--- layout: doc_page --- Timeseries queries ================== These types of queries take a timeseries query object and return an array of JSON objects where each object represents a value asked for by the timeseries query. An example timeseries query object is shown below: ```json { "queryType": "timeseries", "dataSource": "sample_datasource", "granularity": "day", "descending": "true", "filter": { "type": "and", "fields": [ { "type": "selector", "dimension": "sample_dimension1", "value": "sample_value1" }, { "type": "or", "fields": [ { "type": "selector", "dimension": "sample_dimension2", "value": "sample_value2" }, { "type": "selector", "dimension": "sample_dimension3", "value": "sample_value3" } ] } ] }, "aggregations": [ { "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" }, { "type": "doubleSum", "name": "sample_name2", "fieldName": "sample_fieldName2" } ], "postAggregations": [ { "type": "arithmetic", "name": "sample_divide", "fn": "/", "fields": [ { "type": "fieldAccess", "name": "postAgg__sample_name1", "fieldName": "sample_name1" }, { "type": "fieldAccess", "name": "postAgg__sample_name2", "fieldName": "sample_name2" } ] } ], "intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ] } ``` There are 7 main parts to a timeseries query: |property|description|required?| |--------|-----------|---------| |queryType|This String should always be "timeseries"; this is the first thing Druid looks at to figure out how to interpret the query|yes| |dataSource|A String or Object defining the data source to query, very similar to a table in a relational database. See [DataSource](../querying/datasource.html) for more information.|yes| |descending|Whether to make descending ordered result. Default is `false`(ascending).|no| |intervals|A JSON Object representing ISO-8601 Intervals. This defines the time ranges to run the query over.|yes| |granularity|Defines the granularity to bucket query results. See [Granularities](../querying/granularities.html)|yes| |filter|See [Filters](../querying/filters.html)|no| |aggregations|See [Aggregations](../querying/aggregations.html)|no| |postAggregations|See [Post Aggregations](../querying/post-aggregations.html)|no| |context|See [Context](../querying/query-context.html)|no| To pull it all together, the above query would return 2 data points, one for each day between 2012-01-01 and 2012-01-03, from the "sample\_datasource" table. Each data point would be the (long) sum of sample\_fieldName1, the (double) sum of sample\_fieldName2 and the (double) result of sample\_fieldName1 divided by sample\_fieldName2 for the filter set. The output looks like this: ```json [ { "timestamp": "2012-01-01T00:00:00.000Z", "result": { "sample_name1": , "sample_name2": , "sample_divide": } }, { "timestamp": "2012-01-02T00:00:00.000Z", "result": { "sample_name1": , "sample_name2": , "sample_divide": } } ] ``` #### Zero-filling Timeseries queries normally fill empty interior time buckets with zeroes. For example, if you issue a "day" granularity timeseries query for the interval 2012-01-01/2012-01-04, and no data exists for 2012-01-02, you will receive: ```json [ { "timestamp": "2012-01-01T00:00:00.000Z", "result": { "sample_name1": } }, { "timestamp": "2012-01-02T00:00:00.000Z", "result": { "sample_name1": 0 } }, { "timestamp": "2012-01-03T00:00:00.000Z", "result": { "sample_name1": } } ] ``` Time buckets that lie completely outside the data interval are not zero-filled. You can disable all zero-filling with the context flag "skipEmptyBuckets". In this mode, the data point for 2012-01-02 would be omitted from the results. A query with this context flag set would look like: ```json { "queryType": "timeseries", "dataSource": "sample_datasource", "granularity": "day", "aggregations": [ { "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" } ], "intervals": [ "2012-01-01T00:00:00.000/2012-01-04T00:00:00.000" ], "context" : { "skipEmptyBuckets": "true" } } ```