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ABSTRACT
The Real-time Analytics Data Stack, colloquially referred to
as the RADStack, is an open-source data analytics stack de-
signed to provide fast, flexible queries over up-to-the-second
data. It is designed to overcome the limitations of either
a purely batch processing system (it takes too long to sur-
face new events) or a purely real-time system (it’s difficult
to ensure that no data is left behind and there is often no
way to correct data after initial processing). It will seam-
lessly return best-effort results on very recent data com-
bined with guaranteed-correct results on older data. In this
paper, we introduce the architecture of the RADStack and
discuss our methods of providing interactive analytics and
a flexible data processing environment to handle a variety
of real-world workloads.

1. INTRODUCTION
The rapid growth of the Hadoop[23] ecosystem has en-

abled many organizations to flexibly process and gain in-
sights from large quantities of data. These insights are typ-
ically generated from business intelligence, or OnLine Ana-
lytical Processing (OLAP) queries. Hadoop has proven to be
an extremely effective framework capable of providing many
analytical insights and is able to solve a wide range of dis-
tributed computing problems. However, as much as Hadoop
is lauded for its wide range of use cases, it is derided for its
high latency in processing and returning results. A common
approach to surface data insights is to run MapReduce jobs
that may take several hours to complete.

Data analysis and data-driven applications are becoming
increasingly important in industry, and the long query times
encountered with using batch frameworks such as Hadoop
are becoming increasingly intolerable. User facing appli-
cations are replacing traditional reporting interfaces as the
preferred means for organizations to derive value from their
datasets. In order to provide an interactive user experi-
ence with data applications, queries must complete in an
order of milliseconds. Because most of these interactions

revolve around data exploration and computation, organi-
zations quickly realized that in order to support low latency
queries, dedicated serving layers were necessary. Today,
most of these serving layers are Relational Database Man-
agement Systems (RDBMS) or NoSQL key/value stores.
Neither RDBMS nor NoSQL key/value stores are partic-
ularly designed for analytics [27], but these technologies are
still frequently selected as serving layers. Solutions that in-
volve these broad-focus technologies can be inflexible once
tailored to the analytics use case, or suffer from architecture
drawbacks that prevent them from returning queries fast
enough to power interactive, user-facing applications [28].

An ideal data serving layer alone is often not sufficient
as a complete analytics solution. In most real-world use
cases, raw data cannot be directly stored in the serving layer.
Raw data suffers from many imperfections and must first
be processed (transformed, or cleaned) before it is usable
[24]. The drawback of this requirement is that loading and
processing batch data is slow, and insights on events cannot
be obtained until hours after the events have occurred.

To address the delays in data freshness caused by batch
processing frameworks, numerous open-source stream pro-
cessing frameworks such as Apache Storm[20], Apache Spark
Streaming[33], and Apache Samza[1] have gained popularity
for offering a low-latency model to ingest and process event
streams at near real-time speeds. The drawback of almost
all stream processors is that they do not necessarily provide
the same correctness guarantees as batch processing frame-
works. Events can come in days late, and may need to be
corrected after the fact. Large batches of data may also need
to be reprocessed when new columns are added or removed.

The RADStack is an open source, end-to-end solution
meant to offer flexible, low-latency analytic queries on near
real-time data. The solution combines the low latency guar-
antees of stream processors and the correctness and flexibil-
ity guarantees of batch processors. It also introduces a serv-
ing layer specifically designed for interactive analytics. The
stack’s main building blocks are Apache Kafka[17], Apache
Samza, Apache Hadoop, and Druid [31], and we have found
that the combination of technologies is flexible enough to
handle a wide variety of processing requirements and query
loads. Each piece of the stack is designed to do a specific
set of things very well. This paper will cover the details
and design principles of the RADStack. Our contributions
are around the architecture of the stack itself, the introduc-
tion of Druid as a serving layer, and our model for unifying
real-time and historical workflows.
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The structure of the paper is as follows: Section 2 de-
scribes the problems and use cases that led to the creation
of the RADStack. Section 3 describes Druid, the serving
layer of the stack, and how Druid is built for real-time and
batch data ingestion, as well as exploratory analytics. Sec-
tion 4 covers the role of Samza and Hadoop for data pro-
cessing, and Section 5 describes the role of Kafka for event
delivery. In Section 6, we present our production metrics.
Section 7 presents our experiences with running the RAD-
Stack in production, and in Section 8 we discuss the related
solutions.

2. BACKGROUND
The development of RADStack came about iteratively.

Different technologies were introduced to address new prob-
lems and use cases that came up over time. The initial con-
cept of the RADStack started at Metamarkets, an analytics
startup focused in the advertising technology space, and has
since been adopted by other technology companies [2]. In
the early days of Metamarkets, we wanted to build an ana-
lytics dashboard where users could arbitrarily explore their
data. An example of the data found in online advertising
space is shown in Table 1.

The data shown in Table 1 is fairly standard in OLAP
workflows. The data is an event stream with a timestamp
and tends to be very append heavy. Each event is com-
prised of three components: a timestamp indicating when
the event occurred; a set of dimensions indicating various
attributes about the event; and a set of metrics concerning
the event. Our goal is to rapidly compute drill-down and ag-
gregates with this data, to answer questions such as “How
many clicks occurred over the span of one week for publisher
google.com?” or “How many impressions were seen over the
last quarter in San Francisco?” We wanted to issue queries
over any arbitrary number of dimensions and have results
return in a few hundred milliseconds.

In addition to the query latency needs, we needed to
support multi-tenancy. User-facing applications often face
highly concurrent workloads and good applications need to
provide relatively consistent performance to all users. Fi-
nally, we needed our backend infrastructure to be highly
available. Downtime is costly and many businesses cannot
afford to wait if a system is unavailable in the face of soft-
ware upgrades or network failure.

Following industry standard practices, we evaluated vari-
ous options for a serving layer. We tried to select a serving
layer that was optimized for the types of queries we wanted
to make, and we initially began our experiments with Post-
greSQL[26]. Our setup with PostgreSQL followed the com-
mon conventions of using RDBMSs as data warehouses. We
modeled the advertising data using a star schema, we used
aggregate tables to increase aggregation performance, and
overlaid a query cache to further speed up queries.

Our findings with PostgreSQL are shown in Table 2. Query
latencies were generally acceptable if the results were cached,
less acceptable if we hit aggregate tables, and unacceptable
if we needed to scan the base fact table. A single page load
of the first version of our application, which issued about
20 concurrent queries to the serving layer and only required
aggregating a few metrics, took several minutes to complete.
This was too slow to power an interactive application. We
quickly realized a row store, and relational model in general,

Figure 1: Precomputating queries scales exponen-
tially. To support every possible combination of
queries, even a small data set can generate many
possible queries.

Figure 2: The components of the RADStack. Kafka
acts as the event delivery endpoints. Samza and
Hadoop process data to load data into Druid. Druid
acts as the endpoint for queries.

was a sub-optimal choice for the application we were trying
to build.

We next evaluated HBase [14], a NoSQL key/value store.
As is common with using key/value stores, we precomputed
the total set of queries we anticipated users would make.
An example of this precomputation is shown in Figure 1.
Our results with HBase are shown in Table 3 for 500, 000
records. Queries were acceptably fast with this solution as
we were effectively doing O(1) lookups into maps. How-
ever, the solution was not particularly flexible; if something
wasn’t precomputed, it wasn’t queryable, and the precompu-
tation time became a big pain point. We attempted to build
iceberg cubes as described in [4], restricting the space of our
pre-computations, but even then the precomputation times
were unacceptable. Our entire evaluation of both RDBMS
and key/value stores is described in detail in [28].

Druid was developed in an attempt to solve some of the
problems seen with traditional serving layers. Druid was
designed from the ground up to provide arbitrary data ex-
ploration, low latency aggregations, and fast data ingestion.
Druid was also designed to accept fully denormalized data,
and moves away from the traditional relational model. Since
most raw data is not denormalized, it must be processed be-
fore it can be ingested and queried. Multiple streams of data
had to be joined, cleaned up, and transformed before it was
usable in Druid, but that was the trade-off we were willing
to make in order to get the performance necessary to power
an interactive data application. We introduced stream pro-
cessing to our stack to provide the processing required before
raw data could be loaded into Druid. Our stream process-
ing jobs range from simple data transformations, such as id
to name lookups, up to complex operations such as multi-
stream joins. Pairing Druid with a stream processor enabled
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Timestamp Publisher Advertiser Gender City Click Price
2011-01-01T01:01:35Z bieberfever.com google.com Male San Francisco 0 0.65
2011-01-01T01:03:63Z bieberfever.com google.com Male Waterloo 0 0.62
2011-01-01T01:04:51Z bieberfever.com google.com Male Calgary 1 0.45
2011-01-01T01:00:00Z ultratrimfast.com google.com Female Taiyuan 0 0.87
2011-01-01T02:00:00Z ultratrimfast.com google.com Female New York 0 0.99
2011-01-01T02:00:00Z ultratrimfast.com google.com Female Vancouver 1 1.53

Table 1: Sample ad data. These events are created when users views or clicks on ads.

Native Benchmark Scan Rate 5̃.5M rows/s/core
1 day of summarized aggregates 60M+ rows
1 query over 1 week, 16 cores 5̃ seconds
Page load with 20 queries over a week of data several minutes

Table 2: Initial evaluation with PostgreSQL on
m2.2xlarge EC2 node.

Total Dimensions Precomputation time
11 4.5 hours on a 15 node Hadoop cluster
14 9 hours on a 25 node hadoop cluster

Table 3: Initial evaluation with HBase on
m2.2xlarge EC2 nodes.

flexible data processing and querying, but we still had prob-
lems with event delivery. Our events were delivered from
many different locations and sources, and peaked at several
hundred thousand events per second. We required a high
throughput message bus that could hold these events for
consumpation by our stream processor. To simplify data
transmission for our clients, we wanted the message bus to
be the single delivery endpoint for events entering our clus-
ter.

Our stack would be complete here if real-time processing
were perfect, but the open source stream processing space
is still young. Processing jobs can go down for extended
periods of time and events may be delivered more than
once. These are realities of any production data pipeline.
To overcome these issues, we included Hadoop in our stack
to periodically clean up any data generated by the real-time
pipeline. We stored a copy of the raw events we received in
a distributed file system, and periodically ran batch process-
ing jobs over this data. The high level architecture of our
setup is shown in Figure 2. Each component is designed
to do a specific set of things well, and there is isolation in
terms of functionality. Individual components can entirely
fail without impacting the services of the other components.

3. THE SERVING LAYER
Druid is a column-oriented data store designed for ex-

ploratory analytics and is the serving layer in the RAD-
Stack. A Druid cluster consists of different types of nodes
and, similar to the overall design of the RADStack, each
node type is instrumented to perform a specific set of things
well. We believe this design separates concerns and simpli-
fies the complexity of the overall system. To solve complex
data analysis problems, the different node types come to-
gether to form a fully working system. The composition of
and flow of data in a Druid cluster are shown in Figure 3.

3.1 Segments

Data tables in Druid (called ”data sources”) are collec-
tions of timestamped events and partitioned into a set of
segments, where each segment is typically 5–10 million rows.
Segments represent the fundamental storage unit in Druid
and Druid queries only understand how to scan segments.

Druid always requires a timestamp column as a method
of simplifying data distribution policies, data retention poli-
cies, and first level query pruning. Druid partitions its data
sources into well defined time intervals, typically an hour
or a day, and may further partition on values from other
columns to achieve the desired segment size. The time gran-
ularity to partition segments is a function of data volume
and time range. A data set with timestamps spread over a
year is better partitioned by day, and a data set with times-
tamps spread over a day is better partitioned by hour.

Segments are uniquely identified by a data source iden-
tifier, the time interval of the data, and a version string
that increases whenever a new segment is created. The ver-
sion string indicates the freshness of segment data; segments
with later versions have newer views of data (over some
time range) than segments with older versions. This seg-
ment metadata is used by the system for concurrency con-
trol; read operations always access data in a particular time
range from the segments with the latest version identifiers
for that time range.

Druid segments are stored in a column orientation. Given
that Druid is best used for aggregating event streams, the
advantages of storing aggregate information as columns rather
than rows are well documented [3]. Column storage allows
for more efficient CPU usage as only what is needed is ac-
tually loaded and scanned. In a row oriented data store,
all columns associated with a row must be scanned as part
of an aggregation. The additional scan time can introduce
significant performance degradations [3].

Druid nodes use one thread to scan one segment at a time,
and the amount of data that can be scanned in parallel is
directly correlated to the number of available cores in the
cluster. Segments are immutable, and immutability confers
a few advantages. Immutable segments enable read consis-
tency, and multiple threads can scan the same segment at
the same time. This helps enable higher read throughput.

A single query may scan thousands of segments concur-
rently, and many queries may run at the same time. We
want to ensure that the entire cluster is not starved out
while a single expensive query is executing. Thus, segments
have an upper limit in how much data they can hold, and
are sized to be scanned in a few milliseconds. By keeping
segment computation very fast, cores and other resources
are constantly being yielded. This ensures segments from
different queries are always being scanned.

Druid segments are very self-contained for the time inter-
val of data that they hold. Column data is stored directly
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Figure 3: An overview of a Druid cluster and the flow of data through the cluster.

in the segment. Druid has multiple column types to repre-
sent various data formats. Timestamps are stored in long
columns, dimensions are stored in string columns, and met-
rics are stored in int, float, long or double columns. Depend-
ing on the column type, different compression methods may
be used. Metric columns are compressed using LZ4[8] com-
pression. String columns are dictionary encoded, similar to
other data stores such as PowerDrill[15]. Additional indexes
may be created for particular columns. For example, Druid
will by default create inverted indexes for string columns.

3.2 Filters
Real-world OLAP queries often ask for the aggregated to-

tals for some set of metrics, filtered for some boolean expres-
sion of dimension specifications, over some period of time.
An example query for Table 1 may ask: “How many clicks
occurred and how much revenue was generated for publish-
ers bieberfever.com and ultratrimfast.com?”.

Consider the publisher column in Table 1, a string column.
For each unique publisher in Table 1, our inverted index
tells us in which table rows a particular page is seen. Our
inverted index looks like the following:
bieberfever.com -> rows [0, 1, 2] -> [1][1][1][0][0][0]
ultratrimfast.com -> rows [3, 4, 5] -> [0][0][0][1][1][1]

In the binary array, the array indices represent our rows,
and the array values indicate whether a particular value was
seen. In our example, bieberfever.com is seen in rows 0,
1 and 2. To know which rows contain bieberfever.com or
ultratrimfast.com, we can OR together the two arrays.
[1][1][1][0][0][0] OR [0][0][0][1][1][1] = [1][1][1][1][1][1]

Our query is aggregating two metrics. Our metrics are
also stored in a column orientation:
Clicks -> [0, 0, 1, 0, 0, 1]
Price -> [0.65, 0.62. 0.45, 0.87, 0.99, 1.53]

We can load up only the metric columns we need for the
query. We do not need to scan the entire metric column
for a given query. For example, queries for results where
publisher is bieberfever.com only requires scanning rows 0,
1, and 2 in the metrics column. The inverted indexes tell us
exactly the rows we need to scan, and Druid has an internal
cursor to only walk through the rows that match the final
inverted index.
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Figure 4: Real-time nodes write events to a write
optimized in-memory index. Periodically, events are
persisted to disk, converting the write optimized for-
mat to a read optimized one. On a periodic basis,
persisted indexes are then merged together and the
final segment is handed off. Queries will hit both
the in-memory and persisted indexes.

3.3 Streaming Data Ingestion
Druid real-time nodes encapsulate the functionality to in-

gest, query, and create segments from event streams. Events
indexed via these nodes are immediately available for query-
ing. The nodes are only concerned with events for a rela-
tively small time range (e.g. hours) and periodically hand
off immutable batches of events they have collected over
this small time range to other nodes in the Druid cluster
that are specialized in dealing with batches of immutable
events. The nodes announce their online state and the data
they serve using a distributed coordination service (this is
currently Zookeeper[16]).

Real-time nodes employ a log structured merge tree[21]
for recently ingested data. Incoming events are first stored
in an in-memory buffer. The in-memory buffer is directly
queryable and Druid behaves as a row store for queries on
events that exist in this JVM heap-based store. The in-
memory buffer is heavily write optimized, and given that
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Druid is really designed for heavy concurrent reads, events
do not remain in the in-memory buffer for very long. Real-
time nodes persist their in-memory indexes to disk either pe-
riodically or after some maximum row limit is reached. This
persist process converts data stored in the in-memory buffer
to the column oriented segment storage format described
in Section 3.1. Persisted segments are memory mapped
and loaded to off-heap memory such that they can still be
queried. This is illustrated in Figure 5. Data is continuously
queryable during the persist process.

Real-time ingestion in Druid is self-throttling. If a signifi-
cant spike occurs in event volume from the upstream event
producer, there are a few safety mechanisms built in. Re-
call that events are first stored in an in-memory buffer and
persists can occur when a maximum configurable row limit
is reached. Spikes in event volume should cause persists
to occur more often and not overflow the in-memory buffer.
However, the process of building a segment does require time
and resources. If too many concurrent persists occur, and if
events are added to the in-memory buffer faster than they
can be removed through the persist process, problems can
still arise. Druid sets a limit on the maximum number of
persists that can occur at a time, and if this limit is reached,
Druid will begin to throttle event ingestion. In this case, the
onus is on the upstream consumer to be resilient in the face
of increasing backlog.

Real-time nodes store recent data for a configurable period
of time, typically an hour. This period is referred to as the
segment granularity period. The nodes employ a sliding
window to accept and reject events and use the wall-clock
time as the basis of the window. Events within a range of
the node’s wall-clock time are accepted, and events outside
this window are dropped. This period is referred to as the
window period and typical window periods are 10 minutes
in length. At the end of the segment granularity period plus
the window period, a real-time node will hand off the data
it has collected during the segment granularity period. The
use of the window period means that delayed events may
be dropped. In practice, we see that these occurrences are
rare, but they do occur. Druid’s real-time logic does not
guarantee exactly once processing and is instead best effort.
The lack of exactly once processing in Druid is one of the
motivations for requiring batch fixup in the RADStack.

For further clarification, consider Figure 5. Figure 5 illus-
trates the operations of a real-time node. The node starts
at 13:37 and, with a 10 minute window period, will only
accept events for a window between 13:27 and 13:47. When
the first events are ingested, the node announces that it is
serving a segment for an interval from 13:00 to 14:00. Every
10 minutes (the persist period is configurable), the node will
flush and persist its in-memory buffer to disk. Near the end
of the hour, the node will likely see events for 14:00 to 15:00.
When this occurs, the node prepares to serve data for the
next hour and creates a new in-memory buffer. The node
then announces that it is also serving a segment from 14:00
to 15:00. At 13:10, which is the end of the hour plus the
window period, the node begins the hand off process.

3.4 Hand off
Real-time nodes are designed to deal with a small win-

dow of recent data and need periodically hand off segments
they’ve built. The hand-off process first involves a com-
paction step. The compaction process finds all the segments

that were created for a specific interval of time (for example,
all the segments that were created by intermediate persists
over the period of an hour). These segments are merged
together to form a final immutable segment for handoff.

Handoff occurs in a few steps. First, the finalized seg-
ment is uploaded to a permanent backup storage, typically
a distributed file system such as S3 [10] or HDFS [23], which
Druid refers to as “deep storage”. Next, an entry is created
in the metadata store (typically a RDBMS such as MySQL)
to indicate that a new segment has been created. This entry
in the metadata store will eventually cause other nodes in
the Druid cluster to download and serve the segment. The
real-time node continues to serve the segment until it no-
tices that the segment is available on Druid historical nodes,
which are nodes that are dedicated to serving historical data.
At this point, the segment is dropped and unannounced from
the real-time node. The entire handoff process is fluid; data
remains continuously queryable throughout the entire hand-
off process. Segments created by real-time processing are
versioned by the start of the segment granularity interval.

3.5 Batch Data Ingestion
The core component used by real-time ingestion is an in-

dex that can be incrementally populated and finalized to cre-
ate an immutable segment. This core component is shared
across both real-time and batch ingestion. Druid has built
in support for creating segments by leveraging Hadoop and
running MapReduce jobs to partition data for segments.
Events can be read in one at a time directly from static
files in a ”streaming” fashion.

Similar to the real-time ingestion logic, segments created
through batch ingestion are directly uploaded to deep stor-
age. Druid’s Hadoop-based batch indexer will also create an
entry in the metadata storage once all segments have been
created. The version of the segments created by batch inges-
tion are based on the time the batch processing job started
at.

3.6 Unifying Views
When new entries are created in the metadata storage,

they will eventually be noticed by Druid coordinator nodes.
Druid coordinator nodes poll the metadata storage for what
segments should be loaded on Druid historical nodes, and
compare the result with what is actually loaded on those
nodes. Coordinator nodes will tell historical nodes to load
new segments, drop outdated segments, and move segments
across nodes.

Druid historical nodes are very simple in operation. They
know how to load, drop, and respond to queries to scan
segments. Historical nodes typically store all the data that
is older than an hour (recent data lives on the real-time
node). The real-time handoff process requires that a histor-
ical must first load and begin serving queries for a segment
before that segment can be dropped from the real-time node.
Since segments are immutable, the same copy of a segment
can exist on multiple historical nodes and real-time nodes.
Most nodes in typical production Druid clusters are histor-
ical nodes.

To consolidate results from historical and real-time nodes,
Druid has a set of broker nodes which act as the client query
endpoint. Broker nodes in part function as query routers to
historical and real-time nodes. Broker nodes understand
the metadata published in distributed coordination service
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Figure 5: The node starts, ingests data, persists, and periodically hands data off. This process repeats
indefinitely. The time periods between different real-time node operations are configurable.
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Figure 6: Druid utilizes multi-version concurrency
control and reads data from segments with the lat-
est version for a given interval. Segments that are
that completely overshadowed are ignored and even-
tually automatically dropped from the cluster.

(Zookeeper) about what segments are queryable and where
those segments are located. Broker nodes route incoming
queries such that the queries hit the right historical or real-
time nodes. Broker nodes also merge partial results from
historical and real-time nodes before returning a final con-
solidated result to the caller.

Broker nodes maintain a segment timeline containing in-
formation about what segments exist in the cluster and the
version of those segments. Druid uses multi-version concun-
currency control to manage how data is extracted from seg-
ments. Segments with higher version identifiers have prece-
dence over segments with lower version identifiers. If two
segments exactly overlap for an interval, Druid only consid-
ers the data from the segment with the higher version. This
is illustrated in Figure 6

Segments are inserted into the timeline as they are an-
nounced. The timeline sorts the segment based on their
data interval in a data structure similar to an interval tree.
Lookups in the timeline will return all segments with in-
tervals that overlap the lookup interval, along with interval
ranges for which the data in a segment is valid.

Brokers extract the interval of a query and use it for

lookups into the timeline. The result of the timeline is used
to remap the original query into a set of specific queries
for the actual historical and real-time nodes that hold the
pertinent query data. The results from the historical and
real-time nodes are finally merged by the broker, which re-
turns the final result to the caller.

The coordinator node also builds a segment timeline for
segments in the cluster. If a segment is completely over-
shadowed by one or more segments, it will be flagged in this
timeline. When the coordinator notices overshadowed seg-
ments, it tells historical nodes to drop these segments from
the cluster.

3.7 Queries
Druid has its own query language and accepts queries as

POST requests. Broker, historical, and real-time nodes all
share the same query API.

The body of the POST request is a JSON object contain-
ing key/value pairs specifying various query parameters. A
typical query will contain the data source name, the granu-
larity of the result data, time range of interest, the type of
request, and the metrics to aggregate over. The result will
also be a JSON object containing the aggregated metrics
over the time period.

Most query types will also support a filter set. A filter set
is a Boolean expression of dimension name and value pairs.
Any number and combination of dimensions and values may
be specified. When a filter set is provided, only the subset of
the data that pertains to the filter set will be scanned. The
ability to handle complex nested filter sets is what enables
Druid to drill into data at any depth.

Druid supports many types of aggregations including sums
on floating-point and integer types, minimums, maximums,
and complex aggregations such as cardinality estimation and
approximate quantile estimation. The results of aggrega-
tions can be combined in mathematical expressions to form
other aggregations. It is beyond the scope of this paper to
fully describe the query API but more information can be
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found online1.
As of this writing, a join query for Druid is not yet im-

plemented. Although Druid’s storage format would allow
for the implementation of joins (there is no loss of fidelity
for columns included as dimensions), implementation time
is costly and a strong enough use case has not yet arisen.
When all sides of the join are significantly large tables (> 1
billion records), materializing the pre-join streams requires
complex distributed memory management. The complexity
of the memory management is only amplified by the fact
that we are targeting highly concurrent, multi-tenant work-
loads. For these reasons, we’ve elected to do joins at the
processing layer for the time being.

4. THE PROCESSING LAYER
Although Druid can ingest events that are streamed in

one at a time, data must be denormalized beforehand as
Druid cannot yet support join queries. Furthermore, real
world data must often be transformed before it is usable by
an application.

4.1 Stream Processing
Stream processors provide infrastructure to develop pro-

cessing logic for unbounded sequences of messages. We use
Apache Samza as our stream processor, although other tech-
nologies are viable alternatives (we initially chose Storm, but
have since switched to Samza). Samza provides an API to
write jobs that run over a sequence of tuples and perform
operations over those tuples in a user-defined way. The in-
put to each job is provided by Kafka, which can also act as
a sink for the output of the job. Samza jobs are executed
in a resource management and task execution framework
such as YARN[29]. It is beyond the scope of this paper to
go into the full details of Kafka/YARN/Samza interactions,
but more information is available in other literature[1]. We
will instead focus on how we leverage this framework for
processing data for analytic use cases.

On top of Samza infrastructure, we introduce the idea of
a “pipeline”, which is a grouping for a series of related pro-
cessing stages where “upstream” stages produce messages
that are consumed by “downstream” stages. Some of our
jobs involve operations such as renaming data, inserting de-
fault values for nulls and empty strings, and filtering data.
One pipeline may write to many data sources in Druid.

Given that Druid does not support joins in queries, we
require supporting joins at the data processing level. Our
approach to do streaming joins is to buffer events for a con-
figurable period of time. If an event arrives in the system
with a join key that exists in the buffer, the join occurs and
the joined event is transmitted further down the pipeline.
If events are substantially delayed and do not arrive in the
allocated window period, they will not be joined. In prac-
tice, this generally leads to one “primary” event continuing
through the pipeline and other secondary events with the
same join key getting dropped. This means that our stream
processing layer is not guaranteed to deliver 100% accurate
results. Furthermore, even without this restriction, Samza
does not offer exactly-once processing semantics. Problems
in network connectivity or node failure can lead to dupli-
cated events. For these reasons, we run a separate batch

1http://druid.io/docs/latest/Querying.html

pipeline that generates a more accurate transformation of
the ingested data.

The final job of our processing pipeline is to deliver data
to Druid. For high availability, processed events from Samza
are transmitted concurrently to two real-time nodes. Both
nodes receive the same copy of data, and effectively act as
replicas of each other. The Druid broker can query for either
copy of the data. When handoff occurs, both real-time nodes
race to hand off the segments they’ve created. The segment
that is pushed into deep storage first will be the one that is
used for historical querying, and once that segment is loaded
on the historical nodes, both real-time nodes will drop their
versions of the same segment.

4.2 Batch Processing
Our batch processing pipeline is composed of a multi-stage

MapReduce[9] pipeline. The first set of jobs mirrors our
stream processing pipeline in that it transforms data and
joins relevant events in preparation for the data to be loaded
into Druid. The second set of jobs is responsible for directly
creating immutable Druid segments. The indexing code for
both streaming and batch ingestion in Druid is shared be-
tween the two modes of ingestion. These segments are then
uploaded to deep storage and registered with the metadata
store. Druid will proceed to load the batch generated seg-
ments.

The batch process typically runs much less frequently than
the real-time process, and may run many hours or even days
after raw events have been delivered. The wait is necessary
for severely delayed events, and to ensure that the raw data
is indeed complete.

Segments generated by the batch process are versioned by
the start time of the process. Hence, segments created by
batch processing will have a version identifier that is greater
than segments created by real-time processing. When these
batch created segments are loaded in the cluster, they atom-
ically replace segments created by real-time processing for
their processed interval. Hence, soon after batch processing
completes, Druid queries begin reflecting batch-originated
data rather than real-time-originated data.

We use the streaming data pipeline described in Section4.1
to deliver immediate insights on events as they are occur-
ring, and the batch data pipeline described in this section to
provide an accurate copy of the data. The batch process typ-
ically runs much less frequently than the real-time process,
and may run many hours or even days after raw events have
been delivered. The wait is necessary for severely delayed
events, and to ensure that the raw data is indeed complete.

4.3 Starfire
To avoid writing the same processing logic on both Hadoop

and Samza, we created a library called Starfire to help gen-
erate workflows on both batch and stream processing frame-
works. Starfire has a streaming model of computation at its
heart, even when running in batch mode. It is designed to
never need to load up all your data at once, in any mode of
operation, but it offers operators that do need to work across
multiple data points, like “groupBy” and “join”. Since these
operators cannot run across the entire data set, Starfire runs
them using windows.

Starfire programs ask for a particular window size (mea-
sured in time, like 15 minutes or two hours) that particular
drivers must provide. The Hadoop driver provides a win-
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dow by loading up extra data surrounding the data that
the user requested to process. The Samza driver does it
by buffering data in a key/value store for a period of time.
Starfire supports using different window sizes from driver
to driver, which can be useful if you are running a combi-
nation batch/real-time architecture and would like to use
larger windows in batch than in real-time. We hope to ex-
plore Starfire more in future literature.

5. THE DELIVERY LAYER
In our stack, events are delivered over HTTP to Kafka.

Events are transmitted via POST requests to a receiver that
acts as a front for a Kafka producer. Kafka is a distributed
messaging system with a publish and subscribe model. At
a high level, Kafka maintains events or messages in cate-
gories called topics. A distributed Kafka cluster consists of
numerous brokers, which store messages in a replicated com-
mit log. Kafka consumers subscribe to topics and process
feeds of published messages.

Kafka provides functionality isolation between producers
of data and consumers of data. The publish/subscribe model
works well for our use case as multiple consumers can sub-
scribe to the same topic and process the same set of events.
We have two primary Kafka consumers. The first is a Samza
job that reads messages from Kafka for stream processing as
described in Section 4.1. Topics in Kafka map to pipelines
in Samza, and pipelines in Samza map to data sources in
Druid. The second consumer reads messages from Kafka
and stores them in a distributed file system. This file sys-
tem is the same as the one used for Druid’s deep storage, and
also acts as a backup for raw events. The purpose of storing
raw events in deep storage is so that we can run batch pro-
cessing jobs over them at any given time. For example, our
stream processing layer may choose to not include certain
columns when it first processes a new pipeline. If we want
to include these columns in the future, we can reprocess the
raw data to generate new Druid segments.

Kafka is the single point of delivery for events entering our
system, and must have the highest availability. We repli-
cate our Kafka producers across multiple datacenters. In
the event that Kafka brokers and consumers become unre-
sponsive, as long as our HTTP endpoints are still available,
we can buffer events on the producer side while recovering
the system. Similarily, if our processing and serving lay-
ers completely fail, we can recover by replaying events from
Kafka.

6. PERFORMANCE
Druid runs in production at several organizations, and

to briefly demonstrate its performance, we have chosen to
share some real world numbers for one of the production
clusters running at Metamarkets in early 2015. We also
include results from synthetic workloads on TPC-H data.

6.1 Query Performance in Production
Druid query performance can vary signficantly depending

on the query being issued. For example, sorting the values
of a high cardinality dimension based on a given metric is
much more expensive than a simple count over a time range.
To showcase the average query latencies in a production
Druid cluster, we selected 8 of our most queried data sources,
described in Table 4.
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Figure 7: Query latencies of production data
sources.

Approximately 30% of queries are standard aggregates in-
volving different types of metrics and filters, 60% of queries
are ordered group bys over one or more dimensions with
aggregates, and 10% of queries are search queries and meta-
data retrieval queries. The number of columns scanned in
aggregate queries roughly follows an exponential distribu-
tion. Queries involving a single column are very frequent,
and queries involving all columns are very rare.
• There were approximately 50 total data sources in this

particular cluster and several hundred users issuing queries.

• There was approximately 10.5TB of RAM available in this
cluster and approximately 10TB of segments loaded. Col-
lectively, there are about 50 billion Druid rows in this
cluster. Results for every data source is not shown.

• This cluster uses Intel® Xeon® E5-2670 processors and
consists of 1302 processing threads and 672 total cores
(hyperthreaded).

• A memory-mapped storage engine was used (the machine
was configured to memory map the data instead of loading
it into the Java heap.)
Query latencies are shown in Figure 7 and the queries per

minute are shown in Figure 8. Across all the various data
sources, average query latency is approximately 550 millisec-
onds, with 90% of queries returning in less than 1 second,
95% in under 2 seconds, and 99% of queries returning in less
than 10 seconds. Occasionally we observe spikes in latency,
as observed on February 19, where network issues on the
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Data Source Dimensions Metrics
a 25 21
b 30 26
c 71 35
d 60 19
e 29 8
f 30 16
g 26 18
h 78 14

Table 4: Characteristics of production data sources.
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Figure 8: Queries per minute of production data
sources.

broker nodes were compounded by very high query load on
one of our largest data sources.

6.2 Query Benchmarks on TPC-H Data
We also present Druid benchmarks on TPC-H data. Most

TPC-H queries do not directly apply to Druid, so we se-
lected queries more typical of Druid’s workload to demon-
strate query performance. In Figure 9, we present our re-
sults of scaling Druid to meet increasing data volumes with
the TPC-H 100 GB data set. We observe that when we in-
creased the number of cores from 8 to 48, not all types of
queries achieve linear scaling, but the simpler aggregation
queries do. The increase in speed of a parallel computing
system is often limited by the time needed for the sequential
operations of the system. In this case, queries requiring a
substantial amount of work at the broker level do not par-
allelize as well.

Our Druid setup used Amazon EC2 m3.2xlarge instance
types (Intel® Xeon® E5-2680 v2 @ 2.80GHz) for historical
nodes and c3.2xlarge instances (Intel® Xeon® E5-2670 v2
@ 2.50GHz) for broker nodes.

We benchmarked Druid’s scan rate at 53,539,211 rows/sec-
ond/core for select count(*) equivalent query over a given
time interval and 36,246,530 rows/second/core for a select
sum(float) type query.

6.3 Data Ingestion Performance
To showcase the ingestion latency of the RADStack, we

selected the top seven production datasources in terms of
peak events ingested per second for early 2015. These data-
sources are described in Table 5. Our production ingestion
setup used over 40 nodes, each with 60GB of RAM and 32
cores (12 x Intel®Xeon®E5-2670). In this setup, many other
Druid related ingestion tasks were running concurrently on
the machines. Each pipeline for each datasource involved
transforms and joins.
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Figure 9: Druid scaling benchmarks – 100GB TPC-
H data.

Data Source Dimensions Metrics Peak Events/s
d1 34 24 218123
d2 36 24 172902
d3 46 21 170264
d4 40 17 94064
d5 41 23 68104
d6 31 31 64222
d7 29 8 30048

Table 5: Characteristics of production data sources.
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Figure 10: Ingestion rates for various production
datasources.
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Ingestion latency is heavily dependent on the complex-
ity of the data set being ingested. The data complexity
is determined by the number of dimensions in each event,
the number of metrics in each event, and the types of ag-
gregations we want to perform on those metrics. With the
most basic data set (one that only has a timestamp column),
our setup can ingest data at a rate of 800,000 events/sec-
ond/core, which is really just a measurement of how fast we
can deserialize events. At peak, a single node was able to
process 62259 events/second. The ingestion latency of all of
our production datasources is shown in Figure 10. The to-
tal peak events per second was 840500. The median events
per second was 590100. The first and third quantiles were
487000 events/s and 663200 events/s respectively.

7. PRODUCTION EXPERIENCES

7.1 Experiences with Druid

7.1.1 Query Patterns
Druid is often used for exploratory analytics and report-

ing, which are two very distinct use cases. Exploratory ana-
lytic workflows provide insights by progressively narrowing
down a view of data until an interesting observation is made.
Users tend to explore short intervals of recent data. In the
reporting use case, users query for much longer data inter-
vals, and the volume of queries is generally much less. The
insights that users are looking for are often pre-determined.

7.1.2 Multitenancy
Expensive concurrent queries can be problematic in a mul-

titenant environment. Queries for large data sources may
end up hitting every historical node in a cluster and con-
sume all cluster resources. Smaller, cheaper queries may be
blocked from executing in such cases. We introduced query
prioritization to address these issues. Each historical node
is able to prioritize which segments it needs to scan. Proper
query planning is critical for production workloads. Thank-
fully, queries for a significant amount of data tend to be for
reporting use cases and can be de-prioritized. Users do not
expect the same level of interactivity in this use case as they
do when they are exploring data.

7.1.3 Node Failures
Single node failures are common in distributed environ-

ments, but many nodes failing at once are not. If historical
nodes completely fail and do not recover, their segments
need to be reassigned, which means we need excess cluster
capacity to load this data. The amount of additional capac-
ity to have at any time contributes to the cost of running
a cluster. From our experiences, it is extremely rare to see
more than 2 nodes completely fail at once and hence, we
leave enough capacity in our cluster to completely reassign
the data from 2 historical nodes.

7.2 Experiences with Ingestion

7.2.1 Multitenancy
Before moving our streaming pipeline to Samza, we exper-

imented with other stream processors. One of the biggest
pains we felt was around multi-tenancy. Multiple pipelines

may contend for resources, and it is often unclear how vari-
ous jobs impact one another when running in the same en-
vironment. Given that each of our pipelines is composed
of different tasks, Samza was able to provide per task re-
source isolation, which was far easier to manage than per
application resource isolation.

7.2.2 Autoscaling
Autoscaling our cluster to adjust for changes in load has

remained a difficult problem. Production load is not con-
stant, and different peaks can occur at vastly different times
during a day. We’ve elected to focus on the problem of grad-
ually increasing load, instead dealing with immediate spikes
or dips in load. As load increases, we add new resources but
set a configurable limit on how fast they can be added. We
scale down our cluster very slowly, and excess capacity may
remain for several hours before the system decides they are
no longer necessary.

7.3 Operational Monitoring
Proper monitoring is critical to run a large scale dis-

tributed cluster, especially with many different technologies.
Each Druid node is designed to periodically emit a set of op-
erational metrics. These metrics may include system level
data such as CPU usage, available memory, and disk capac-
ity, JVM statistics such as garbage collection time, and heap
usage, or node specific metrics such as segment scan time,
cache hit rates, and data ingestion latencies. Druid also
emits per query metrics so we can examine why a particular
query may be slow. We’ve also added functionality to peri-
odically emit metrics from Samza, Kafka, and Hadoop. We
emit metrics from our production RADStack and load them
into a dedicated metrics RADstack. The metrics cluster is
used to explore the performance and stability of the pro-
duction cluster. This dedicated metrics cluster has allowed
us to find numerous production problems, such as gradual
query speed degradations, less than optimally tuned hard-
ware, and various other system bottlenecks. We also use a
metrics cluster to analyze what queries are made in produc-
tion and what aspects of the data users are most interested
in.

8. RELATED WORK

8.1 Hybrid Batch/Streaming Workflows

8.1.1 Summingbird
Summingbird[5] is a high-level dataflow language for stream-

ing and batch processing. Summingbird enables counters on
top of streams, and processes data for delivery to key/value
stores. Summingbird can run on top of data processors such
as Storm[20] and Hadoop. The RADStack also offers a lan-
guage for writing data processing jobs with Starfire. These
jobs do not involve computation and focus entirely on data
processing. Starfire enables more complex operations such
as streaming joins. The RADStack also leaves all queries
and aggregations to the serving layer, letting each layer of
the stack focus on what it is best at.

8.1.2 Spark Ecosystem
Spark[32] is a cluster computing framework optimized for

iterative workflows. Spark Streaming is a separate project
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that converts sequences of tuples into immutable micro-
batches. Each micro-batch can be processed using the un-
derlying Spark framework. Spark SQL is a query optimiza-
tion layer that can sit on top of Spark and issue SQL queries,
along with Spark’s native API. Druid’s approach to query-
ing is quite different and Druid insteads builds immutable
indexed data structures optimized for low latency OLAP
queries, and does not leverage lineage in its architecture.
The RADStack can theoretically be composed of Spark and
Spark Streaming for processing, Kafka for event delivery,
and Druid to serve queries.

8.2 Druid and Other Data Stores
Although Druid builds on many of the same principles as

other distributed columnar data stores[13], many of these
data stores are designed to be more generic key-value stores[18]
and do not support computation directly in the storage
layer. There are also other data stores designed for some
of the same data warehousing issues that Druid is meant
to solve. These systems include in-memory databases such
as SAP’s HANA[12] and VoltDB[30]. These data stores lack
Druid’s low latency ingestion characteristics. Druid also has
native analytical features baked in, similar to ParAccel[22],
however, Druid allows system wide rolling software updates
with no downtime.

Druid is similar to C-Store[25] and LazyBase[6] in that it
has two subsystems, a read-optimized subsystem in the his-
torical nodes and a write-optimized subsystem in real-time
nodes. Real-time nodes are designed to ingest a high vol-
ume of append heavy data, and do not support data updates.
Unlike the two aforementioned systems, Druid is meant for
OLAP transactions and not OLTP transactions. Druid’s low
latency data ingestion features share some similarities with
Trident/Storm[20] and Spark Streaming[33], however, both
systems are focused on stream processing whereas Druid is
focused on ingestion and aggregation. Stream processors are
great complements to Druid as a means of pre-processing the
data before the data enters Druid.

There are a class of systems that specialize in queries on
top of cluster computing frameworks. Shark[11] is such a
system for queries on top of Spark, and Cloudera’s Impala[7]
is another system focused on optimizing query performance
on top of HDFS. Druid historical nodes download data lo-
cally and only work with native Druid indexes. We believe
this setup allows for faster query latencies. Druid leverages
a unique combination of algorithms in its architecture. Al-
though we believe no other data store has the same set of
functionality as Druid, some of Druid’s optimization tech-
niques such as using inverted indices to perform fast filters
are also used in other data stores[19].

9. CONCLUSIONS AND FUTURE WORK
In this paper we presented the RADStack, a collection

of complementary technologies that can be used together
to power interactive analytic applications. The key pieces
of the stack are Kafka, Samza, Hadoop, and Druid. Druid
is designed for exploratory analytics and is optimized for
low latency data exploration, aggregation, and ingestion,
and is well suited for OLAP workflows. Samza and Hadoop
complement Druid and add data processing functionality,
and Kafka enables high throughput event delivery problem.

We believe that in later iterations of this work, batch pro-
cessing may not be necessary. As open source technologies

mature, the existing problems around exactly-once process-
ing will eventually be solved. The Druid, Samza and Kafka
communities are working on exactly once, lossless processing
for their respective systems, and in the near future, the same
guarantees that the RADStack provides right now should be
available using only these technologies.
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