YARN-4121. Fix typos in capacity scheduler documentation. Contributed by Kai Sasaki.

(cherry picked from commit 435f935ba7)
This commit is contained in:
Varun Vasudev 2015-09-08 12:33:43 +05:30
parent f23be93dd1
commit 1c53cd2b0d
2 changed files with 6 additions and 3 deletions

View File

@ -373,6 +373,9 @@ Release 2.8.0 - UNRELEASED
YARN-1556. NPE getting application report with a null appId. (Weiwei Yang via YARN-1556. NPE getting application report with a null appId. (Weiwei Yang via
junping_du) junping_du)
YARN-4121. Fix typos in capacity scheduler documentation.
(Kai Sasaki via vvasudev)
OPTIMIZATIONS OPTIMIZATIONS
YARN-3339. TestDockerContainerExecutor should pull a single image and not YARN-3339. TestDockerContainerExecutor should pull a single image and not

View File

@ -67,7 +67,7 @@ The `CapacityScheduler` supports the following features:
* Drain applications - Administrators can *stop* queues at runtime to ensure that while existing applications run to completion, no new applications can be submitted. If a queue is in `STOPPED` state, new applications cannot be submitted to *itself* or *any of its child queueus*. Existing applications continue to completion, thus the queue can be *drained* gracefully. Administrators can also *start* the stopped queues. * Drain applications - Administrators can *stop* queues at runtime to ensure that while existing applications run to completion, no new applications can be submitted. If a queue is in `STOPPED` state, new applications cannot be submitted to *itself* or *any of its child queueus*. Existing applications continue to completion, thus the queue can be *drained* gracefully. Administrators can also *start* the stopped queues.
* **Resource-based Scheduling** - Support for resource-intensive applications, where-in a application can optionally specify higher resource-requirements than the default, there-by accomodating applications with differing resource requirements. Currently, *memory* is the the resource requirement supported. * **Resource-based Scheduling** - Support for resource-intensive applications, where-in a application can optionally specify higher resource-requirements than the default, there-by accomodating applications with differing resource requirements. Currently, *memory* is the resource requirement supported.
* **Queue Mapping based on User or Group** - This feature allows users to map a job to a specific queue based on the user or group. * **Queue Mapping based on User or Group** - This feature allows users to map a job to a specific queue based on the user or group.
@ -86,7 +86,7 @@ Configuration
`etc/hadoop/capacity-scheduler.xml` is the configuration file for the `CapacityScheduler`. `etc/hadoop/capacity-scheduler.xml` is the configuration file for the `CapacityScheduler`.
The `CapacityScheduler` has a pre-defined queue called *root*. All queueus in the system are children of the root queue. The `CapacityScheduler` has a pre-defined queue called *root*. All queues in the system are children of the root queue.
Further queues can be setup by configuring `yarn.scheduler.capacity.root.queues` with a list of comma-separated child queues. Further queues can be setup by configuring `yarn.scheduler.capacity.root.queues` with a list of comma-separated child queues.
@ -127,7 +127,7 @@ Configuration
|:---- |:---- | |:---- |:---- |
| `yarn.scheduler.capacity.<queue-path>.capacity` | Queue *capacity* in percentage (%) as a float (e.g. 12.5). The sum of capacities for all queues, at each level, must be equal to 100. Applications in the queue may consume more resources than the queue's capacity if there are free resources, providing elasticity. | | `yarn.scheduler.capacity.<queue-path>.capacity` | Queue *capacity* in percentage (%) as a float (e.g. 12.5). The sum of capacities for all queues, at each level, must be equal to 100. Applications in the queue may consume more resources than the queue's capacity if there are free resources, providing elasticity. |
| `yarn.scheduler.capacity.<queue-path>.maximum-capacity` | Maximum queue capacity in percentage (%) as a float. This limits the *elasticity* for applications in the queue. Defaults to -1 which disables it. | | `yarn.scheduler.capacity.<queue-path>.maximum-capacity` | Maximum queue capacity in percentage (%) as a float. This limits the *elasticity* for applications in the queue. Defaults to -1 which disables it. |
| `yarn.scheduler.capacity.<queue-path>.minimum-user-limit-percent` | Each queue enforces a limit on the percentage of resources allocated to a user at any given time, if there is demand for resources. The user limit can vary between a minimum and maximum value. The the former (the minimum value) is set to this property value and the latter (the maximum value) depends on the number of users who have submitted applications. For e.g., suppose the value of this property is 25. If two users have submitted applications to a queue, no single user can use more than 50% of the queue resources. If a third user submits an application, no single user can use more than 33% of the queue resources. With 4 or more users, no user can use more than 25% of the queues resources. A value of 100 implies no user limits are imposed. The default is 100. Value is specified as a integer. | | `yarn.scheduler.capacity.<queue-path>.minimum-user-limit-percent` | Each queue enforces a limit on the percentage of resources allocated to a user at any given time, if there is demand for resources. The user limit can vary between a minimum and maximum value. The former (the minimum value) is set to this property value and the latter (the maximum value) depends on the number of users who have submitted applications. For e.g., suppose the value of this property is 25. If two users have submitted applications to a queue, no single user can use more than 50% of the queue resources. If a third user submits an application, no single user can use more than 33% of the queue resources. With 4 or more users, no user can use more than 25% of the queues resources. A value of 100 implies no user limits are imposed. The default is 100. Value is specified as a integer. |
| `yarn.scheduler.capacity.<queue-path>.user-limit-factor` | The multiple of the queue capacity which can be configured to allow a single user to acquire more resources. By default this is set to 1 which ensures that a single user can never take more than the queue's configured capacity irrespective of how idle th cluster is. Value is specified as a float. | | `yarn.scheduler.capacity.<queue-path>.user-limit-factor` | The multiple of the queue capacity which can be configured to allow a single user to acquire more resources. By default this is set to 1 which ensures that a single user can never take more than the queue's configured capacity irrespective of how idle th cluster is. Value is specified as a float. |
| `yarn.scheduler.capacity.<queue-path>.maximum-allocation-mb` | The per queue maximum limit of memory to allocate to each container request at the Resource Manager. This setting overrides the cluster configuration `yarn.scheduler.maximum-allocation-mb`. This value must be smaller than or equal to the cluster maximum. | | `yarn.scheduler.capacity.<queue-path>.maximum-allocation-mb` | The per queue maximum limit of memory to allocate to each container request at the Resource Manager. This setting overrides the cluster configuration `yarn.scheduler.maximum-allocation-mb`. This value must be smaller than or equal to the cluster maximum. |
| `yarn.scheduler.capacity.<queue-path>.maximum-allocation-vcores` | The per queue maximum limit of virtual cores to allocate to each container request at the Resource Manager. This setting overrides the cluster configuration `yarn.scheduler.maximum-allocation-vcores`. This value must be smaller than or equal to the cluster maximum. | | `yarn.scheduler.capacity.<queue-path>.maximum-allocation-vcores` | The per queue maximum limit of virtual cores to allocate to each container request at the Resource Manager. This setting overrides the cluster configuration `yarn.scheduler.maximum-allocation-vcores`. This value must be smaller than or equal to the cluster maximum. |