dimension is

shown in Figure 10.

In Figure 11, we instead vary the number of dimensions in our data

set. Each dimension has a cardinality less than 100. We can see a

similar decline in ingestion throughput as the number of dimensions

increases.

Finally, keeping our number of dimensions constant at 5, with four

dimensions having a cardinality in the 0-100 range and the final di-

mension having a cardinality of 10,000, we can see a similar decline

Figure 10: When we vary the cardinality of a single dimension,

we can see monotonically decreasing throughput.

Figure 11: Increasing the number of dimensions of our data set

also leads to a decline in throughput.



Figure 12: Adding newmetrics to a data set decreases ingestion

latency. In most real world data sets, the number of metrics in

a data set tends to be lower than the number of dimensions.

in throughput when we increase the number of metrics/aggregators

in the data set. We used random types of metrics/aggregators in

this experiment, and they vary from longs, doubles, and other more

complex types. The randomization introduces more noise in the re-

sults, leading to a graph that is not strictly decreasing. These results

are shown in Figure 12. For most real world data sets, the number

of metrics tends to be less than the number of dimensions. Hence,

we can see that introducing a few new metrics does not impact the

ingestion latency as severely as in the other graphs.

7. RELATED WORK
Cattell [7] maintains a great summary about existing Scalable SQL

and NoSQL data stores. Hu [18] contributed another great sum-

mary for streaming databases. Druid feature-wise sits somewhere

betweenGoogle’s Dremel [27] and PowerDrill [17]. Druid hasmost

of the features implemented in Dremel (Dremel handles arbitrary

nested data structures while Druid only allows for a single level of

array-based nesting) and many of the interesting compression algo-

rithms mentioned in PowerDrill.

Although Druid builds on many of the same principles as other dis-

tributed columnar data stores [15], many of these data stores are

designed to be more generic key-value stores [33] and do not sup-

port computation directly in the storage layer. There are also other

data stores designed for some of the same of the data warehousing

issues that Druid is meant to solve. These systems include include

in-memory databases such as SAP’s HANA [14] and VoltDB [38].

These data stores lack Druid’s low latency ingestion characteristics.

Druid also has native analytical features baked in, similar to [30],

however, Druid allows system wide rolling software updates with

no downtime.

Druid’s low latency data ingestion features share some similarities

with Trident/Storm [26] and Streaming Spark [40], however, both

systems are focused on stream processing whereas Druid is focused

on ingestion and aggregation. Stream processors are great comple-

ments to Druid as a means of pre-processing the data before the data

enters Druid.

There are a class of systems that specialize in queries on top of clus-

ter computing frameworks. Shark [13] is such a system for queries

on top of Spark, and Cloudera’s Impala [9] is another system fo-

cused on optimizing query performance on top of HDFS. Druid

historical nodes download data locally and only work with native

Druid indexes. We believe this setup allows for faster query laten-

cies.

Druid leverages a unique combination of algorithms in its archi-

tecture. Although we believe no other data store has the same set

of functionality as Druid, some of Druid’s optimization techniques

such as using inverted indices to perform fast filters are also used in

other data stores [25].

8. CONCLUSIONS
In this paper, we presented Druid, a distributed, column-oriented,

real-time analytical data store. Druid is designed to power high

performance applications and is optimized for low query latencies.

Druid supports streaming data ingestion and is fault-tolerant. We

discussed how Druid was able to scan 27 billion rows in a second.

We summarized key architecture aspects such as the storage format,

query language, and general execution. In the future, we plan to

cover the different algorithms we’ve developed for Druid and how

other systems may plug into Druid in greater detail.
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