YARN-5109. timestamps are stored unencoded causing parse errors (Varun Saxena via sjlee)
This commit is contained in:
parent
d729e8211b
commit
7b8cfa5c2f
|
@ -20,6 +20,7 @@ package org.apache.hadoop.yarn.server.timelineservice.storage;
|
|||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertNotNull;
|
||||
import static org.junit.Assert.assertNull;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
import java.io.IOException;
|
||||
|
@ -42,7 +43,6 @@ import org.apache.hadoop.hbase.client.ResultScanner;
|
|||
import org.apache.hadoop.hbase.client.Scan;
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.ApplicationEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
|
@ -50,25 +50,28 @@ import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntityType;
|
|||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEvent;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric.Type;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetricOperation;
|
||||
import org.apache.hadoop.yarn.server.metrics.ApplicationMetricsConstants;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.TimelineDataToRetrieve;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.TimelineEntityFilters;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.TimelineReaderContext;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineCompareFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineCompareOp;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineKeyValueFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineExistsFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineFilterList;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelinePrefixFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineFilterList.Operator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineKeyValueFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineKeyValuesFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelinePrefixFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.TimelineReader.Field;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationColumn;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationRowKey;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationTable;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.EventColumnName;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.EventColumnNameConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.StringKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.entity.EntityColumn;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.entity.EntityColumnFamily;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.entity.EntityColumnPrefix;
|
||||
|
@ -482,7 +485,6 @@ public class TestHBaseTimelineStorage {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void testWriteNullApplicationToHBase() throws Exception {
|
||||
TimelineEntities te = new TimelineEntities();
|
||||
|
@ -494,7 +496,7 @@ public class TestHBaseTimelineStorage {
|
|||
|
||||
// add the info map in Timeline Entity
|
||||
Map<String, Object> infoMap = new HashMap<String, Object>();
|
||||
infoMap.put("infoMapKey1", "infoMapValue1");
|
||||
infoMap.put("in fo M apK ey1", "infoMapValue1");
|
||||
infoMap.put("infoMapKey2", 10);
|
||||
entity.addInfo(infoMap);
|
||||
|
||||
|
@ -517,6 +519,7 @@ public class TestHBaseTimelineStorage {
|
|||
// retrieve the row
|
||||
Scan scan = new Scan();
|
||||
scan.setStartRow(Bytes.toBytes(cluster));
|
||||
scan.setStopRow(Bytes.toBytes(cluster + "1"));
|
||||
Connection conn = ConnectionFactory.createConnection(c1);
|
||||
ResultScanner resultScanner = new ApplicationTable()
|
||||
.getResultScanner(c1, conn, scan);
|
||||
|
@ -626,7 +629,7 @@ public class TestHBaseTimelineStorage {
|
|||
hbi.start();
|
||||
String cluster = "cluster_test_write_app";
|
||||
String user = "user1";
|
||||
String flow = "some_flow_name";
|
||||
String flow = "s!ome_f\tlow _n am!e";
|
||||
String flowVersion = "AB7822C10F1111";
|
||||
long runid = 1002345678919L;
|
||||
hbi.write(cluster, user, flow, flowVersion, runid, appId, te);
|
||||
|
@ -670,7 +673,8 @@ public class TestHBaseTimelineStorage {
|
|||
assertEquals(cTime, cTime1);
|
||||
|
||||
Map<String, Object> infoColumns =
|
||||
ApplicationColumnPrefix.INFO.readResults(result);
|
||||
ApplicationColumnPrefix.INFO.readResults(result,
|
||||
StringKeyConverter.getInstance());
|
||||
assertEquals(infoMap, infoColumns);
|
||||
|
||||
// Remember isRelatedTo is of type Map<String, Set<String>>
|
||||
|
@ -706,11 +710,13 @@ public class TestHBaseTimelineStorage {
|
|||
|
||||
// Configuration
|
||||
Map<String, Object> configColumns =
|
||||
ApplicationColumnPrefix.CONFIG.readResults(result);
|
||||
ApplicationColumnPrefix.CONFIG.readResults(result,
|
||||
StringKeyConverter.getInstance());
|
||||
assertEquals(conf, configColumns);
|
||||
|
||||
NavigableMap<String, NavigableMap<Long, Number>> metricsResult =
|
||||
ApplicationColumnPrefix.METRIC.readResultsWithTimestamps(result);
|
||||
ApplicationColumnPrefix.METRIC.readResultsWithTimestamps(
|
||||
result, StringKeyConverter.getInstance());
|
||||
|
||||
NavigableMap<Long, Number> metricMap = metricsResult.get(m1.getId());
|
||||
matchMetrics(metricValues, metricMap);
|
||||
|
@ -868,7 +874,8 @@ public class TestHBaseTimelineStorage {
|
|||
assertEquals(cTime1, cTime);
|
||||
|
||||
Map<String, Object> infoColumns =
|
||||
EntityColumnPrefix.INFO.readResults(result);
|
||||
EntityColumnPrefix.INFO.readResults(result,
|
||||
StringKeyConverter.getInstance());
|
||||
assertEquals(infoMap, infoColumns);
|
||||
|
||||
// Remember isRelatedTo is of type Map<String, Set<String>>
|
||||
|
@ -906,11 +913,12 @@ public class TestHBaseTimelineStorage {
|
|||
|
||||
// Configuration
|
||||
Map<String, Object> configColumns =
|
||||
EntityColumnPrefix.CONFIG.readResults(result);
|
||||
EntityColumnPrefix.CONFIG.readResults(result, StringKeyConverter.getInstance());
|
||||
assertEquals(conf, configColumns);
|
||||
|
||||
NavigableMap<String, NavigableMap<Long, Number>> metricsResult =
|
||||
EntityColumnPrefix.METRIC.readResultsWithTimestamps(result);
|
||||
EntityColumnPrefix.METRIC.readResultsWithTimestamps(
|
||||
result, StringKeyConverter.getInstance());
|
||||
|
||||
NavigableMap<Long, Number> metricMap = metricsResult.get(m1.getId());
|
||||
matchMetrics(metricValues, metricMap);
|
||||
|
@ -963,7 +971,7 @@ public class TestHBaseTimelineStorage {
|
|||
}
|
||||
|
||||
private boolean isRowKeyCorrect(byte[] rowKey, String cluster, String user,
|
||||
String flow, long runid, String appName, TimelineEntity te) {
|
||||
String flow, Long runid, String appName, TimelineEntity te) {
|
||||
|
||||
EntityRowKey key = EntityRowKey.parseRowKey(rowKey);
|
||||
|
||||
|
@ -978,7 +986,7 @@ public class TestHBaseTimelineStorage {
|
|||
}
|
||||
|
||||
private boolean isApplicationRowKeyCorrect(byte[] rowKey, String cluster,
|
||||
String user, String flow, long runid, String appName) {
|
||||
String user, String flow, Long runid, String appName) {
|
||||
|
||||
ApplicationRowKey key = ApplicationRowKey.parseRowKey(rowKey);
|
||||
|
||||
|
@ -995,7 +1003,7 @@ public class TestHBaseTimelineStorage {
|
|||
TimelineEvent event = new TimelineEvent();
|
||||
String eventId = ApplicationMetricsConstants.CREATED_EVENT_TYPE;
|
||||
event.setId(eventId);
|
||||
long expTs = 1436512802000L;
|
||||
Long expTs = 1436512802000L;
|
||||
event.setTimestamp(expTs);
|
||||
String expKey = "foo_event";
|
||||
Object expVal = "test";
|
||||
|
@ -1038,20 +1046,18 @@ public class TestHBaseTimelineStorage {
|
|||
assertTrue(isApplicationRowKeyCorrect(row1, cluster, user, flow, runid,
|
||||
appName));
|
||||
|
||||
Map<?, Object> eventsResult =
|
||||
ApplicationColumnPrefix.EVENT.
|
||||
readResultsHavingCompoundColumnQualifiers(result);
|
||||
Map<EventColumnName, Object> eventsResult =
|
||||
ApplicationColumnPrefix.EVENT.readResults(result,
|
||||
EventColumnNameConverter.getInstance());
|
||||
// there should be only one event
|
||||
assertEquals(1, eventsResult.size());
|
||||
for (Map.Entry<?, Object> e : eventsResult.entrySet()) {
|
||||
for (Map.Entry<EventColumnName, Object> e : eventsResult.entrySet()) {
|
||||
EventColumnName eventColumnName = e.getKey();
|
||||
// the qualifier is a compound key
|
||||
// hence match individual values
|
||||
byte[][] karr = (byte[][])e.getKey();
|
||||
assertEquals(3, karr.length);
|
||||
assertEquals(eventId, Bytes.toString(karr[0]));
|
||||
assertEquals(
|
||||
TimelineStorageUtils.invertLong(expTs), Bytes.toLong(karr[1]));
|
||||
assertEquals(expKey, Bytes.toString(karr[2]));
|
||||
assertEquals(eventId, eventColumnName.getId());
|
||||
assertEquals(expTs, eventColumnName.getTimestamp());
|
||||
assertEquals(expKey, eventColumnName.getInfoKey());
|
||||
Object value = e.getValue();
|
||||
// there should be only one timestamp and value
|
||||
assertEquals(expVal, value.toString());
|
||||
|
@ -1076,7 +1082,7 @@ public class TestHBaseTimelineStorage {
|
|||
assertEquals(1, events.size());
|
||||
for (TimelineEvent e : events) {
|
||||
assertEquals(eventId, e.getId());
|
||||
assertEquals(expTs, e.getTimestamp());
|
||||
assertEquals(expTs, Long.valueOf(e.getTimestamp()));
|
||||
Map<String,Object> info = e.getInfo();
|
||||
assertEquals(1, info.size());
|
||||
for (Map.Entry<String, Object> infoEntry : info.entrySet()) {
|
||||
|
@ -1095,9 +1101,9 @@ public class TestHBaseTimelineStorage {
|
|||
@Test
|
||||
public void testEventsWithEmptyInfo() throws IOException {
|
||||
TimelineEvent event = new TimelineEvent();
|
||||
String eventId = "foo_event_id";
|
||||
String eventId = "foo_ev e nt_id";
|
||||
event.setId(eventId);
|
||||
long expTs = 1436512802000L;
|
||||
Long expTs = 1436512802000L;
|
||||
event.setTimestamp(expTs);
|
||||
|
||||
final TimelineEntity entity = new TimelineEntity();
|
||||
|
@ -1142,21 +1148,19 @@ public class TestHBaseTimelineStorage {
|
|||
assertTrue(isRowKeyCorrect(row1, cluster, user, flow, runid, appName,
|
||||
entity));
|
||||
|
||||
Map<?, Object> eventsResult =
|
||||
EntityColumnPrefix.EVENT.
|
||||
readResultsHavingCompoundColumnQualifiers(result);
|
||||
Map<EventColumnName, Object> eventsResult =
|
||||
EntityColumnPrefix.EVENT.readResults(result,
|
||||
EventColumnNameConverter.getInstance());
|
||||
// there should be only one event
|
||||
assertEquals(1, eventsResult.size());
|
||||
for (Map.Entry<?, Object> e : eventsResult.entrySet()) {
|
||||
for (Map.Entry<EventColumnName, Object> e : eventsResult.entrySet()) {
|
||||
EventColumnName eventColumnName = e.getKey();
|
||||
// the qualifier is a compound key
|
||||
// hence match individual values
|
||||
byte[][] karr = (byte[][])e.getKey();
|
||||
assertEquals(3, karr.length);
|
||||
assertEquals(eventId, Bytes.toString(karr[0]));
|
||||
assertEquals(TimelineStorageUtils.invertLong(expTs),
|
||||
Bytes.toLong(karr[1]));
|
||||
assertEquals(eventId, eventColumnName.getId());
|
||||
assertEquals(expTs,eventColumnName.getTimestamp());
|
||||
// key must be empty
|
||||
assertEquals(0, karr[2].length);
|
||||
assertNull(eventColumnName.getInfoKey());
|
||||
Object value = e.getValue();
|
||||
// value should be empty
|
||||
assertEquals("", value.toString());
|
||||
|
@ -1184,7 +1188,7 @@ public class TestHBaseTimelineStorage {
|
|||
assertEquals(1, events.size());
|
||||
for (TimelineEvent e : events) {
|
||||
assertEquals(eventId, e.getId());
|
||||
assertEquals(expTs, e.getTimestamp());
|
||||
assertEquals(expTs, Long.valueOf(e.getTimestamp()));
|
||||
Map<String,Object> info = e.getInfo();
|
||||
assertTrue(info == null || info.isEmpty());
|
||||
}
|
||||
|
@ -1194,6 +1198,67 @@ public class TestHBaseTimelineStorage {
|
|||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testEventsEscapeTs() throws IOException {
|
||||
TimelineEvent event = new TimelineEvent();
|
||||
String eventId = ApplicationMetricsConstants.CREATED_EVENT_TYPE;
|
||||
event.setId(eventId);
|
||||
long expTs = 1463567041056L;
|
||||
event.setTimestamp(expTs);
|
||||
String expKey = "f==o o_e ve\tnt";
|
||||
Object expVal = "test";
|
||||
event.addInfo(expKey, expVal);
|
||||
|
||||
final TimelineEntity entity = new ApplicationEntity();
|
||||
entity.setId(ApplicationId.newInstance(0, 1).toString());
|
||||
entity.addEvent(event);
|
||||
|
||||
TimelineEntities entities = new TimelineEntities();
|
||||
entities.addEntity(entity);
|
||||
|
||||
HBaseTimelineWriterImpl hbi = null;
|
||||
try {
|
||||
Configuration c1 = util.getConfiguration();
|
||||
hbi = new HBaseTimelineWriterImpl(c1);
|
||||
hbi.init(c1);
|
||||
hbi.start();
|
||||
String cluster = "clus!ter_\ttest_ev ents";
|
||||
String user = "user2";
|
||||
String flow = "other_flow_name";
|
||||
String flowVersion = "1111F01C2287BA";
|
||||
long runid = 1009876543218L;
|
||||
String appName = "application_123465899910_2001";
|
||||
hbi.write(cluster, user, flow, flowVersion, runid, appName, entities);
|
||||
hbi.stop();
|
||||
|
||||
// read the timeline entity using the reader this time
|
||||
TimelineEntity e1 = reader.getEntity(
|
||||
new TimelineReaderContext(cluster, user, flow, runid, appName,
|
||||
entity.getType(), entity.getId()),
|
||||
new TimelineDataToRetrieve(null, null, EnumSet.of(Field.ALL)));
|
||||
assertNotNull(e1);
|
||||
// check the events
|
||||
NavigableSet<TimelineEvent> events = e1.getEvents();
|
||||
// there should be only one event
|
||||
assertEquals(1, events.size());
|
||||
for (TimelineEvent e : events) {
|
||||
assertEquals(eventId, e.getId());
|
||||
assertEquals(expTs, e.getTimestamp());
|
||||
Map<String,Object> info = e.getInfo();
|
||||
assertEquals(1, info.size());
|
||||
for (Map.Entry<String, Object> infoEntry : info.entrySet()) {
|
||||
assertEquals(expKey, infoEntry.getKey());
|
||||
assertEquals(expVal, infoEntry.getValue());
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
if (hbi != null) {
|
||||
hbi.stop();
|
||||
hbi.close();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testNonIntegralMetricValues() throws IOException {
|
||||
TimelineEntities teApp = new TimelineEntities();
|
||||
|
|
|
@ -170,7 +170,7 @@ public class TestHBaseStorageFlowActivity {
|
|||
assertEquals(cluster, flowActivityRowKey.getClusterId());
|
||||
assertEquals(user, flowActivityRowKey.getUserId());
|
||||
assertEquals(flow, flowActivityRowKey.getFlowName());
|
||||
long dayTs = TimelineStorageUtils.getTopOfTheDayTimestamp(minStartTs);
|
||||
Long dayTs = TimelineStorageUtils.getTopOfTheDayTimestamp(minStartTs);
|
||||
assertEquals(dayTs, flowActivityRowKey.getDayTimestamp());
|
||||
assertEquals(1, values.size());
|
||||
checkFlowActivityRunId(runid, flowVersion, values);
|
||||
|
@ -194,7 +194,7 @@ public class TestHBaseStorageFlowActivity {
|
|||
assertEquals(cluster, flowActivity.getCluster());
|
||||
assertEquals(user, flowActivity.getUser());
|
||||
assertEquals(flow, flowActivity.getFlowName());
|
||||
assertEquals(dayTs, flowActivity.getDate().getTime());
|
||||
assertEquals(dayTs, Long.valueOf(flowActivity.getDate().getTime()));
|
||||
Set<FlowRunEntity> flowRuns = flowActivity.getFlowRuns();
|
||||
assertEquals(1, flowRuns.size());
|
||||
}
|
||||
|
@ -294,7 +294,7 @@ public class TestHBaseStorageFlowActivity {
|
|||
assertEquals(cluster, flowActivityRowKey.getClusterId());
|
||||
assertEquals(user, flowActivityRowKey.getUserId());
|
||||
assertEquals(flow, flowActivityRowKey.getFlowName());
|
||||
long dayTs = TimelineStorageUtils.getTopOfTheDayTimestamp(appCreatedTime);
|
||||
Long dayTs = TimelineStorageUtils.getTopOfTheDayTimestamp(appCreatedTime);
|
||||
assertEquals(dayTs, flowActivityRowKey.getDayTimestamp());
|
||||
assertEquals(1, values.size());
|
||||
checkFlowActivityRunId(runid, flowVersion, values);
|
||||
|
@ -429,7 +429,7 @@ public class TestHBaseStorageFlowActivity {
|
|||
assertEquals(cluster, flowActivityRowKey.getClusterId());
|
||||
assertEquals(user, flowActivityRowKey.getUserId());
|
||||
assertEquals(flow, flowActivityRowKey.getFlowName());
|
||||
long dayTs = TimelineStorageUtils.getTopOfTheDayTimestamp(appCreatedTime);
|
||||
Long dayTs = TimelineStorageUtils.getTopOfTheDayTimestamp(appCreatedTime);
|
||||
assertEquals(dayTs, flowActivityRowKey.getDayTimestamp());
|
||||
|
||||
Map<byte[], byte[]> values = result
|
||||
|
|
|
@ -31,10 +31,14 @@ import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;
|
|||
import org.apache.hadoop.hbase.filter.Filter;
|
||||
import org.apache.hadoop.hbase.filter.FilterList;
|
||||
import org.apache.hadoop.hbase.filter.FilterList.Operator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Column;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnFamily;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix;
|
||||
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.EventColumnName;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.EventColumnNameConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.StringKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.entity.EntityColumnPrefix;
|
||||
import org.apache.hadoop.hbase.filter.QualifierFilter;
|
||||
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
|
||||
|
||||
|
@ -205,6 +209,17 @@ public final class TimelineFilterUtils {
|
|||
return singleColValFilter;
|
||||
}
|
||||
|
||||
private static <T> byte[] createColQualifierPrefix(ColumnPrefix<T> colPrefix,
|
||||
String column) {
|
||||
if (colPrefix == ApplicationColumnPrefix.EVENT ||
|
||||
colPrefix == EntityColumnPrefix.EVENT) {
|
||||
return EventColumnNameConverter.getInstance().encode(
|
||||
new EventColumnName(column, null, null));
|
||||
} else {
|
||||
return StringKeyConverter.getInstance().encode(column);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a filter list of qualifier filters based on passed set of columns.
|
||||
*
|
||||
|
@ -219,8 +234,7 @@ public final class TimelineFilterUtils {
|
|||
for (String column : columns) {
|
||||
// For columns which have compound column qualifiers (eg. events), we need
|
||||
// to include the required separator.
|
||||
byte[] compoundColQual =
|
||||
colPrefix.getCompoundColQualBytes(column, (byte[])null);
|
||||
byte[] compoundColQual = createColQualifierPrefix(colPrefix, column);
|
||||
list.addFilter(new QualifierFilter(CompareOp.EQUAL,
|
||||
new BinaryPrefixComparator(
|
||||
colPrefix.getColumnPrefixBytes(compoundColQual))));
|
||||
|
|
|
@ -29,7 +29,6 @@ import org.apache.hadoop.conf.Configuration;
|
|||
import org.apache.hadoop.hbase.HBaseConfiguration;
|
||||
import org.apache.hadoop.hbase.client.Connection;
|
||||
import org.apache.hadoop.hbase.client.ConnectionFactory;
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.service.AbstractService;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
|
@ -37,7 +36,6 @@ import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEvent;
|
|||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineWriteResponse;
|
||||
import org.apache.hadoop.yarn.server.metrics.ApplicationMetricsConstants;
|
||||
import org.apache.hadoop.yarn.server.timeline.GenericObjectMapper;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationColumn;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationRowKey;
|
||||
|
@ -46,7 +44,11 @@ import org.apache.hadoop.yarn.server.timelineservice.storage.apptoflow.AppToFlow
|
|||
import org.apache.hadoop.yarn.server.timelineservice.storage.apptoflow.AppToFlowRowKey;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.apptoflow.AppToFlowTable;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.EventColumnName;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.EventColumnNameConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.LongKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.StringKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TypedBufferedMutator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.entity.EntityColumn;
|
||||
|
@ -194,7 +196,7 @@ public class HBaseTimelineWriterImpl extends AbstractService implements
|
|||
long activityTimeStamp) throws IOException {
|
||||
byte[] rowKey = FlowActivityRowKey.getRowKey(clusterId, activityTimeStamp,
|
||||
userId, flowName);
|
||||
byte[] qualifier = GenericObjectMapper.write(flowRunId);
|
||||
byte[] qualifier = LongKeyConverter.getInstance().encode(flowRunId);
|
||||
FlowActivityColumnPrefix.RUN_ID.store(rowKey, flowActivityTable, qualifier,
|
||||
null, flowVersion,
|
||||
AggregationCompactionDimension.APPLICATION_ID.getAttribute(appId));
|
||||
|
@ -278,7 +280,8 @@ public class HBaseTimelineWriterImpl extends AbstractService implements
|
|||
private void storeFlowMetrics(byte[] rowKey, Set<TimelineMetric> metrics,
|
||||
Attribute... attributes) throws IOException {
|
||||
for (TimelineMetric metric : metrics) {
|
||||
String metricColumnQualifier = metric.getId();
|
||||
byte[] metricColumnQualifier =
|
||||
StringKeyConverter.getInstance().encode(metric.getId());
|
||||
Map<Long, Number> timeseries = metric.getValues();
|
||||
for (Map.Entry<Long, Number> timeseriesEntry : timeseries.entrySet()) {
|
||||
Long timestamp = timeseriesEntry.getKey();
|
||||
|
@ -316,8 +319,9 @@ public class HBaseTimelineWriterImpl extends AbstractService implements
|
|||
// id3?id4?id5
|
||||
String compoundValue =
|
||||
Separator.VALUES.joinEncoded(connectedEntity.getValue());
|
||||
columnPrefix.store(rowKey, table, connectedEntity.getKey(), null,
|
||||
compoundValue);
|
||||
columnPrefix.store(rowKey, table,
|
||||
StringKeyConverter.getInstance().encode(connectedEntity.getKey()),
|
||||
null, compoundValue);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -337,7 +341,8 @@ public class HBaseTimelineWriterImpl extends AbstractService implements
|
|||
if (info != null) {
|
||||
for (Map.Entry<String, Object> entry : info.entrySet()) {
|
||||
ApplicationColumnPrefix.INFO.store(rowKey, applicationTable,
|
||||
entry.getKey(), null, entry.getValue());
|
||||
StringKeyConverter.getInstance().encode(entry.getKey()), null,
|
||||
entry.getValue());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
@ -349,8 +354,9 @@ public class HBaseTimelineWriterImpl extends AbstractService implements
|
|||
Map<String, Object> info = te.getInfo();
|
||||
if (info != null) {
|
||||
for (Map.Entry<String, Object> entry : info.entrySet()) {
|
||||
EntityColumnPrefix.INFO.store(rowKey, entityTable, entry.getKey(),
|
||||
null, entry.getValue());
|
||||
EntityColumnPrefix.INFO.store(rowKey, entityTable,
|
||||
StringKeyConverter.getInstance().encode(entry.getKey()), null,
|
||||
entry.getValue());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -365,11 +371,13 @@ public class HBaseTimelineWriterImpl extends AbstractService implements
|
|||
return;
|
||||
}
|
||||
for (Map.Entry<String, String> entry : config.entrySet()) {
|
||||
byte[] configKey =
|
||||
StringKeyConverter.getInstance().encode(entry.getKey());
|
||||
if (isApplication) {
|
||||
ApplicationColumnPrefix.CONFIG.store(rowKey, applicationTable,
|
||||
entry.getKey(), null, entry.getValue());
|
||||
configKey, null, entry.getValue());
|
||||
} else {
|
||||
EntityColumnPrefix.CONFIG.store(rowKey, entityTable, entry.getKey(),
|
||||
EntityColumnPrefix.CONFIG.store(rowKey, entityTable, configKey,
|
||||
null, entry.getValue());
|
||||
}
|
||||
}
|
||||
|
@ -383,7 +391,8 @@ public class HBaseTimelineWriterImpl extends AbstractService implements
|
|||
boolean isApplication) throws IOException {
|
||||
if (metrics != null) {
|
||||
for (TimelineMetric metric : metrics) {
|
||||
String metricColumnQualifier = metric.getId();
|
||||
byte[] metricColumnQualifier =
|
||||
StringKeyConverter.getInstance().encode(metric.getId());
|
||||
Map<Long, Number> timeseries = metric.getValues();
|
||||
for (Map.Entry<Long, Number> timeseriesEntry : timeseries.entrySet()) {
|
||||
Long timestamp = timeseriesEntry.getKey();
|
||||
|
@ -416,41 +425,31 @@ public class HBaseTimelineWriterImpl extends AbstractService implements
|
|||
"! Using the current timestamp");
|
||||
eventTimestamp = System.currentTimeMillis();
|
||||
}
|
||||
byte[] eventTs =
|
||||
Bytes.toBytes(TimelineStorageUtils.invertLong(eventTimestamp));
|
||||
EventColumnNameConverter converter =
|
||||
EventColumnNameConverter.getInstance();
|
||||
Map<String, Object> eventInfo = event.getInfo();
|
||||
if ((eventInfo == null) || (eventInfo.size() == 0)) {
|
||||
byte[] columnQualifierBytes = converter.encode(
|
||||
new EventColumnName(eventId, eventTimestamp, null));
|
||||
if (isApplication) {
|
||||
byte[] compoundColumnQualifierBytes =
|
||||
ApplicationColumnPrefix.EVENT.
|
||||
getCompoundColQualBytes(eventId, eventTs, null);
|
||||
ApplicationColumnPrefix.EVENT.store(rowKey, applicationTable,
|
||||
compoundColumnQualifierBytes, null,
|
||||
TimelineStorageUtils.EMPTY_BYTES);
|
||||
columnQualifierBytes, null, Separator.EMPTY_BYTES);
|
||||
} else {
|
||||
byte[] compoundColumnQualifierBytes =
|
||||
EntityColumnPrefix.EVENT.
|
||||
getCompoundColQualBytes(eventId, eventTs, null);
|
||||
EntityColumnPrefix.EVENT.store(rowKey, entityTable,
|
||||
compoundColumnQualifierBytes, null,
|
||||
TimelineStorageUtils.EMPTY_BYTES);
|
||||
columnQualifierBytes, null, Separator.EMPTY_BYTES);
|
||||
}
|
||||
} else {
|
||||
for (Map.Entry<String, Object> info : eventInfo.entrySet()) {
|
||||
// eventId?infoKey
|
||||
byte[] infoKey = Bytes.toBytes(info.getKey());
|
||||
// eventId=infoKey
|
||||
byte[] columnQualifierBytes = converter.encode(
|
||||
new EventColumnName(eventId, eventTimestamp,
|
||||
info.getKey()));
|
||||
if (isApplication) {
|
||||
byte[] compoundColumnQualifierBytes =
|
||||
ApplicationColumnPrefix.EVENT.
|
||||
getCompoundColQualBytes(eventId, eventTs, infoKey);
|
||||
ApplicationColumnPrefix.EVENT.store(rowKey, applicationTable,
|
||||
compoundColumnQualifierBytes, null, info.getValue());
|
||||
columnQualifierBytes, null, info.getValue());
|
||||
} else {
|
||||
byte[] compoundColumnQualifierBytes =
|
||||
EntityColumnPrefix.EVENT.
|
||||
getCompoundColQualBytes(eventId, eventTs, infoKey);
|
||||
EntityColumnPrefix.EVENT.store(rowKey, entityTable,
|
||||
compoundColumnQualifierBytes, null, info.getValue());
|
||||
columnQualifierBytes, null, info.getValue());
|
||||
}
|
||||
} // for info: eventInfo
|
||||
}
|
||||
|
|
|
@ -27,9 +27,10 @@ import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnFamily
|
|||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnHelper;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.GenericConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.LongConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TypedBufferedMutator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.LongConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ValueConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.Attribute;
|
||||
|
||||
|
@ -56,7 +57,7 @@ public enum ApplicationColumnPrefix implements ColumnPrefix<ApplicationTable> {
|
|||
/**
|
||||
* Lifecycle events for an application.
|
||||
*/
|
||||
EVENT(ApplicationColumnFamily.INFO, "e", true),
|
||||
EVENT(ApplicationColumnFamily.INFO, "e"),
|
||||
|
||||
/**
|
||||
* Config column stores configuration with config key as the column name.
|
||||
|
@ -78,7 +79,6 @@ public enum ApplicationColumnPrefix implements ColumnPrefix<ApplicationTable> {
|
|||
*/
|
||||
private final String columnPrefix;
|
||||
private final byte[] columnPrefixBytes;
|
||||
private final boolean compoundColQual;
|
||||
|
||||
/**
|
||||
* Private constructor, meant to be used by the enum definition.
|
||||
|
@ -88,18 +88,7 @@ public enum ApplicationColumnPrefix implements ColumnPrefix<ApplicationTable> {
|
|||
*/
|
||||
private ApplicationColumnPrefix(ColumnFamily<ApplicationTable> columnFamily,
|
||||
String columnPrefix) {
|
||||
this(columnFamily, columnPrefix, false, GenericConverter.getInstance());
|
||||
}
|
||||
|
||||
private ApplicationColumnPrefix(ColumnFamily<ApplicationTable> columnFamily,
|
||||
String columnPrefix, boolean compoundColQual) {
|
||||
this(columnFamily, columnPrefix, compoundColQual,
|
||||
GenericConverter.getInstance());
|
||||
}
|
||||
|
||||
private ApplicationColumnPrefix(ColumnFamily<ApplicationTable> columnFamily,
|
||||
String columnPrefix, ValueConverter converter) {
|
||||
this(columnFamily, columnPrefix, false, converter);
|
||||
this(columnFamily, columnPrefix, GenericConverter.getInstance());
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -111,7 +100,7 @@ public enum ApplicationColumnPrefix implements ColumnPrefix<ApplicationTable> {
|
|||
* this column prefix.
|
||||
*/
|
||||
private ApplicationColumnPrefix(ColumnFamily<ApplicationTable> columnFamily,
|
||||
String columnPrefix, boolean compoundColQual, ValueConverter converter) {
|
||||
String columnPrefix, ValueConverter converter) {
|
||||
column = new ColumnHelper<ApplicationTable>(columnFamily, converter);
|
||||
this.columnFamily = columnFamily;
|
||||
this.columnPrefix = columnPrefix;
|
||||
|
@ -122,7 +111,6 @@ public enum ApplicationColumnPrefix implements ColumnPrefix<ApplicationTable> {
|
|||
this.columnPrefixBytes =
|
||||
Bytes.toBytes(Separator.SPACE.encode(columnPrefix));
|
||||
}
|
||||
this.compoundColQual = compoundColQual;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -149,15 +137,6 @@ public enum ApplicationColumnPrefix implements ColumnPrefix<ApplicationTable> {
|
|||
return columnFamily.getBytes();
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCompoundColQualBytes(String qualifier,
|
||||
byte[]...components) {
|
||||
if (!compoundColQual) {
|
||||
return ColumnHelper.getColumnQualifier(null, qualifier);
|
||||
}
|
||||
return ColumnHelper.getCompoundColumnQualifierBytes(qualifier, components);
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
|
@ -232,25 +211,12 @@ public enum ApplicationColumnPrefix implements ColumnPrefix<ApplicationTable> {
|
|||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix
|
||||
* #readResults(org.apache.hadoop.hbase.client.Result)
|
||||
* #readResults(org.apache.hadoop.hbase.client.Result,
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter)
|
||||
*/
|
||||
public Map<String, Object> readResults(Result result) throws IOException {
|
||||
return column.readResults(result, columnPrefixBytes);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param result from which to read columns
|
||||
* @return the latest values of columns in the column family. The column
|
||||
* qualifier is returned as a list of parts, each part a byte[]. This
|
||||
* is to facilitate returning byte arrays of values that were not
|
||||
* Strings. If they can be treated as Strings, you should use
|
||||
* {@link #readResults(Result)} instead.
|
||||
* @throws IOException if any problem occurs while reading results.
|
||||
*/
|
||||
public Map<?, Object> readResultsHavingCompoundColumnQualifiers(Result result)
|
||||
throws IOException {
|
||||
return column.readResultsHavingCompoundColumnQualifiers(result,
|
||||
columnPrefixBytes);
|
||||
public <K> Map<K, Object> readResults(Result result,
|
||||
KeyConverter<K> keyConverter) throws IOException {
|
||||
return column.readResults(result, columnPrefixBytes, keyConverter);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -258,11 +224,14 @@ public enum ApplicationColumnPrefix implements ColumnPrefix<ApplicationTable> {
|
|||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix
|
||||
* #readResultsWithTimestamps(org.apache.hadoop.hbase.client.Result)
|
||||
* #readResultsWithTimestamps(org.apache.hadoop.hbase.client.Result,
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter)
|
||||
*/
|
||||
public <V> NavigableMap<String, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result) throws IOException {
|
||||
return column.readResultsWithTimestamps(result, columnPrefixBytes);
|
||||
public <K, V> NavigableMap<K, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result, KeyConverter<K> keyConverter)
|
||||
throws IOException {
|
||||
return column.readResultsWithTimestamps(result, columnPrefixBytes,
|
||||
keyConverter);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -15,11 +15,8 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.application;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.application;
|
||||
|
||||
/**
|
||||
* Represents a rowkey for the application table.
|
||||
|
@ -28,11 +25,11 @@ public class ApplicationRowKey {
|
|||
private final String clusterId;
|
||||
private final String userId;
|
||||
private final String flowName;
|
||||
private final long flowRunId;
|
||||
private final Long flowRunId;
|
||||
private final String appId;
|
||||
|
||||
public ApplicationRowKey(String clusterId, String userId, String flowName,
|
||||
long flowRunId, String appId) {
|
||||
Long flowRunId, String appId) {
|
||||
this.clusterId = clusterId;
|
||||
this.userId = userId;
|
||||
this.flowName = flowName;
|
||||
|
@ -52,7 +49,7 @@ public class ApplicationRowKey {
|
|||
return flowName;
|
||||
}
|
||||
|
||||
public long getFlowRunId() {
|
||||
public Long getFlowRunId() {
|
||||
return flowRunId;
|
||||
}
|
||||
|
||||
|
@ -71,9 +68,8 @@ public class ApplicationRowKey {
|
|||
*/
|
||||
public static byte[] getRowKeyPrefix(String clusterId, String userId,
|
||||
String flowName) {
|
||||
byte[] first = Bytes.toBytes(
|
||||
Separator.QUALIFIERS.joinEncoded(clusterId, userId, flowName));
|
||||
return Separator.QUALIFIERS.join(first, new byte[0]);
|
||||
return ApplicationRowKeyConverter.getInstance().encode(
|
||||
new ApplicationRowKey(clusterId, userId, flowName, null, null));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -88,10 +84,8 @@ public class ApplicationRowKey {
|
|||
*/
|
||||
public static byte[] getRowKeyPrefix(String clusterId, String userId,
|
||||
String flowName, Long flowRunId) {
|
||||
byte[] first = Bytes.toBytes(
|
||||
Separator.QUALIFIERS.joinEncoded(clusterId, userId, flowName));
|
||||
byte[] second = Bytes.toBytes(TimelineStorageUtils.invertLong(flowRunId));
|
||||
return Separator.QUALIFIERS.join(first, second, new byte[0]);
|
||||
return ApplicationRowKeyConverter.getInstance().encode(
|
||||
new ApplicationRowKey(clusterId, userId, flowName, flowRunId, null));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -107,14 +101,8 @@ public class ApplicationRowKey {
|
|||
*/
|
||||
public static byte[] getRowKey(String clusterId, String userId,
|
||||
String flowName, Long flowRunId, String appId) {
|
||||
byte[] first =
|
||||
Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(clusterId, userId,
|
||||
flowName));
|
||||
// Note that flowRunId is a long, so we can't encode them all at the same
|
||||
// time.
|
||||
byte[] second = Bytes.toBytes(TimelineStorageUtils.invertLong(flowRunId));
|
||||
byte[] third = TimelineStorageUtils.encodeAppId(appId);
|
||||
return Separator.QUALIFIERS.join(first, second, third);
|
||||
return ApplicationRowKeyConverter.getInstance().encode(
|
||||
new ApplicationRowKey(clusterId, userId, flowName, flowRunId, appId));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -124,22 +112,6 @@ public class ApplicationRowKey {
|
|||
* @return An <cite>ApplicationRowKey</cite> object.
|
||||
*/
|
||||
public static ApplicationRowKey parseRowKey(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents = Separator.QUALIFIERS.split(rowKey);
|
||||
|
||||
if (rowKeyComponents.length < 5) {
|
||||
throw new IllegalArgumentException("the row key is not valid for " +
|
||||
"an application");
|
||||
}
|
||||
|
||||
String clusterId =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[0]));
|
||||
String userId =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[1]));
|
||||
String flowName =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[2]));
|
||||
long flowRunId =
|
||||
TimelineStorageUtils.invertLong(Bytes.toLong(rowKeyComponents[3]));
|
||||
String appId = TimelineStorageUtils.decodeAppId(rowKeyComponents[4]);
|
||||
return new ApplicationRowKey(clusterId, userId, flowName, flowRunId, appId);
|
||||
return ApplicationRowKeyConverter.getInstance().decode(rowKey);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,130 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.application;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.AppIdKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
|
||||
/**
|
||||
* Encodes and decodes row key for application table.
|
||||
* The row key is of the form : clusterId!userName!flowName!flowRunId!appId.
|
||||
* flowRunId is a long, appId is encoded and decoded using
|
||||
* {@link AppIdKeyConverter} and rest are strings.
|
||||
*/
|
||||
public final class ApplicationRowKeyConverter implements
|
||||
KeyConverter<ApplicationRowKey> {
|
||||
private static final ApplicationRowKeyConverter INSTANCE =
|
||||
new ApplicationRowKeyConverter();
|
||||
|
||||
public static ApplicationRowKeyConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private ApplicationRowKeyConverter() {
|
||||
}
|
||||
|
||||
// Application row key is of the form
|
||||
// clusterId!userName!flowName!flowRunId!appId with each segment separated
|
||||
// by !. The sizes below indicate sizes of each one of these segements in
|
||||
// sequence. clusterId, userName and flowName are strings. flowrunId is a long
|
||||
// hence 8 bytes in size. app id is represented as 12 bytes with cluster
|
||||
// timestamp part of appid being 8 bytes(long) and seq id being 4 bytes(int).
|
||||
// Strings are variable in size (i.e. end whenever separator is encountered).
|
||||
// This is used while decoding and helps in determining where to split.
|
||||
private static final int[] SEGMENT_SIZES = {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Bytes.SIZEOF_LONG, AppIdKeyConverter.getKeySize() };
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Encodes ApplicationRowKey object into a byte array with each
|
||||
* component/field in ApplicationRowKey separated by Separator#QUALIFIERS.
|
||||
* This leads to an application table row key of the form
|
||||
* clusterId!userName!flowName!flowRunId!appId
|
||||
* If flowRunId in passed ApplicationRowKey object is null (and the fields
|
||||
* preceding it i.e. clusterId, userId and flowName are not null), this
|
||||
* returns a row key prefix of the form clusterId!userName!flowName! and if
|
||||
* appId in ApplicationRowKey is null (other 4 components are not null), this
|
||||
* returns a row key prefix of the form clusterId!userName!flowName!flowRunId!
|
||||
* flowRunId is inverted while encoding as it helps maintain a descending
|
||||
* order for row keys in application table.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public byte[] encode(ApplicationRowKey rowKey) {
|
||||
byte[] cluster = Separator.encode(rowKey.getClusterId(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS);
|
||||
byte[] user = Separator.encode(rowKey.getUserId(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS);
|
||||
byte[] flow = Separator.encode(rowKey.getFlowName(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS);
|
||||
byte[] first = Separator.QUALIFIERS.join(cluster, user, flow);
|
||||
// Note that flowRunId is a long, so we can't encode them all at the same
|
||||
// time.
|
||||
if (rowKey.getFlowRunId() == null) {
|
||||
return Separator.QUALIFIERS.join(first, Separator.EMPTY_BYTES);
|
||||
}
|
||||
byte[] second = Bytes.toBytes(
|
||||
TimelineStorageUtils.invertLong(rowKey.getFlowRunId()));
|
||||
if (rowKey.getAppId() == null || rowKey.getAppId().isEmpty()) {
|
||||
return Separator.QUALIFIERS.join(first, second, Separator.EMPTY_BYTES);
|
||||
}
|
||||
byte[] third = AppIdKeyConverter.getInstance().encode(rowKey.getAppId());
|
||||
return Separator.QUALIFIERS.join(first, second, third);
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Decodes an application row key of the form
|
||||
* clusterId!userName!flowName!flowRunId!appId represented in byte format and
|
||||
* converts it into an ApplicationRowKey object.flowRunId is inverted while
|
||||
* decoding as it was inverted while encoding.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #decode(byte[])
|
||||
*/
|
||||
@Override
|
||||
public ApplicationRowKey decode(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents =
|
||||
Separator.QUALIFIERS.split(rowKey, SEGMENT_SIZES);
|
||||
if (rowKeyComponents.length != 5) {
|
||||
throw new IllegalArgumentException("the row key is not valid for " +
|
||||
"an application");
|
||||
}
|
||||
String clusterId = Separator.decode(Bytes.toString(rowKeyComponents[0]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String userId = Separator.decode(Bytes.toString(rowKeyComponents[1]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String flowName = Separator.decode(Bytes.toString(rowKeyComponents[2]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
Long flowRunId =
|
||||
TimelineStorageUtils.invertLong(Bytes.toLong(rowKeyComponents[3]));
|
||||
String appId = AppIdKeyConverter.getInstance().decode(rowKeyComponents[4]);
|
||||
return new ApplicationRowKey(clusterId, userId, flowName, flowRunId, appId);
|
||||
}
|
||||
}
|
|
@ -17,10 +17,6 @@
|
|||
*/
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.apptoflow;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
|
||||
/**
|
||||
* Represents a rowkey for the app_flow table.
|
||||
*/
|
||||
|
@ -50,9 +46,8 @@ public class AppToFlowRowKey {
|
|||
* @return byte array with the row key
|
||||
*/
|
||||
public static byte[] getRowKey(String clusterId, String appId) {
|
||||
byte[] first = Bytes.toBytes(clusterId);
|
||||
byte[] second = TimelineStorageUtils.encodeAppId(appId);
|
||||
return Separator.QUALIFIERS.join(first, second);
|
||||
return AppToFlowRowKeyConverter.getInstance().encode(
|
||||
new AppToFlowRowKey(clusterId, appId));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -62,15 +57,6 @@ public class AppToFlowRowKey {
|
|||
* @return an <cite>AppToFlowRowKey</cite> object.
|
||||
*/
|
||||
public static AppToFlowRowKey parseRowKey(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents = Separator.QUALIFIERS.split(rowKey);
|
||||
|
||||
if (rowKeyComponents.length < 2) {
|
||||
throw new IllegalArgumentException("the row key is not valid for " +
|
||||
"the app-to-flow table");
|
||||
}
|
||||
|
||||
String clusterId = Bytes.toString(rowKeyComponents[0]);
|
||||
String appId = TimelineStorageUtils.decodeAppId(rowKeyComponents[1]);
|
||||
return new AppToFlowRowKey(clusterId, appId);
|
||||
return AppToFlowRowKeyConverter.getInstance().decode(rowKey);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,96 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.apptoflow;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.AppIdKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
|
||||
/**
|
||||
* Encodes and decodes row key for app_flow table.
|
||||
* The row key is of the form : clusterId!appId.
|
||||
* clusterId is a string and appId is encoded/decoded using
|
||||
* {@link AppIdKeyConverter}.
|
||||
*/
|
||||
public final class AppToFlowRowKeyConverter
|
||||
implements KeyConverter<AppToFlowRowKey> {
|
||||
private static final AppToFlowRowKeyConverter INSTANCE =
|
||||
new AppToFlowRowKeyConverter();
|
||||
|
||||
public static AppToFlowRowKeyConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private AppToFlowRowKeyConverter() {
|
||||
}
|
||||
|
||||
// App to flow row key is of the form clusterId!appId with the 2 segments
|
||||
// separated by !. The sizes below indicate sizes of both of these segments
|
||||
// in sequence. clusterId is a string. appId is represented as 12 bytes with
|
||||
// cluster Timestamp part of appid being 8 bytes(long) and seq id being 4
|
||||
// bytes(int).
|
||||
// Strings are variable in size (i.e. end whenever separator is encountered).
|
||||
// This is used while decoding and helps in determining where to split.
|
||||
private static final int[] SEGMENT_SIZES = {
|
||||
Separator.VARIABLE_SIZE, Bytes.SIZEOF_LONG + Bytes.SIZEOF_INT };
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Encodes AppToFlowRowKey object into a byte array with each component/field
|
||||
* in AppToFlowRowKey separated by Separator#QUALIFIERS. This leads to an
|
||||
* app to flow table row key of the form clusterId!appId
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public byte[] encode(AppToFlowRowKey rowKey) {
|
||||
byte[] first = Separator.encode(rowKey.getClusterId(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS);
|
||||
byte[] second = AppIdKeyConverter.getInstance().encode(rowKey.getAppId());
|
||||
return Separator.QUALIFIERS.join(first, second);
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Decodes an app to flow row key of the form clusterId!appId represented in
|
||||
* byte format and converts it into an AppToFlowRowKey object.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #decode(byte[])
|
||||
*/
|
||||
@Override
|
||||
public AppToFlowRowKey decode(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents =
|
||||
Separator.QUALIFIERS.split(rowKey, SEGMENT_SIZES);
|
||||
if (rowKeyComponents.length != 2) {
|
||||
throw new IllegalArgumentException("the row key is not valid for " +
|
||||
"the app-to-flow table");
|
||||
}
|
||||
String clusterId = Separator.decode(Bytes.toString(rowKeyComponents[0]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String appId = AppIdKeyConverter.getInstance().decode(rowKeyComponents[1]);
|
||||
return new AppToFlowRowKey(clusterId, appId);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,101 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||
import org.apache.hadoop.yarn.util.ConverterUtils;
|
||||
|
||||
/**
|
||||
* Encodes and decodes {@link ApplicationId} for row keys.
|
||||
* App ID is stored in row key as 12 bytes, cluster timestamp section of app id
|
||||
* (long - 8 bytes) followed by sequence id section of app id (int - 4 bytes).
|
||||
*/
|
||||
public final class AppIdKeyConverter implements KeyConverter<String> {
|
||||
private static final AppIdKeyConverter INSTANCE = new AppIdKeyConverter();
|
||||
|
||||
public static AppIdKeyConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private AppIdKeyConverter() {
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Converts/encodes a string app Id into a byte representation for (row) keys.
|
||||
* For conversion, we extract cluster timestamp and sequence id from the
|
||||
* string app id (calls ConverterUtils#toApplicationId(String) for
|
||||
* conversion) and then store it in a byte array of length 12 (8 bytes (long)
|
||||
* for cluster timestamp followed 4 bytes(int) for sequence id). Both cluster
|
||||
* timestamp and sequence id are inverted so that the most recent cluster
|
||||
* timestamp and highest sequence id appears first in the table (i.e.
|
||||
* application id appears in a descending order).
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public byte[] encode(String appIdStr) {
|
||||
ApplicationId appId = ConverterUtils.toApplicationId(appIdStr);
|
||||
byte[] appIdBytes = new byte[getKeySize()];
|
||||
byte[] clusterTs = Bytes.toBytes(
|
||||
TimelineStorageUtils.invertLong(appId.getClusterTimestamp()));
|
||||
System.arraycopy(clusterTs, 0, appIdBytes, 0, Bytes.SIZEOF_LONG);
|
||||
byte[] seqId = Bytes.toBytes(TimelineStorageUtils.invertInt(appId.getId()));
|
||||
System.arraycopy(seqId, 0, appIdBytes, Bytes.SIZEOF_LONG, Bytes.SIZEOF_INT);
|
||||
return appIdBytes;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Converts/decodes a 12 byte representation of app id for (row) keys to an
|
||||
* app id in string format which can be returned back to client.
|
||||
* For decoding, 12 bytes are interpreted as 8 bytes of inverted cluster
|
||||
* timestamp(long) followed by 4 bytes of inverted sequence id(int). Calls
|
||||
* ApplicationId#toString to generate string representation of app id.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #decode(byte[])
|
||||
*/
|
||||
@Override
|
||||
public String decode(byte[] appIdBytes) {
|
||||
if (appIdBytes.length != getKeySize()) {
|
||||
throw new IllegalArgumentException("Invalid app id in byte format");
|
||||
}
|
||||
long clusterTs = TimelineStorageUtils.invertLong(
|
||||
Bytes.toLong(appIdBytes, 0, Bytes.SIZEOF_LONG));
|
||||
int seqId = TimelineStorageUtils.invertInt(
|
||||
Bytes.toInt(appIdBytes, Bytes.SIZEOF_LONG, Bytes.SIZEOF_INT));
|
||||
return ApplicationId.newInstance(clusterTs, seqId).toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the size of app id after encoding.
|
||||
*
|
||||
* @return size of app id after encoding.
|
||||
*/
|
||||
public static int getKeySize() {
|
||||
return Bytes.SIZEOF_LONG + Bytes.SIZEOF_INT;
|
||||
}
|
||||
}
|
|
@ -166,19 +166,22 @@ public class ColumnHelper<T> {
|
|||
* @param result from which to reads data with timestamps
|
||||
* @param columnPrefixBytes optional prefix to limit columns. If null all
|
||||
* columns are returned.
|
||||
* @param <K> identifies the type of column name(indicated by type of key
|
||||
* converter).
|
||||
* @param <V> the type of the values. The values will be cast into that type.
|
||||
* @param keyConverter used to convert column bytes to the appropriate key
|
||||
* type.
|
||||
* @return the cell values at each respective time in for form
|
||||
* {@literal {idA={timestamp1->value1}, idA={timestamp2->value2},
|
||||
* idB={timestamp3->value3}, idC={timestamp1->value4}}}
|
||||
* @throws IOException if any problem occurs while reading results.
|
||||
*/
|
||||
@SuppressWarnings("unchecked")
|
||||
public <V> NavigableMap<String, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result, byte[] columnPrefixBytes)
|
||||
throws IOException {
|
||||
public <K, V> NavigableMap<K, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result, byte[] columnPrefixBytes,
|
||||
KeyConverter<K> keyConverter) throws IOException {
|
||||
|
||||
NavigableMap<String, NavigableMap<Long, V>> results =
|
||||
new TreeMap<String, NavigableMap<Long, V>>();
|
||||
NavigableMap<K, NavigableMap<Long, V>> results = new TreeMap<>();
|
||||
|
||||
if (result != null) {
|
||||
NavigableMap<
|
||||
|
@ -192,13 +195,17 @@ public class ColumnHelper<T> {
|
|||
if (columnCellMap != null) {
|
||||
for (Entry<byte[], NavigableMap<Long, byte[]>> entry : columnCellMap
|
||||
.entrySet()) {
|
||||
String columnName = null;
|
||||
K converterColumnKey = null;
|
||||
if (columnPrefixBytes == null) {
|
||||
if (LOG.isDebugEnabled()) {
|
||||
LOG.debug("null prefix was specified; returning all columns");
|
||||
}
|
||||
// Decode the spaces we encoded in the column name.
|
||||
columnName = Separator.decode(entry.getKey(), Separator.SPACE);
|
||||
try {
|
||||
converterColumnKey = keyConverter.decode(entry.getKey());
|
||||
} catch (IllegalArgumentException iae) {
|
||||
LOG.error("Illegal column found, skipping this column.", iae);
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
// A non-null prefix means columns are actually of the form
|
||||
// prefix!columnNameRemainder
|
||||
|
@ -207,13 +214,18 @@ public class ColumnHelper<T> {
|
|||
byte[] actualColumnPrefixBytes = columnNameParts[0];
|
||||
if (Bytes.equals(columnPrefixBytes, actualColumnPrefixBytes)
|
||||
&& columnNameParts.length == 2) {
|
||||
// This is the prefix that we want
|
||||
columnName = Separator.decode(columnNameParts[1]);
|
||||
try {
|
||||
// This is the prefix that we want
|
||||
converterColumnKey = keyConverter.decode(columnNameParts[1]);
|
||||
} catch (IllegalArgumentException iae) {
|
||||
LOG.error("Illegal column found, skipping this column.", iae);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If this column has the prefix we want
|
||||
if (columnName != null) {
|
||||
if (converterColumnKey != null) {
|
||||
NavigableMap<Long, V> cellResults =
|
||||
new TreeMap<Long, V>();
|
||||
NavigableMap<Long, byte[]> cells = entry.getValue();
|
||||
|
@ -226,7 +238,7 @@ public class ColumnHelper<T> {
|
|||
value);
|
||||
}
|
||||
}
|
||||
results.put(columnName, cellResults);
|
||||
results.put(converterColumnKey, cellResults);
|
||||
}
|
||||
} // for entry : columnCellMap
|
||||
} // if columnCellMap != null
|
||||
|
@ -235,66 +247,13 @@ public class ColumnHelper<T> {
|
|||
}
|
||||
|
||||
/**
|
||||
* @param <K> identifies the type of column name(indicated by type of key
|
||||
* converter).
|
||||
* @param result from which to read columns
|
||||
* @param columnPrefixBytes optional prefix to limit columns. If null all
|
||||
* columns are returned.
|
||||
* @return the latest values of columns in the column family. This assumes
|
||||
* that the column name parts are all Strings by default. If the
|
||||
* column name parts should be treated natively and not be converted
|
||||
* back and forth from Strings, you should use
|
||||
* {@link #readResultsHavingCompoundColumnQualifiers(Result, byte[])}
|
||||
* instead.
|
||||
* @throws IOException if any problem occurs while reading results.
|
||||
*/
|
||||
public Map<String, Object> readResults(Result result,
|
||||
byte[] columnPrefixBytes) throws IOException {
|
||||
Map<String, Object> results = new HashMap<String, Object>();
|
||||
|
||||
if (result != null) {
|
||||
Map<byte[], byte[]> columns = result.getFamilyMap(columnFamilyBytes);
|
||||
for (Entry<byte[], byte[]> entry : columns.entrySet()) {
|
||||
byte[] columnKey = entry.getKey();
|
||||
if (columnKey != null && columnKey.length > 0) {
|
||||
|
||||
String columnName = null;
|
||||
if (columnPrefixBytes == null) {
|
||||
if (LOG.isDebugEnabled()) {
|
||||
LOG.debug("null prefix was specified; returning all columns");
|
||||
}
|
||||
// Decode the spaces we encoded in the column name.
|
||||
columnName = Separator.decode(columnKey, Separator.SPACE);
|
||||
} else {
|
||||
// A non-null prefix means columns are actually of the form
|
||||
// prefix!columnNameRemainder
|
||||
byte[][] columnNameParts =
|
||||
Separator.QUALIFIERS.split(columnKey, 2);
|
||||
byte[] actualColumnPrefixBytes = columnNameParts[0];
|
||||
if (Bytes.equals(columnPrefixBytes, actualColumnPrefixBytes)
|
||||
&& columnNameParts.length == 2) {
|
||||
// This is the prefix that we want
|
||||
// if the column name is a compound qualifier
|
||||
// with non string datatypes, the following decode will not
|
||||
// work correctly since it considers all components to be String
|
||||
// invoke the readResultsHavingCompoundColumnQualifiers function
|
||||
columnName = Separator.decode(columnNameParts[1]);
|
||||
}
|
||||
}
|
||||
|
||||
// If this column has the prefix we want
|
||||
if (columnName != null) {
|
||||
Object value = converter.decodeValue(entry.getValue());
|
||||
results.put(columnName, value);
|
||||
}
|
||||
}
|
||||
} // for entry
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param result from which to read columns
|
||||
* @param columnPrefixBytes optional prefix to limit columns. If null all
|
||||
* columns are returned.
|
||||
* @param keyConverter used to convert column bytes to the appropriate key
|
||||
* type.
|
||||
* @return the latest values of columns in the column family. If the column
|
||||
* prefix is null, the column qualifier is returned as Strings. For a
|
||||
* non-null column prefix bytes, the column qualifier is returned as
|
||||
|
@ -302,38 +261,51 @@ public class ColumnHelper<T> {
|
|||
* returning byte arrays of values that were not Strings.
|
||||
* @throws IOException if any problem occurs while reading results.
|
||||
*/
|
||||
public Map<?, Object> readResultsHavingCompoundColumnQualifiers(Result result,
|
||||
byte[] columnPrefixBytes) throws IOException {
|
||||
// handle the case where the column prefix is null
|
||||
// it is the same as readResults() so simply delegate to that implementation
|
||||
if (columnPrefixBytes == null) {
|
||||
return readResults(result, null);
|
||||
}
|
||||
|
||||
Map<byte[][], Object> results = new HashMap<byte[][], Object>();
|
||||
public <K> Map<K, Object> readResults(Result result,
|
||||
byte[] columnPrefixBytes, KeyConverter<K> keyConverter)
|
||||
throws IOException {
|
||||
Map<K, Object> results = new HashMap<K, Object>();
|
||||
|
||||
if (result != null) {
|
||||
Map<byte[], byte[]> columns = result.getFamilyMap(columnFamilyBytes);
|
||||
for (Entry<byte[], byte[]> entry : columns.entrySet()) {
|
||||
byte[] columnKey = entry.getKey();
|
||||
if (columnKey != null && columnKey.length > 0) {
|
||||
// A non-null prefix means columns are actually of the form
|
||||
// prefix!columnNameRemainder
|
||||
// with a compound column qualifier, we are presuming existence of a
|
||||
// prefix
|
||||
byte[][] columnNameParts = Separator.QUALIFIERS.split(columnKey, 2);
|
||||
if (columnNameParts.length > 0) {
|
||||
byte[] actualColumnPrefixBytes = columnNameParts[0];
|
||||
if (Bytes.equals(columnPrefixBytes, actualColumnPrefixBytes)
|
||||
&& columnNameParts.length == 2) {
|
||||
// This is the prefix that we want
|
||||
byte[][] columnQualifierParts =
|
||||
Separator.VALUES.split(columnNameParts[1]);
|
||||
Object value = converter.decodeValue(entry.getValue());
|
||||
// we return the columnQualifier in parts since we don't know
|
||||
// which part is of which data type
|
||||
results.put(columnQualifierParts, value);
|
||||
|
||||
K converterColumnKey = null;
|
||||
if (columnPrefixBytes == null) {
|
||||
try {
|
||||
converterColumnKey = keyConverter.decode(columnKey);
|
||||
} catch (IllegalArgumentException iae) {
|
||||
LOG.error("Illegal column found, skipping this column.", iae);
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
// A non-null prefix means columns are actually of the form
|
||||
// prefix!columnNameRemainder
|
||||
byte[][] columnNameParts = Separator.QUALIFIERS.split(columnKey, 2);
|
||||
if (columnNameParts.length > 0) {
|
||||
byte[] actualColumnPrefixBytes = columnNameParts[0];
|
||||
// If this is the prefix that we want
|
||||
if (Bytes.equals(columnPrefixBytes, actualColumnPrefixBytes)
|
||||
&& columnNameParts.length == 2) {
|
||||
try {
|
||||
converterColumnKey = keyConverter.decode(columnNameParts[1]);
|
||||
} catch (IllegalArgumentException iae) {
|
||||
LOG.error("Illegal column found, skipping this column.", iae);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
} // if-else
|
||||
|
||||
// If the columnPrefix is null (we want all columns), or the actual
|
||||
// prefix matches the given prefix we want this column
|
||||
if (converterColumnKey != null) {
|
||||
Object value = converter.decodeValue(entry.getValue());
|
||||
// we return the columnQualifier in parts since we don't know
|
||||
// which part is of which data type.
|
||||
results.put(converterColumnKey, value);
|
||||
}
|
||||
}
|
||||
} // for entry
|
||||
|
@ -353,8 +325,9 @@ public class ColumnHelper<T> {
|
|||
public static byte[] getColumnQualifier(byte[] columnPrefixBytes,
|
||||
String qualifier) {
|
||||
|
||||
// We don't want column names to have spaces
|
||||
byte[] encodedQualifier = Bytes.toBytes(Separator.SPACE.encode(qualifier));
|
||||
// We don't want column names to have spaces / tabs.
|
||||
byte[] encodedQualifier =
|
||||
Separator.encode(qualifier, Separator.SPACE, Separator.TAB);
|
||||
if (columnPrefixBytes == null) {
|
||||
return encodedQualifier;
|
||||
}
|
||||
|
@ -366,22 +339,6 @@ public class ColumnHelper<T> {
|
|||
return columnQualifier;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a compound column qualifier by combining qualifier and components.
|
||||
*
|
||||
* @param qualifier Column QUalifier.
|
||||
* @param components Other components.
|
||||
* @return a byte array representing compound column qualifier.
|
||||
*/
|
||||
public static byte[] getCompoundColumnQualifierBytes(String qualifier,
|
||||
byte[]...components) {
|
||||
byte[] colQualBytes = Bytes.toBytes(Separator.VALUES.encode(qualifier));
|
||||
for (int i = 0; i < components.length; i++) {
|
||||
colQualBytes = Separator.VALUES.join(colQualBytes, components[i]);
|
||||
}
|
||||
return colQualBytes;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param columnPrefixBytes The byte representation for the column prefix.
|
||||
* Should not contain {@link Separator#QUALIFIERS}.
|
||||
|
|
|
@ -91,37 +91,33 @@ public interface ColumnPrefix<T> {
|
|||
Object readResult(Result result, String qualifier) throws IOException;
|
||||
|
||||
/**
|
||||
* @param result from which to read columns
|
||||
*
|
||||
* @param <K> identifies the type of key converter.
|
||||
* @param result from which to read columns.
|
||||
* @param keyConverter used to convert column bytes to the appropriate key
|
||||
* type
|
||||
* @return the latest values of columns in the column family with this prefix
|
||||
* (or all of them if the prefix value is null).
|
||||
* @throws IOException if there is any exception encountered while reading
|
||||
* results.
|
||||
* results.
|
||||
*/
|
||||
Map<String, Object> readResults(Result result) throws IOException;
|
||||
<K> Map<K, Object> readResults(Result result, KeyConverter<K> keyConverter)
|
||||
throws IOException;
|
||||
|
||||
/**
|
||||
* @param result from which to reads data with timestamps
|
||||
* @param result from which to reads data with timestamps.
|
||||
* @param <K> identifies the type of key converter.
|
||||
* @param <V> the type of the values. The values will be cast into that type.
|
||||
* @param keyConverter used to convert column bytes to the appropriate key
|
||||
* type.
|
||||
* @return the cell values at each respective time in for form
|
||||
* {@literal {idA={timestamp1->value1}, idA={timestamp2->value2},
|
||||
* idB={timestamp3->value3}, idC={timestamp1->value4}}}
|
||||
* @throws IOException if there is any exception encountered while reading
|
||||
* result.
|
||||
*/
|
||||
<V> NavigableMap<String, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result) throws IOException;
|
||||
|
||||
/**
|
||||
* @param result from which to read columns
|
||||
* @return the latest values of columns in the column family. The column
|
||||
* qualifier is returned as a list of parts, each part a byte[]. This
|
||||
* is to facilitate returning byte arrays of values that were not
|
||||
* Strings. If they can be treated as Strings, you should use
|
||||
* {@link #readResults(Result)} instead.
|
||||
* @throws IOException if any problem occurs while reading results.
|
||||
*/
|
||||
Map<?, Object> readResultsHavingCompoundColumnQualifiers(Result result)
|
||||
throws IOException;
|
||||
<K, V> NavigableMap<K, NavigableMap<Long, V>> readResultsWithTimestamps(
|
||||
Result result, KeyConverter<K> keyConverter) throws IOException;
|
||||
|
||||
/**
|
||||
* @param qualifierPrefix Column qualifier or prefix of qualifier.
|
||||
|
@ -146,15 +142,4 @@ public interface ColumnPrefix<T> {
|
|||
* @return a {@link ValueConverter} implementation.
|
||||
*/
|
||||
ValueConverter getValueConverter();
|
||||
|
||||
/**
|
||||
* Get compound column qualifier bytes if the column qualifier is a compound
|
||||
* qualifier. Returns the qualifier passed as bytes if the column is not a
|
||||
* compound column qualifier.
|
||||
*
|
||||
* @param qualifier Column Qualifier.
|
||||
* @param components Other components.
|
||||
* @return byte array representing compound column qualifier.
|
||||
*/
|
||||
byte[] getCompoundColQualBytes(String qualifier, byte[]...components);
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
/**
|
||||
* Encapsulates information about Event column names for application and entity
|
||||
* tables. Used while encoding/decoding event column names.
|
||||
*/
|
||||
public class EventColumnName {
|
||||
|
||||
private final String id;
|
||||
private final Long timestamp;
|
||||
private final String infoKey;
|
||||
|
||||
public EventColumnName(String id, Long timestamp, String infoKey) {
|
||||
this.id = id;
|
||||
this.timestamp = timestamp;
|
||||
this.infoKey = infoKey;
|
||||
}
|
||||
|
||||
public String getId() {
|
||||
return id;
|
||||
}
|
||||
|
||||
public Long getTimestamp() {
|
||||
return timestamp;
|
||||
}
|
||||
|
||||
public String getInfoKey() {
|
||||
return infoKey;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,105 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with this
|
||||
* work for additional information regarding copyright ownership. The ASF
|
||||
* licenses this file to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations under
|
||||
* the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
|
||||
/**
|
||||
* Encodes and decodes event column names for application and entity tables.
|
||||
* The event column name is of the form : eventId=timestamp=infokey.
|
||||
* If info is not associated with the event, event column name is of the form :
|
||||
* eventId=timestamp=
|
||||
* Event timestamp is long and rest are strings.
|
||||
* Column prefixes are not part of the eventcolumn name passed for encoding. It
|
||||
* is added later, if required in the associated ColumnPrefix implementations.
|
||||
*/
|
||||
public final class EventColumnNameConverter
|
||||
implements KeyConverter<EventColumnName> {
|
||||
private static final EventColumnNameConverter INSTANCE =
|
||||
new EventColumnNameConverter();
|
||||
|
||||
public static EventColumnNameConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private EventColumnNameConverter() {
|
||||
}
|
||||
|
||||
// eventId=timestamp=infokey are of types String, Long String
|
||||
// Strings are variable in size (i.e. end whenever separator is encountered).
|
||||
// This is used while decoding and helps in determining where to split.
|
||||
private static final int[] SEGMENT_SIZES = {
|
||||
Separator.VARIABLE_SIZE, Bytes.SIZEOF_LONG, Separator.VARIABLE_SIZE };
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Encodes EventColumnName into a byte array with each component/field in
|
||||
* EventColumnName separated by Separator#VALUES. This leads to an event
|
||||
* column name of the form eventId=timestamp=infokey.
|
||||
* If timestamp in passed EventColumnName object is null (eventId is not null)
|
||||
* this returns a column prefix of the form eventId= and if infokey in
|
||||
* EventColumnName is null (other 2 components are not null), this returns a
|
||||
* column name of the form eventId=timestamp=
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public byte[] encode(EventColumnName key) {
|
||||
byte[] first = Separator.encode(key.getId(), Separator.SPACE, Separator.TAB,
|
||||
Separator.VALUES);
|
||||
if (key.getTimestamp() == null) {
|
||||
return Separator.VALUES.join(first, Separator.EMPTY_BYTES);
|
||||
}
|
||||
byte[] second = Bytes.toBytes(
|
||||
TimelineStorageUtils.invertLong(key.getTimestamp()));
|
||||
if (key.getInfoKey() == null) {
|
||||
return Separator.VALUES.join(first, second, Separator.EMPTY_BYTES);
|
||||
}
|
||||
return Separator.VALUES.join(first, second, Separator.encode(
|
||||
key.getInfoKey(), Separator.SPACE, Separator.TAB, Separator.VALUES));
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Decodes an event column name of the form eventId=timestamp= or
|
||||
* eventId=timestamp=infoKey represented in byte format and converts it into
|
||||
* an EventColumnName object.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #decode(byte[])
|
||||
*/
|
||||
@Override
|
||||
public EventColumnName decode(byte[] bytes) {
|
||||
byte[][] components = Separator.VALUES.split(bytes, SEGMENT_SIZES);
|
||||
if (components.length != 3) {
|
||||
throw new IllegalArgumentException("the column name is not valid");
|
||||
}
|
||||
String id = Separator.decode(Bytes.toString(components[0]),
|
||||
Separator.VALUES, Separator.TAB, Separator.SPACE);
|
||||
Long ts = TimelineStorageUtils.invertLong(Bytes.toLong(components[1]));
|
||||
String infoKey = components[2].length == 0 ? null :
|
||||
Separator.decode(Bytes.toString(components[2]),
|
||||
Separator.VALUES, Separator.TAB, Separator.SPACE);
|
||||
return new EventColumnName(id, ts, infoKey);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,41 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
/**
|
||||
* Interface which has to be implemented for encoding and decoding row keys and
|
||||
* columns.
|
||||
*/
|
||||
public interface KeyConverter<T> {
|
||||
/**
|
||||
* Encodes a key as a byte array.
|
||||
*
|
||||
* @param key key to be encoded.
|
||||
* @return a byte array.
|
||||
*/
|
||||
byte[] encode(T key);
|
||||
|
||||
/**
|
||||
* Decodes a byte array and returns a key of type T.
|
||||
*
|
||||
* @param bytes byte representation
|
||||
* @return an object(key) of type T which has been constructed after decoding
|
||||
* the bytes.
|
||||
*/
|
||||
T decode(byte[] bytes);
|
||||
}
|
|
@ -0,0 +1,68 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
import java.io.IOException;
|
||||
/**
|
||||
* Encodes and decodes column names / row keys which are long.
|
||||
*/
|
||||
public final class LongKeyConverter implements KeyConverter<Long> {
|
||||
private static final LongKeyConverter INSTANCE = new LongKeyConverter();
|
||||
|
||||
public static LongKeyConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private LongKeyConverter() {
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public byte[] encode(Long key) {
|
||||
try {
|
||||
// IOException will not be thrown here as we are explicitly passing
|
||||
// Long.
|
||||
return LongConverter.getInstance().encodeValue(key);
|
||||
} catch (IOException e) {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #decode(byte[])
|
||||
*/
|
||||
@Override
|
||||
public Long decode(byte[] bytes) {
|
||||
try {
|
||||
return (Long) LongConverter.getInstance().decodeValue(bytes);
|
||||
} catch (IOException e) {
|
||||
return null;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -45,7 +45,13 @@ public enum Separator {
|
|||
* getting a + for a space, which may already occur in strings, so we don't
|
||||
* want that.
|
||||
*/
|
||||
SPACE(" ", "%2$");
|
||||
SPACE(" ", "%2$"),
|
||||
|
||||
/**
|
||||
* separator in values, often used to avoid having these in qualifiers and
|
||||
* names.
|
||||
*/
|
||||
TAB("\t", "%3$");
|
||||
|
||||
/**
|
||||
* The string value of this separator.
|
||||
|
@ -67,7 +73,22 @@ public enum Separator {
|
|||
*/
|
||||
private final String quotedValue;
|
||||
|
||||
private static final byte[] EMPTY_BYTES = new byte[0];
|
||||
/**
|
||||
* Indicator for variable size of an individual segment in a split. The
|
||||
* segment ends wherever separator is encountered.
|
||||
* Typically used for string.
|
||||
* Also used to indicate that there is no fixed number of splits which need to
|
||||
* be returned. If split limit is specified as this, all possible splits are
|
||||
* returned.
|
||||
*/
|
||||
public static final int VARIABLE_SIZE = 0;
|
||||
|
||||
|
||||
/** empty string. */
|
||||
public static final String EMPTY_STRING = "";
|
||||
|
||||
/** empty bytes. */
|
||||
public static final byte[] EMPTY_BYTES = new byte[0];
|
||||
|
||||
/**
|
||||
* @param value of the separator to use. Cannot be null or empty string.
|
||||
|
@ -222,7 +243,6 @@ public enum Separator {
|
|||
System.arraycopy(this.bytes, 0, buf, offset, this.value.length());
|
||||
offset += this.value.length();
|
||||
}
|
||||
|
||||
}
|
||||
return buf;
|
||||
}
|
||||
|
@ -307,7 +327,25 @@ public enum Separator {
|
|||
* @return source split by this separator.
|
||||
*/
|
||||
public byte[][] split(byte[] source, int limit) {
|
||||
return TimelineStorageUtils.split(source, this.bytes, limit);
|
||||
return split(source, this.bytes, limit);
|
||||
}
|
||||
|
||||
/**
|
||||
* Splits the source array into multiple array segments using this separator.
|
||||
* The sizes indicate the sizes of the relative components/segments.
|
||||
* In case one of the segments contains this separator before the specified
|
||||
* size is reached, the separator will be considered part of that segment and
|
||||
* we will continue till size is reached.
|
||||
* Variable length strings cannot contain this separator and are indiced with
|
||||
* a size of {@value #VARIABLE_SIZE}. Such strings are encoded for this
|
||||
* separator and decoded after the results from split is returned.
|
||||
*
|
||||
* @param source byte array to be split.
|
||||
* @param sizes sizes of relative components/segments.
|
||||
* @return source split by this separator as per the sizes specified..
|
||||
*/
|
||||
public byte[][] split(byte[] source, int[] sizes) {
|
||||
return split(source, this.bytes, sizes);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -315,10 +353,158 @@ public enum Separator {
|
|||
* as many times as splits are found. This will naturally produce copied byte
|
||||
* arrays for each of the split segments.
|
||||
*
|
||||
* @param source to be split
|
||||
* @param source byte array to be split
|
||||
* @return source split by this separator.
|
||||
*/
|
||||
public byte[][] split(byte[] source) {
|
||||
return TimelineStorageUtils.split(source, this.bytes);
|
||||
return split(source, this.bytes);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a list of ranges identifying [start, end) -- closed, open --
|
||||
* positions within the source byte array that would be split using the
|
||||
* separator byte array.
|
||||
* The sizes indicate the sizes of the relative components/segments.
|
||||
* In case one of the segments contains this separator before the specified
|
||||
* size is reached, the separator will be considered part of that segment and
|
||||
* we will continue till size is reached.
|
||||
* Variable length strings cannot contain this separator and are indiced with
|
||||
* a size of {@value #VARIABLE_SIZE}. Such strings are encoded for this
|
||||
* separator and decoded after the results from split is returned.
|
||||
*
|
||||
* @param source the source data
|
||||
* @param separator the separator pattern to look for
|
||||
* @param sizes indicate the sizes of the relative components/segments.
|
||||
* @return a list of ranges.
|
||||
*/
|
||||
private static List<Range> splitRanges(byte[] source, byte[] separator,
|
||||
int[] sizes) {
|
||||
List<Range> segments = new ArrayList<Range>();
|
||||
if (source == null || separator == null) {
|
||||
return segments;
|
||||
}
|
||||
// VARIABLE_SIZE here indicates that there is no limit to number of segments
|
||||
// to return.
|
||||
int limit = VARIABLE_SIZE;
|
||||
if (sizes != null && sizes.length > 0) {
|
||||
limit = sizes.length;
|
||||
}
|
||||
int start = 0;
|
||||
int currentSegment = 0;
|
||||
itersource: for (int i = 0; i < source.length; i++) {
|
||||
for (int j = 0; j < separator.length; j++) {
|
||||
if (source[i + j] != separator[j]) {
|
||||
continue itersource;
|
||||
}
|
||||
}
|
||||
// all separator elements matched
|
||||
if (limit > VARIABLE_SIZE) {
|
||||
if (segments.size() >= (limit - 1)) {
|
||||
// everything else goes in one final segment
|
||||
break;
|
||||
}
|
||||
if (sizes != null) {
|
||||
int currentSegExpectedSize = sizes[currentSegment];
|
||||
if (currentSegExpectedSize > VARIABLE_SIZE) {
|
||||
int currentSegSize = i - start;
|
||||
if (currentSegSize < currentSegExpectedSize) {
|
||||
// Segment not yet complete. More bytes to parse.
|
||||
continue itersource;
|
||||
} else if (currentSegSize > currentSegExpectedSize) {
|
||||
// Segment is not as per size.
|
||||
throw new IllegalArgumentException(
|
||||
"Segments not separated as per expected sizes");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
segments.add(new Range(start, i));
|
||||
start = i + separator.length;
|
||||
// i will be incremented again in outer for loop
|
||||
i += separator.length - 1;
|
||||
currentSegment++;
|
||||
}
|
||||
// add in remaining to a final range
|
||||
if (start <= source.length) {
|
||||
if (sizes != null) {
|
||||
// Check if final segment is as per size specified.
|
||||
if (sizes[currentSegment] > VARIABLE_SIZE &&
|
||||
source.length - start > sizes[currentSegment]) {
|
||||
// Segment is not as per size.
|
||||
throw new IllegalArgumentException(
|
||||
"Segments not separated as per expected sizes");
|
||||
}
|
||||
}
|
||||
segments.add(new Range(start, source.length));
|
||||
}
|
||||
return segments;
|
||||
}
|
||||
|
||||
/**
|
||||
* Splits based on segments calculated based on limit/sizes specified for the
|
||||
* separator.
|
||||
*
|
||||
* @param source byte array to be split.
|
||||
* @param segments specifies the range for each segment.
|
||||
* @return a byte[][] split as per the segment ranges.
|
||||
*/
|
||||
private static byte[][] split(byte[] source, List<Range> segments) {
|
||||
byte[][] splits = new byte[segments.size()][];
|
||||
for (int i = 0; i < segments.size(); i++) {
|
||||
Range r = segments.get(i);
|
||||
byte[] tmp = new byte[r.length()];
|
||||
if (tmp.length > 0) {
|
||||
System.arraycopy(source, r.start(), tmp, 0, r.length());
|
||||
}
|
||||
splits[i] = tmp;
|
||||
}
|
||||
return splits;
|
||||
}
|
||||
|
||||
/**
|
||||
* Splits the source array into multiple array segments using the given
|
||||
* separator based on the sizes. This will naturally produce copied byte
|
||||
* arrays for each of the split segments.
|
||||
*
|
||||
* @param source source array.
|
||||
* @param separator separator represented as a byte array.
|
||||
* @param sizes sizes of relative components/segments.
|
||||
* @return byte[][] after splitting the source.
|
||||
*/
|
||||
private static byte[][] split(byte[] source, byte[] separator, int[] sizes) {
|
||||
List<Range> segments = splitRanges(source, separator, sizes);
|
||||
return split(source, segments);
|
||||
}
|
||||
|
||||
/**
|
||||
* Splits the source array into multiple array segments using the given
|
||||
* separator. This will naturally produce copied byte arrays for each of the
|
||||
* split segments.
|
||||
*
|
||||
* @param source Source array.
|
||||
* @param separator Separator represented as a byte array.
|
||||
* @return byte[][] after splitting the source.
|
||||
*/
|
||||
private static byte[][] split(byte[] source, byte[] separator) {
|
||||
return split(source, separator, (int[]) null);
|
||||
}
|
||||
|
||||
/**
|
||||
* Splits the source array into multiple array segments using the given
|
||||
* separator, up to a maximum of count items. This will naturally produce
|
||||
* copied byte arrays for each of the split segments.
|
||||
*
|
||||
* @param source Source array.
|
||||
* @param separator Separator represented as a byte array.
|
||||
* @param limit a non-positive value indicates no limit on number of segments.
|
||||
* @return byte[][] after splitting the input source.
|
||||
*/
|
||||
private static byte[][] split(byte[] source, byte[] separator, int limit) {
|
||||
int[] sizes = null;
|
||||
if (limit > VARIABLE_SIZE) {
|
||||
sizes = new int[limit];
|
||||
}
|
||||
List<Range> segments = splitRanges(source, separator, sizes);
|
||||
return split(source, segments);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,59 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
/**
|
||||
* Encodes and decodes column names / row keys which are merely strings.
|
||||
* Column prefixes are not part of the column name passed for encoding. It is
|
||||
* added later, if required in the associated ColumnPrefix implementations.
|
||||
*/
|
||||
public final class StringKeyConverter implements KeyConverter<String> {
|
||||
private static final StringKeyConverter INSTANCE = new StringKeyConverter();
|
||||
|
||||
public static StringKeyConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private StringKeyConverter() {
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public byte[] encode(String key) {
|
||||
return Separator.encode(key, Separator.SPACE, Separator.TAB);
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #decode(byte[])
|
||||
*/
|
||||
@Override
|
||||
public String decode(byte[] bytes) {
|
||||
return Separator.decode(bytes, Separator.TAB, Separator.SPACE);
|
||||
}
|
||||
}
|
|
@ -18,7 +18,6 @@
|
|||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.EnumSet;
|
||||
import java.util.HashMap;
|
||||
import java.util.HashSet;
|
||||
|
@ -40,7 +39,6 @@ import org.apache.hadoop.hbase.KeyValue;
|
|||
import org.apache.hadoop.hbase.Tag;
|
||||
import org.apache.hadoop.hbase.client.Result;
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntityType;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEvent;
|
||||
|
@ -48,18 +46,17 @@ import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
|||
import org.apache.hadoop.yarn.server.metrics.ApplicationMetricsConstants;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineCompareFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineCompareOp;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineKeyValueFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineExistsFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineFilter.TimelineFilterType;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineFilterList;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineKeyValueFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.filter.TimelineKeyValuesFilter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.TimelineReader.Field;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.AggregationCompactionDimension;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.AggregationOperation;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.Attribute;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.FlowRunTable;
|
||||
import org.apache.hadoop.yarn.util.ConverterUtils;
|
||||
|
||||
/**
|
||||
* A bunch of utility functions used across TimelineReader and TimelineWriter.
|
||||
|
@ -72,108 +69,9 @@ public final class TimelineStorageUtils {
|
|||
|
||||
private static final Log LOG = LogFactory.getLog(TimelineStorageUtils.class);
|
||||
|
||||
/** empty bytes. */
|
||||
public static final byte[] EMPTY_BYTES = new byte[0];
|
||||
|
||||
/** indicator for no limits for splitting. */
|
||||
public static final int NO_LIMIT_SPLIT = -1;
|
||||
|
||||
/** milliseconds in one day. */
|
||||
public static final long MILLIS_ONE_DAY = 86400000L;
|
||||
|
||||
/**
|
||||
* Splits the source array into multiple array segments using the given
|
||||
* separator, up to a maximum of count items. This will naturally produce
|
||||
* copied byte arrays for each of the split segments. To identify the split
|
||||
* ranges without the array copies, see {@link #splitRanges(byte[], byte[])}.
|
||||
*
|
||||
* @param source Source array.
|
||||
* @param separator Separator represented as a byte array.
|
||||
* @return byte[][] after splitting the source
|
||||
*/
|
||||
public static byte[][] split(byte[] source, byte[] separator) {
|
||||
return split(source, separator, NO_LIMIT_SPLIT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Splits the source array into multiple array segments using the given
|
||||
* separator, up to a maximum of count items. This will naturally produce
|
||||
* copied byte arrays for each of the split segments. To identify the split
|
||||
* ranges without the array copies, see {@link #splitRanges(byte[], byte[])}.
|
||||
*
|
||||
* @param source Source array.
|
||||
* @param separator Separator represented as a byte array.
|
||||
* @param limit a non-positive value indicates no limit on number of segments.
|
||||
* @return byte[][] after splitting the input source.
|
||||
*/
|
||||
public static byte[][] split(byte[] source, byte[] separator, int limit) {
|
||||
List<Range> segments = splitRanges(source, separator, limit);
|
||||
|
||||
byte[][] splits = new byte[segments.size()][];
|
||||
for (int i = 0; i < segments.size(); i++) {
|
||||
Range r = segments.get(i);
|
||||
byte[] tmp = new byte[r.length()];
|
||||
if (tmp.length > 0) {
|
||||
System.arraycopy(source, r.start(), tmp, 0, r.length());
|
||||
}
|
||||
splits[i] = tmp;
|
||||
}
|
||||
return splits;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a list of ranges identifying [start, end) -- closed, open --
|
||||
* positions within the source byte array that would be split using the
|
||||
* separator byte array.
|
||||
*
|
||||
* @param source Source array.
|
||||
* @param separator Separator represented as a byte array.
|
||||
* @return a list of ranges.
|
||||
*/
|
||||
public static List<Range> splitRanges(byte[] source, byte[] separator) {
|
||||
return splitRanges(source, separator, NO_LIMIT_SPLIT);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a list of ranges identifying [start, end) -- closed, open --
|
||||
* positions within the source byte array that would be split using the
|
||||
* separator byte array.
|
||||
*
|
||||
* @param source the source data
|
||||
* @param separator the separator pattern to look for
|
||||
* @param limit the maximum number of splits to identify in the source
|
||||
* @return a list of ranges.
|
||||
*/
|
||||
public static List<Range> splitRanges(byte[] source, byte[] separator,
|
||||
int limit) {
|
||||
List<Range> segments = new ArrayList<Range>();
|
||||
if ((source == null) || (separator == null)) {
|
||||
return segments;
|
||||
}
|
||||
int start = 0;
|
||||
itersource: for (int i = 0; i < source.length; i++) {
|
||||
for (int j = 0; j < separator.length; j++) {
|
||||
if (source[i + j] != separator[j]) {
|
||||
continue itersource;
|
||||
}
|
||||
}
|
||||
// all separator elements matched
|
||||
if (limit > 0 && segments.size() >= (limit - 1)) {
|
||||
// everything else goes in one final segment
|
||||
break;
|
||||
}
|
||||
segments.add(new Range(start, i));
|
||||
start = i + separator.length;
|
||||
// i will be incremented again in outer for loop
|
||||
i += separator.length - 1;
|
||||
}
|
||||
// add in remaining to a final range
|
||||
if (start <= source.length) {
|
||||
segments.add(new Range(start, source.length));
|
||||
}
|
||||
return segments;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts a timestamp into it's inverse timestamp to be used in (row) keys
|
||||
* where we want to have the most recent timestamp in the top of the table
|
||||
|
@ -200,53 +98,6 @@ public final class TimelineStorageUtils {
|
|||
return Integer.MAX_VALUE - key;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Converts/encodes a string app Id into a byte representation for (row) keys.
|
||||
* For conversion, we extract cluster timestamp and sequence id from the
|
||||
* string app id (calls {@link ConverterUtils#toApplicationId(String)} for
|
||||
* conversion) and then store it in a byte array of length 12 (8 bytes (long)
|
||||
* for cluster timestamp followed 4 bytes(int) for sequence id). Both cluster
|
||||
* timestamp and sequence id are inverted so that the most recent cluster
|
||||
* timestamp and highest sequence id appears first in the table (i.e.
|
||||
* application id appears in a descending order).
|
||||
*
|
||||
* @param appIdStr application id in string format i.e.
|
||||
* application_{cluster timestamp}_{sequence id with min 4 digits}
|
||||
*
|
||||
* @return encoded byte representation of app id.
|
||||
*/
|
||||
public static byte[] encodeAppId(String appIdStr) {
|
||||
ApplicationId appId = ConverterUtils.toApplicationId(appIdStr);
|
||||
byte[] appIdBytes = new byte[Bytes.SIZEOF_LONG + Bytes.SIZEOF_INT];
|
||||
byte[] clusterTs = Bytes.toBytes(invertLong(appId.getClusterTimestamp()));
|
||||
System.arraycopy(clusterTs, 0, appIdBytes, 0, Bytes.SIZEOF_LONG);
|
||||
byte[] seqId = Bytes.toBytes(invertInt(appId.getId()));
|
||||
System.arraycopy(seqId, 0, appIdBytes, Bytes.SIZEOF_LONG, Bytes.SIZEOF_INT);
|
||||
return appIdBytes;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts/decodes a 12 byte representation of app id for (row) keys to an
|
||||
* app id in string format which can be returned back to client.
|
||||
* For decoding, 12 bytes are interpreted as 8 bytes of inverted cluster
|
||||
* timestamp(long) followed by 4 bytes of inverted sequence id(int). Calls
|
||||
* {@link ApplicationId#toString} to generate string representation of app id.
|
||||
*
|
||||
* @param appIdBytes application id in byte representation.
|
||||
*
|
||||
* @return decoded app id in string format.
|
||||
*/
|
||||
public static String decodeAppId(byte[] appIdBytes) {
|
||||
if (appIdBytes.length != (Bytes.SIZEOF_LONG + Bytes.SIZEOF_INT)) {
|
||||
throw new IllegalArgumentException("Invalid app id in byte format");
|
||||
}
|
||||
long clusterTs = invertLong(Bytes.toLong(appIdBytes, 0, Bytes.SIZEOF_LONG));
|
||||
int seqId =
|
||||
invertInt(Bytes.toInt(appIdBytes, Bytes.SIZEOF_LONG, Bytes.SIZEOF_INT));
|
||||
return ApplicationId.newInstance(clusterTs, seqId).toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* returns the timestamp of that day's start (which is midnight 00:00:00 AM)
|
||||
* for a given input timestamp.
|
||||
|
@ -810,7 +661,8 @@ public final class TimelineStorageUtils {
|
|||
TimelineEntity entity, Result result, ColumnPrefix<T> prefix,
|
||||
boolean isRelatedTo) throws IOException {
|
||||
// isRelatedTo and relatesTo are of type Map<String, Set<String>>
|
||||
Map<String, Object> columns = prefix.readResults(result);
|
||||
Map<String, Object> columns =
|
||||
prefix.readResults(result, StringKeyConverter.getInstance());
|
||||
for (Map.Entry<String, Object> column : columns.entrySet()) {
|
||||
for (String id : Separator.VALUES.splitEncoded(
|
||||
column.getValue().toString())) {
|
||||
|
@ -837,7 +689,8 @@ public final class TimelineStorageUtils {
|
|||
TimelineEntity entity, Result result, ColumnPrefix<T> prefix,
|
||||
boolean isConfig) throws IOException {
|
||||
// info and configuration are of type Map<String, Object or String>
|
||||
Map<String, Object> columns = prefix.readResults(result);
|
||||
Map<String, Object> columns =
|
||||
prefix.readResults(result, StringKeyConverter.getInstance());
|
||||
if (isConfig) {
|
||||
for (Map.Entry<String, Object> column : columns.entrySet()) {
|
||||
entity.addConfig(column.getKey(), column.getValue().toString());
|
||||
|
@ -861,30 +714,24 @@ public final class TimelineStorageUtils {
|
|||
public static <T> void readEvents(TimelineEntity entity, Result result,
|
||||
ColumnPrefix<T> prefix) throws IOException {
|
||||
Map<String, TimelineEvent> eventsMap = new HashMap<>();
|
||||
Map<?, Object> eventsResult =
|
||||
prefix.readResultsHavingCompoundColumnQualifiers(result);
|
||||
for (Map.Entry<?, Object> eventResult : eventsResult.entrySet()) {
|
||||
byte[][] karr = (byte[][])eventResult.getKey();
|
||||
// the column name is of the form "eventId=timestamp=infoKey"
|
||||
if (karr.length == 3) {
|
||||
String id = Bytes.toString(karr[0]);
|
||||
long ts = TimelineStorageUtils.invertLong(Bytes.toLong(karr[1]));
|
||||
String key = Separator.VALUES.joinEncoded(id, Long.toString(ts));
|
||||
TimelineEvent event = eventsMap.get(key);
|
||||
if (event == null) {
|
||||
event = new TimelineEvent();
|
||||
event.setId(id);
|
||||
event.setTimestamp(ts);
|
||||
eventsMap.put(key, event);
|
||||
}
|
||||
// handle empty info
|
||||
String infoKey = karr[2].length == 0 ? null : Bytes.toString(karr[2]);
|
||||
if (infoKey != null) {
|
||||
event.addInfo(infoKey, eventResult.getValue());
|
||||
}
|
||||
} else {
|
||||
LOG.warn("incorrectly formatted column name: it will be discarded");
|
||||
continue;
|
||||
Map<EventColumnName, Object> eventsResult =
|
||||
prefix.readResults(result, EventColumnNameConverter.getInstance());
|
||||
for (Map.Entry<EventColumnName, Object>
|
||||
eventResult : eventsResult.entrySet()) {
|
||||
EventColumnName eventColumnName = eventResult.getKey();
|
||||
String key = eventColumnName.getId() +
|
||||
Long.toString(eventColumnName.getTimestamp());
|
||||
// Retrieve previously seen event to add to it
|
||||
TimelineEvent event = eventsMap.get(key);
|
||||
if (event == null) {
|
||||
// First time we're seeing this event, add it to the eventsMap
|
||||
event = new TimelineEvent();
|
||||
event.setId(eventColumnName.getId());
|
||||
event.setTimestamp(eventColumnName.getTimestamp());
|
||||
eventsMap.put(key, event);
|
||||
}
|
||||
if (eventColumnName.getInfoKey() != null) {
|
||||
event.addInfo(eventColumnName.getInfoKey(), eventResult.getValue());
|
||||
}
|
||||
}
|
||||
Set<TimelineEvent> eventsSet = new HashSet<>(eventsMap.values());
|
||||
|
|
|
@ -27,9 +27,10 @@ import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnFamily
|
|||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnHelper;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.GenericConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.LongConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TypedBufferedMutator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.LongConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ValueConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.Attribute;
|
||||
|
||||
|
@ -78,7 +79,6 @@ public enum EntityColumnPrefix implements ColumnPrefix<EntityTable> {
|
|||
*/
|
||||
private final String columnPrefix;
|
||||
private final byte[] columnPrefixBytes;
|
||||
private final boolean compoundColQual;
|
||||
|
||||
/**
|
||||
* Private constructor, meant to be used by the enum definition.
|
||||
|
@ -122,7 +122,6 @@ public enum EntityColumnPrefix implements ColumnPrefix<EntityTable> {
|
|||
this.columnPrefixBytes =
|
||||
Bytes.toBytes(Separator.SPACE.encode(columnPrefix));
|
||||
}
|
||||
this.compoundColQual = compondColQual;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -154,14 +153,6 @@ public enum EntityColumnPrefix implements ColumnPrefix<EntityTable> {
|
|||
return column.getValueConverter();
|
||||
}
|
||||
|
||||
public byte[] getCompoundColQualBytes(String qualifier,
|
||||
byte[]...components) {
|
||||
if (!compoundColQual) {
|
||||
return ColumnHelper.getColumnQualifier(null, qualifier);
|
||||
}
|
||||
return ColumnHelper.getCompoundColumnQualifierBytes(qualifier, components);
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
|
@ -233,26 +224,12 @@ public enum EntityColumnPrefix implements ColumnPrefix<EntityTable> {
|
|||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix
|
||||
* #readResults(org.apache.hadoop.hbase.client.Result)
|
||||
* #readResults(org.apache.hadoop.hbase.client.Result,
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter)
|
||||
*/
|
||||
public Map<String, Object> readResults(Result result) throws IOException {
|
||||
return column.readResults(result, columnPrefixBytes);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param result from which to read columns
|
||||
* @return the latest values of columns in the column family. The column
|
||||
* qualifier is returned as a list of parts, each part a byte[]. This
|
||||
* is to facilitate returning byte arrays of values that were not
|
||||
* Strings. If they can be treated as Strings, you should use
|
||||
* {@link #readResults(Result)} instead.
|
||||
* @throws IOException if there is any exception encountered while reading
|
||||
* result.
|
||||
*/
|
||||
public Map<?, Object> readResultsHavingCompoundColumnQualifiers(Result result)
|
||||
throws IOException {
|
||||
return column.readResultsHavingCompoundColumnQualifiers(result,
|
||||
columnPrefixBytes);
|
||||
public <K> Map<K, Object> readResults(Result result,
|
||||
KeyConverter<K> keyConverter) throws IOException {
|
||||
return column.readResults(result, columnPrefixBytes, keyConverter);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -260,11 +237,14 @@ public enum EntityColumnPrefix implements ColumnPrefix<EntityTable> {
|
|||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix
|
||||
* #readResultsWithTimestamps(org.apache.hadoop.hbase.client.Result)
|
||||
* #readResultsWithTimestamps(org.apache.hadoop.hbase.client.Result,
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter)
|
||||
*/
|
||||
public <V> NavigableMap<String, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result) throws IOException {
|
||||
return column.readResultsWithTimestamps(result, columnPrefixBytes);
|
||||
public <K, V> NavigableMap<K, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result, KeyConverter<K> keyConverter)
|
||||
throws IOException {
|
||||
return column.readResultsWithTimestamps(result, columnPrefixBytes,
|
||||
keyConverter);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -17,10 +17,6 @@
|
|||
*/
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.entity;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
|
||||
/**
|
||||
* Represents a rowkey for the entity table.
|
||||
*/
|
||||
|
@ -28,13 +24,13 @@ public class EntityRowKey {
|
|||
private final String clusterId;
|
||||
private final String userId;
|
||||
private final String flowName;
|
||||
private final long flowRunId;
|
||||
private final Long flowRunId;
|
||||
private final String appId;
|
||||
private final String entityType;
|
||||
private final String entityId;
|
||||
|
||||
public EntityRowKey(String clusterId, String userId, String flowName,
|
||||
long flowRunId, String appId, String entityType, String entityId) {
|
||||
Long flowRunId, String appId, String entityType, String entityId) {
|
||||
this.clusterId = clusterId;
|
||||
this.userId = userId;
|
||||
this.flowName = flowName;
|
||||
|
@ -56,7 +52,7 @@ public class EntityRowKey {
|
|||
return flowName;
|
||||
}
|
||||
|
||||
public long getFlowRunId() {
|
||||
public Long getFlowRunId() {
|
||||
return flowRunId;
|
||||
}
|
||||
|
||||
|
@ -85,14 +81,8 @@ public class EntityRowKey {
|
|||
*/
|
||||
public static byte[] getRowKeyPrefix(String clusterId, String userId,
|
||||
String flowName, Long flowRunId, String appId) {
|
||||
byte[] first =
|
||||
Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(userId, clusterId,
|
||||
flowName));
|
||||
// Note that flowRunId is a long, so we can't encode them all at the same
|
||||
// time.
|
||||
byte[] second = Bytes.toBytes(TimelineStorageUtils.invertLong(flowRunId));
|
||||
byte[] third = TimelineStorageUtils.encodeAppId(appId);
|
||||
return Separator.QUALIFIERS.join(first, second, third, new byte[0]);
|
||||
return EntityRowKeyConverter.getInstance().encode(new EntityRowKey(
|
||||
clusterId, userId, flowName, flowRunId, appId, null, null));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -111,16 +101,8 @@ public class EntityRowKey {
|
|||
*/
|
||||
public static byte[] getRowKeyPrefix(String clusterId, String userId,
|
||||
String flowName, Long flowRunId, String appId, String entityType) {
|
||||
byte[] first =
|
||||
Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(userId, clusterId,
|
||||
flowName));
|
||||
// Note that flowRunId is a long, so we can't encode them all at the same
|
||||
// time.
|
||||
byte[] second = Bytes.toBytes(TimelineStorageUtils.invertLong(flowRunId));
|
||||
byte[] third = TimelineStorageUtils.encodeAppId(appId);
|
||||
byte[] fourth =
|
||||
Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(entityType, ""));
|
||||
return Separator.QUALIFIERS.join(first, second, third, fourth);
|
||||
return EntityRowKeyConverter.getInstance().encode(new EntityRowKey(
|
||||
clusterId, userId, flowName, flowRunId, appId, entityType, null));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -140,16 +122,8 @@ public class EntityRowKey {
|
|||
public static byte[] getRowKey(String clusterId, String userId,
|
||||
String flowName, Long flowRunId, String appId, String entityType,
|
||||
String entityId) {
|
||||
byte[] first =
|
||||
Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(userId, clusterId,
|
||||
flowName));
|
||||
// Note that flowRunId is a long, so we can't encode them all at the same
|
||||
// time.
|
||||
byte[] second = Bytes.toBytes(TimelineStorageUtils.invertLong(flowRunId));
|
||||
byte[] third = TimelineStorageUtils.encodeAppId(appId);
|
||||
byte[] fourth =
|
||||
Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(entityType, entityId));
|
||||
return Separator.QUALIFIERS.join(first, second, third, fourth);
|
||||
return EntityRowKeyConverter.getInstance().encode(new EntityRowKey(
|
||||
clusterId, userId, flowName, flowRunId, appId, entityType, entityId));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -159,27 +133,6 @@ public class EntityRowKey {
|
|||
* @return An <cite>EntityRowKey</cite> object.
|
||||
*/
|
||||
public static EntityRowKey parseRowKey(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents = Separator.QUALIFIERS.split(rowKey);
|
||||
|
||||
if (rowKeyComponents.length < 7) {
|
||||
throw new IllegalArgumentException("the row key is not valid for " +
|
||||
"an entity");
|
||||
}
|
||||
|
||||
String userId =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[0]));
|
||||
String clusterId =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[1]));
|
||||
String flowName =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[2]));
|
||||
long flowRunId =
|
||||
TimelineStorageUtils.invertLong(Bytes.toLong(rowKeyComponents[3]));
|
||||
String appId = TimelineStorageUtils.decodeAppId(rowKeyComponents[4]);
|
||||
String entityType =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[5]));
|
||||
String entityId =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[6]));
|
||||
return new EntityRowKey(clusterId, userId, flowName, flowRunId, appId,
|
||||
entityType, entityId);
|
||||
return EntityRowKeyConverter.getInstance().decode(rowKey);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,143 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.entity;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.AppIdKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
|
||||
/**
|
||||
* Encodes and decodes row key for entity table.
|
||||
* The row key is of the form :
|
||||
* userName!clusterId!flowName!flowRunId!appId!entityType!entityId.
|
||||
* flowRunId is a long, appId is encoded/decoded using
|
||||
* {@link AppIdKeyConverter} and rest are strings.
|
||||
*/
|
||||
public final class EntityRowKeyConverter implements KeyConverter<EntityRowKey> {
|
||||
private static final EntityRowKeyConverter INSTANCE =
|
||||
new EntityRowKeyConverter();
|
||||
|
||||
public static EntityRowKeyConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private EntityRowKeyConverter() {
|
||||
}
|
||||
|
||||
// Entity row key is of the form
|
||||
// userName!clusterId!flowName!flowRunId!appId!entityType!entityId with each
|
||||
// segment separated by !. The sizes below indicate sizes of each one of these
|
||||
// segements in sequence. clusterId, userName, flowName, entityType and
|
||||
// entityId are strings. flowrunId is a long hence 8 bytes in size. app id is
|
||||
// represented as 12 bytes with cluster timestamp part of appid being 8 bytes
|
||||
// (long) and seq id being 4 bytes(int).
|
||||
// Strings are variable in size (i.e. end whenever separator is encountered).
|
||||
// This is used while decoding and helps in determining where to split.
|
||||
private static final int[] SEGMENT_SIZES = {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Bytes.SIZEOF_LONG, AppIdKeyConverter.getKeySize(),
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE };
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Encodes EntityRowKey object into a byte array with each component/field in
|
||||
* EntityRowKey separated by Separator#QUALIFIERS. This leads to an entity
|
||||
* table row key of the form
|
||||
* userName!clusterId!flowName!flowRunId!appId!entityType!entityId
|
||||
* If entityType in passed EntityRowKey object is null (and the fields
|
||||
* preceding it i.e. clusterId, userId and flowName, flowRunId and appId are
|
||||
* not null), this returns a row key prefix of the form
|
||||
* userName!clusterId!flowName!flowRunId!appId! and if entityId in
|
||||
* EntityRowKey is null (other 6 components are not null), this returns a row
|
||||
* key prefix of the form
|
||||
* userName!clusterId!flowName!flowRunId!appId!entityType!
|
||||
* flowRunId is inverted while encoding as it helps maintain a descending
|
||||
* order for row keys in entity table.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public byte[] encode(EntityRowKey rowKey) {
|
||||
byte[] user = Separator.encode(rowKey.getUserId(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS);
|
||||
byte[] cluster = Separator.encode(rowKey.getClusterId(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS);
|
||||
byte[] flow = Separator.encode(rowKey.getFlowName(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS);
|
||||
byte[] first = Separator.QUALIFIERS.join(user, cluster, flow);
|
||||
// Note that flowRunId is a long, so we can't encode them all at the same
|
||||
// time.
|
||||
byte[] second = Bytes.toBytes(TimelineStorageUtils.invertLong(
|
||||
rowKey.getFlowRunId()));
|
||||
byte[] third = AppIdKeyConverter.getInstance().encode(rowKey.getAppId());
|
||||
if (rowKey.getEntityType() == null) {
|
||||
return Separator.QUALIFIERS.join(
|
||||
first, second, third, Separator.EMPTY_BYTES);
|
||||
}
|
||||
byte[] entityType = Separator.encode(rowKey.getEntityType(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS);
|
||||
byte[] entityId = rowKey.getEntityId() == null ? Separator.EMPTY_BYTES :
|
||||
Separator.encode(rowKey.getEntityId(), Separator.SPACE, Separator.TAB,
|
||||
Separator.QUALIFIERS);
|
||||
byte[] fourth = Separator.QUALIFIERS.join(entityType, entityId);
|
||||
return Separator.QUALIFIERS.join(first, second, third, fourth);
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Decodes an application row key of the form
|
||||
* userName!clusterId!flowName!flowRunId!appId!entityType!entityId represented
|
||||
* in byte format and converts it into an EntityRowKey object. flowRunId is
|
||||
* inverted while decoding as it was inverted while encoding.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #decode(byte[])
|
||||
*/
|
||||
@Override
|
||||
public EntityRowKey decode(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents =
|
||||
Separator.QUALIFIERS.split(rowKey, SEGMENT_SIZES);
|
||||
if (rowKeyComponents.length != 7) {
|
||||
throw new IllegalArgumentException("the row key is not valid for " +
|
||||
"an entity");
|
||||
}
|
||||
String userId = Separator.decode(Bytes.toString(rowKeyComponents[0]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String clusterId = Separator.decode(Bytes.toString(rowKeyComponents[1]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String flowName = Separator.decode(Bytes.toString(rowKeyComponents[2]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
Long flowRunId =
|
||||
TimelineStorageUtils.invertLong(Bytes.toLong(rowKeyComponents[3]));
|
||||
String appId = AppIdKeyConverter.getInstance().decode(rowKeyComponents[4]);
|
||||
String entityType = Separator.decode(Bytes.toString(rowKeyComponents[5]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String entityId =Separator.decode(Bytes.toString(rowKeyComponents[6]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
return new EntityRowKey(clusterId, userId, flowName, flowRunId, appId,
|
||||
entityType, entityId);
|
||||
}
|
||||
}
|
|
@ -26,6 +26,7 @@ import org.apache.hadoop.hbase.util.Bytes;
|
|||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnFamily;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnHelper;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TypedBufferedMutator;
|
||||
|
@ -51,7 +52,6 @@ public enum FlowActivityColumnPrefix
|
|||
*/
|
||||
private final String columnPrefix;
|
||||
private final byte[] columnPrefixBytes;
|
||||
private final boolean compoundColQual;
|
||||
|
||||
private final AggregationOperation aggOp;
|
||||
|
||||
|
@ -83,7 +83,6 @@ public enum FlowActivityColumnPrefix
|
|||
.encode(columnPrefix));
|
||||
}
|
||||
this.aggOp = aggOp;
|
||||
this.compoundColQual = compoundColQual;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -169,10 +168,12 @@ public enum FlowActivityColumnPrefix
|
|||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix
|
||||
* #readResults(org.apache.hadoop.hbase.client.Result)
|
||||
* #readResults(org.apache.hadoop.hbase.client.Result,
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter)
|
||||
*/
|
||||
public Map<String, Object> readResults(Result result) throws IOException {
|
||||
return column.readResults(result, columnPrefixBytes);
|
||||
public <K> Map<K, Object> readResults(Result result,
|
||||
KeyConverter<K> keyConverter) throws IOException {
|
||||
return column.readResults(result, columnPrefixBytes, keyConverter);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -180,11 +181,14 @@ public enum FlowActivityColumnPrefix
|
|||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix
|
||||
* #readResultsWithTimestamps(org.apache.hadoop.hbase.client.Result)
|
||||
* #readResultsWithTimestamps(org.apache.hadoop.hbase.client.Result,
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter)
|
||||
*/
|
||||
public <T> NavigableMap<String, NavigableMap<Long, T>>
|
||||
readResultsWithTimestamps(Result result) throws IOException {
|
||||
return column.readResultsWithTimestamps(result, columnPrefixBytes);
|
||||
public <K, V> NavigableMap<K, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result, KeyConverter<K> keyConverter)
|
||||
throws IOException {
|
||||
return column.readResultsWithTimestamps(result, columnPrefixBytes,
|
||||
keyConverter);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -270,20 +274,4 @@ public enum FlowActivityColumnPrefix
|
|||
column.store(rowKey, tableMutator, columnQualifier, null, inputValue,
|
||||
combinedAttributes);
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCompoundColQualBytes(String qualifier,
|
||||
byte[]...components) {
|
||||
if (!compoundColQual) {
|
||||
return ColumnHelper.getColumnQualifier(null, qualifier);
|
||||
}
|
||||
return ColumnHelper.getCompoundColumnQualifierBytes(qualifier, components);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Map<?, Object> readResultsHavingCompoundColumnQualifiers(Result result)
|
||||
throws IOException {
|
||||
// There are no compound column qualifiers for flow activity table.
|
||||
return null;
|
||||
}
|
||||
}
|
|
@ -17,8 +17,6 @@
|
|||
*/
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.flow;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
|
||||
/**
|
||||
|
@ -27,11 +25,11 @@ import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStor
|
|||
public class FlowActivityRowKey {
|
||||
|
||||
private final String clusterId;
|
||||
private final long dayTs;
|
||||
private final Long dayTs;
|
||||
private final String userId;
|
||||
private final String flowName;
|
||||
|
||||
public FlowActivityRowKey(String clusterId, long dayTs, String userId,
|
||||
public FlowActivityRowKey(String clusterId, Long dayTs, String userId,
|
||||
String flowName) {
|
||||
this.clusterId = clusterId;
|
||||
this.dayTs = dayTs;
|
||||
|
@ -43,7 +41,7 @@ public class FlowActivityRowKey {
|
|||
return clusterId;
|
||||
}
|
||||
|
||||
public long getDayTimestamp() {
|
||||
public Long getDayTimestamp() {
|
||||
return dayTs;
|
||||
}
|
||||
|
||||
|
@ -63,7 +61,8 @@ public class FlowActivityRowKey {
|
|||
* @return byte array with the row key prefix
|
||||
*/
|
||||
public static byte[] getRowKeyPrefix(String clusterId) {
|
||||
return Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(clusterId, ""));
|
||||
return FlowActivityRowKeyConverter.getInstance().encode(
|
||||
new FlowActivityRowKey(clusterId, null, null, null));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -75,9 +74,8 @@ public class FlowActivityRowKey {
|
|||
* @return byte array with the row key prefix
|
||||
*/
|
||||
public static byte[] getRowKeyPrefix(String clusterId, long dayTs) {
|
||||
return Separator.QUALIFIERS.join(
|
||||
Bytes.toBytes(Separator.QUALIFIERS.encode(clusterId)),
|
||||
Bytes.toBytes(TimelineStorageUtils.invertLong(dayTs)), new byte[0]);
|
||||
return FlowActivityRowKeyConverter.getInstance().encode(
|
||||
new FlowActivityRowKey(clusterId, dayTs, null, null));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -94,12 +92,8 @@ public class FlowActivityRowKey {
|
|||
String flowName) {
|
||||
// convert it to Day's time stamp
|
||||
eventTs = TimelineStorageUtils.getTopOfTheDayTimestamp(eventTs);
|
||||
|
||||
return Separator.QUALIFIERS.join(
|
||||
Bytes.toBytes(Separator.QUALIFIERS.encode(clusterId)),
|
||||
Bytes.toBytes(TimelineStorageUtils.invertLong(eventTs)),
|
||||
Bytes.toBytes(Separator.QUALIFIERS.encode(userId)),
|
||||
Bytes.toBytes(Separator.QUALIFIERS.encode(flowName)));
|
||||
return FlowActivityRowKeyConverter.getInstance().encode(
|
||||
new FlowActivityRowKey(clusterId, eventTs, userId, flowName));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -109,21 +103,6 @@ public class FlowActivityRowKey {
|
|||
* @return A <cite>FlowActivityRowKey</cite> object.
|
||||
*/
|
||||
public static FlowActivityRowKey parseRowKey(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents = Separator.QUALIFIERS.split(rowKey);
|
||||
|
||||
if (rowKeyComponents.length < 4) {
|
||||
throw new IllegalArgumentException("the row key is not valid for "
|
||||
+ "a flow activity");
|
||||
}
|
||||
|
||||
String clusterId = Separator.QUALIFIERS.decode(Bytes
|
||||
.toString(rowKeyComponents[0]));
|
||||
long dayTs =
|
||||
TimelineStorageUtils.invertLong(Bytes.toLong(rowKeyComponents[1]));
|
||||
String userId = Separator.QUALIFIERS.decode(Bytes
|
||||
.toString(rowKeyComponents[2]));
|
||||
String flowName = Separator.QUALIFIERS.decode(Bytes
|
||||
.toString(rowKeyComponents[3]));
|
||||
return new FlowActivityRowKey(clusterId, dayTs, userId, flowName);
|
||||
return FlowActivityRowKeyConverter.getInstance().decode(rowKey);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,115 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.flow;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
|
||||
/**
|
||||
* Encodes and decodes row key for flow activity table.
|
||||
* The row key is of the form : clusterId!dayTimestamp!user!flowName.
|
||||
* dayTimestamp(top of the day timestamp) is a long and rest are strings.
|
||||
*/
|
||||
public final class FlowActivityRowKeyConverter implements
|
||||
KeyConverter<FlowActivityRowKey> {
|
||||
private static final FlowActivityRowKeyConverter INSTANCE =
|
||||
new FlowActivityRowKeyConverter();
|
||||
|
||||
public static FlowActivityRowKeyConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private FlowActivityRowKeyConverter() {
|
||||
}
|
||||
|
||||
// Flow activity row key is of the form clusterId!dayTimestamp!user!flowName
|
||||
// with each segment separated by !. The sizes below indicate sizes of each
|
||||
// one of these segements in sequence. clusterId, user and flowName are
|
||||
// strings. Top of the day timestamp is a long hence 8 bytes in size.
|
||||
// Strings are variable in size (i.e. end whenever separator is encountered).
|
||||
// This is used while decoding and helps in determining where to split.
|
||||
private static final int[] SEGMENT_SIZES = {
|
||||
Separator.VARIABLE_SIZE, Bytes.SIZEOF_LONG, Separator.VARIABLE_SIZE,
|
||||
Separator.VARIABLE_SIZE };
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Encodes FlowActivityRowKey object into a byte array with each
|
||||
* component/field in FlowActivityRowKey separated by Separator#QUALIFIERS.
|
||||
* This leads to an flow activity table row key of the form
|
||||
* clusterId!dayTimestamp!user!flowName
|
||||
* If dayTimestamp in passed FlowActivityRowKey object is null and clusterId
|
||||
* is not null, this returns a row key prefix as clusterId! and if userId in
|
||||
* FlowActivityRowKey is null (and the fields preceding it i.e. clusterId and
|
||||
* dayTimestamp are not null), this returns a row key prefix as
|
||||
* clusterId!dayTimeStamp!
|
||||
* dayTimestamp is inverted while encoding as it helps maintain a descending
|
||||
* order for row keys in flow activity table.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
|
||||
@Override
|
||||
public byte[] encode(FlowActivityRowKey rowKey) {
|
||||
if (rowKey.getDayTimestamp() == null) {
|
||||
return Separator.QUALIFIERS.join(Separator.encode(rowKey.getClusterId(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS),
|
||||
Separator.EMPTY_BYTES);
|
||||
}
|
||||
if (rowKey.getUserId() == null) {
|
||||
return Separator.QUALIFIERS.join(Separator.encode(rowKey.getClusterId(),
|
||||
Separator.SPACE, Separator.TAB, Separator.QUALIFIERS),
|
||||
Bytes.toBytes(TimelineStorageUtils.invertLong(
|
||||
rowKey.getDayTimestamp())), Separator.EMPTY_BYTES);
|
||||
}
|
||||
return Separator.QUALIFIERS.join(
|
||||
Separator.encode(rowKey.getClusterId(), Separator.SPACE, Separator.TAB,
|
||||
Separator.QUALIFIERS),
|
||||
Bytes.toBytes(
|
||||
TimelineStorageUtils.invertLong(rowKey.getDayTimestamp())),
|
||||
Separator.encode(rowKey.getUserId(), Separator.SPACE, Separator.TAB,
|
||||
Separator.QUALIFIERS),
|
||||
Separator.encode(rowKey.getFlowName(), Separator.SPACE, Separator.TAB,
|
||||
Separator.QUALIFIERS));
|
||||
}
|
||||
|
||||
@Override
|
||||
public FlowActivityRowKey decode(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents =
|
||||
Separator.QUALIFIERS.split(rowKey, SEGMENT_SIZES);
|
||||
if (rowKeyComponents.length != 4) {
|
||||
throw new IllegalArgumentException("the row key is not valid for "
|
||||
+ "a flow activity");
|
||||
}
|
||||
String clusterId = Separator.decode(Bytes.toString(rowKeyComponents[0]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
Long dayTs =
|
||||
TimelineStorageUtils.invertLong(Bytes.toLong(rowKeyComponents[1]));
|
||||
String userId = Separator.decode(Bytes.toString(rowKeyComponents[2]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String flowName = Separator.decode(Bytes.toString(rowKeyComponents[3]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
return new FlowActivityRowKey(clusterId, dayTs, userId, flowName);
|
||||
}
|
||||
}
|
|
@ -26,10 +26,11 @@ import org.apache.hadoop.hbase.util.Bytes;
|
|||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnFamily;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnHelper;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.LongConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TypedBufferedMutator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.LongConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ValueConverter;
|
||||
|
||||
/**
|
||||
|
@ -40,8 +41,7 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
/**
|
||||
* To store flow run info values.
|
||||
*/
|
||||
METRIC(FlowRunColumnFamily.INFO, "m", null,
|
||||
LongConverter.getInstance());
|
||||
METRIC(FlowRunColumnFamily.INFO, "m", null, LongConverter.getInstance());
|
||||
|
||||
private final ColumnHelper<FlowRunTable> column;
|
||||
private final ColumnFamily<FlowRunTable> columnFamily;
|
||||
|
@ -52,17 +52,14 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
*/
|
||||
private final String columnPrefix;
|
||||
private final byte[] columnPrefixBytes;
|
||||
private final boolean compoundColQual;
|
||||
|
||||
private final AggregationOperation aggOp;
|
||||
|
||||
/**
|
||||
* Private constructor, meant to be used by the enum definition.
|
||||
*
|
||||
* @param columnFamily
|
||||
* that this column is stored in.
|
||||
* @param columnPrefix
|
||||
* for this column.
|
||||
* @param columnFamily that this column is stored in.
|
||||
* @param columnPrefix for this column.
|
||||
*/
|
||||
private FlowRunColumnPrefix(ColumnFamily<FlowRunTable> columnFamily,
|
||||
String columnPrefix, AggregationOperation fra, ValueConverter converter) {
|
||||
|
@ -79,11 +76,10 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
this.columnPrefixBytes = null;
|
||||
} else {
|
||||
// Future-proof by ensuring the right column prefix hygiene.
|
||||
this.columnPrefixBytes = Bytes.toBytes(Separator.SPACE
|
||||
.encode(columnPrefix));
|
||||
this.columnPrefixBytes =
|
||||
Bytes.toBytes(Separator.SPACE.encode(columnPrefix));
|
||||
}
|
||||
this.aggOp = fra;
|
||||
this.compoundColQual = compoundColQual;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -99,14 +95,14 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
|
||||
@Override
|
||||
public byte[] getColumnPrefixBytes(byte[] qualifierPrefix) {
|
||||
return ColumnHelper.getColumnQualifier(
|
||||
this.columnPrefixBytes, qualifierPrefix);
|
||||
return ColumnHelper.getColumnQualifier(this.columnPrefixBytes,
|
||||
qualifierPrefix);
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getColumnPrefixBytes(String qualifierPrefix) {
|
||||
return ColumnHelper.getColumnQualifier(
|
||||
this.columnPrefixBytes, qualifierPrefix);
|
||||
return ColumnHelper.getColumnQualifier(this.columnPrefixBytes,
|
||||
qualifierPrefix);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -139,8 +135,8 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
}
|
||||
|
||||
byte[] columnQualifier = getColumnPrefixBytes(qualifier);
|
||||
Attribute[] combinedAttributes = TimelineStorageUtils.combineAttributes(
|
||||
attributes, this.aggOp);
|
||||
Attribute[] combinedAttributes =
|
||||
TimelineStorageUtils.combineAttributes(attributes, this.aggOp);
|
||||
column.store(rowKey, tableMutator, columnQualifier, timestamp, inputValue,
|
||||
combinedAttributes);
|
||||
}
|
||||
|
@ -166,8 +162,8 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
}
|
||||
|
||||
byte[] columnQualifier = getColumnPrefixBytes(qualifier);
|
||||
Attribute[] combinedAttributes = TimelineStorageUtils.combineAttributes(
|
||||
attributes, this.aggOp);
|
||||
Attribute[] combinedAttributes =
|
||||
TimelineStorageUtils.combineAttributes(attributes, this.aggOp);
|
||||
column.store(rowKey, tableMutator, columnQualifier, timestamp, inputValue,
|
||||
combinedAttributes);
|
||||
}
|
||||
|
@ -180,8 +176,8 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
* #readResult(org.apache.hadoop.hbase.client.Result, java.lang.String)
|
||||
*/
|
||||
public Object readResult(Result result, String qualifier) throws IOException {
|
||||
byte[] columnQualifier = ColumnHelper.getColumnQualifier(
|
||||
this.columnPrefixBytes, qualifier);
|
||||
byte[] columnQualifier =
|
||||
ColumnHelper.getColumnQualifier(this.columnPrefixBytes, qualifier);
|
||||
return column.readResult(result, columnQualifier);
|
||||
}
|
||||
|
||||
|
@ -190,10 +186,12 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix
|
||||
* #readResults(org.apache.hadoop.hbase.client.Result)
|
||||
* #readResults(org.apache.hadoop.hbase.client.Result,
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter)
|
||||
*/
|
||||
public Map<String, Object> readResults(Result result) throws IOException {
|
||||
return column.readResults(result, columnPrefixBytes);
|
||||
public <K> Map<K, Object> readResults(Result result,
|
||||
KeyConverter<K> keyConverter) throws IOException {
|
||||
return column.readResults(result, columnPrefixBytes, keyConverter);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -201,11 +199,14 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix
|
||||
* #readResultsWithTimestamps(org.apache.hadoop.hbase.client.Result)
|
||||
* #readResultsWithTimestamps(org.apache.hadoop.hbase.client.Result,
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter)
|
||||
*/
|
||||
public <T> NavigableMap<String, NavigableMap<Long, T>>
|
||||
readResultsWithTimestamps(Result result) throws IOException {
|
||||
return column.readResultsWithTimestamps(result, columnPrefixBytes);
|
||||
public <K, V> NavigableMap<K, NavigableMap<Long, V>>
|
||||
readResultsWithTimestamps(Result result, KeyConverter<K> keyConverter)
|
||||
throws IOException {
|
||||
return column.readResultsWithTimestamps(result, columnPrefixBytes,
|
||||
keyConverter);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -213,8 +214,7 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
* no match. The following holds true: {@code columnFor(x) == columnFor(y)} if
|
||||
* and only if {@code x.equals(y)} or {@code (x == y == null)}
|
||||
*
|
||||
* @param columnPrefix
|
||||
* Name of the column to retrieve
|
||||
* @param columnPrefix Name of the column to retrieve
|
||||
* @return the corresponding {@link FlowRunColumnPrefix} or null
|
||||
*/
|
||||
public static final FlowRunColumnPrefix columnFor(String columnPrefix) {
|
||||
|
@ -242,10 +242,8 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
* {@code columnFor(a,x) == columnFor(b,y)} if and only if
|
||||
* {@code (x == y == null)} or {@code a.equals(b) & x.equals(y)}
|
||||
*
|
||||
* @param columnFamily
|
||||
* The columnFamily for which to retrieve the column.
|
||||
* @param columnPrefix
|
||||
* Name of the column to retrieve
|
||||
* @param columnFamily The columnFamily for which to retrieve the column.
|
||||
* @param columnPrefix Name of the column to retrieve
|
||||
* @return the corresponding {@link FlowRunColumnPrefix} or null if both
|
||||
* arguments don't match.
|
||||
*/
|
||||
|
@ -267,20 +265,4 @@ public enum FlowRunColumnPrefix implements ColumnPrefix<FlowRunTable> {
|
|||
// Default to null
|
||||
return null;
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] getCompoundColQualBytes(String qualifier,
|
||||
byte[]...components) {
|
||||
if (!compoundColQual) {
|
||||
return ColumnHelper.getColumnQualifier(null, qualifier);
|
||||
}
|
||||
return ColumnHelper.getCompoundColumnQualifierBytes(qualifier, components);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Map<?, Object> readResultsHavingCompoundColumnQualifiers(Result result)
|
||||
throws IOException {
|
||||
// There are no compound column qualifiers for flow run table.
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,10 +17,6 @@
|
|||
*/
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.flow;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
|
||||
/**
|
||||
* Represents a rowkey for the flow run table.
|
||||
*/
|
||||
|
@ -28,10 +24,10 @@ public class FlowRunRowKey {
|
|||
private final String clusterId;
|
||||
private final String userId;
|
||||
private final String flowName;
|
||||
private final long flowRunId;
|
||||
private final Long flowRunId;
|
||||
|
||||
public FlowRunRowKey(String clusterId, String userId, String flowName,
|
||||
long flowRunId) {
|
||||
Long flowRunId) {
|
||||
this.clusterId = clusterId;
|
||||
this.userId = userId;
|
||||
this.flowName = flowName;
|
||||
|
@ -50,7 +46,7 @@ public class FlowRunRowKey {
|
|||
return flowName;
|
||||
}
|
||||
|
||||
public long getFlowRunId() {
|
||||
public Long getFlowRunId() {
|
||||
return flowRunId;
|
||||
}
|
||||
|
||||
|
@ -65,13 +61,13 @@ public class FlowRunRowKey {
|
|||
*/
|
||||
public static byte[] getRowKeyPrefix(String clusterId, String userId,
|
||||
String flowName) {
|
||||
return Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(clusterId, userId,
|
||||
flowName, ""));
|
||||
return FlowRunRowKeyConverter.getInstance().encode(new FlowRunRowKey(
|
||||
clusterId, userId, flowName, null));
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a row key for the entity table as follows: {
|
||||
* clusterId!userI!flowName!Inverted Flow Run Id}.
|
||||
* clusterId!userId!flowName!Inverted Flow Run Id}.
|
||||
*
|
||||
* @param clusterId Cluster Id.
|
||||
* @param userId User Id.
|
||||
|
@ -81,12 +77,8 @@ public class FlowRunRowKey {
|
|||
*/
|
||||
public static byte[] getRowKey(String clusterId, String userId,
|
||||
String flowName, Long flowRunId) {
|
||||
byte[] first = Bytes.toBytes(Separator.QUALIFIERS.joinEncoded(clusterId,
|
||||
userId, flowName));
|
||||
// Note that flowRunId is a long, so we can't encode them all at the same
|
||||
// time.
|
||||
byte[] second = Bytes.toBytes(TimelineStorageUtils.invertLong(flowRunId));
|
||||
return Separator.QUALIFIERS.join(first, second);
|
||||
return FlowRunRowKeyConverter.getInstance().encode(new FlowRunRowKey(
|
||||
clusterId, userId, flowName, flowRunId));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -96,22 +88,7 @@ public class FlowRunRowKey {
|
|||
* @return A <cite>FlowRunRowKey</cite> object.
|
||||
*/
|
||||
public static FlowRunRowKey parseRowKey(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents = Separator.QUALIFIERS.split(rowKey);
|
||||
|
||||
if (rowKeyComponents.length < 4) {
|
||||
throw new IllegalArgumentException("the row key is not valid for " +
|
||||
"a flow run");
|
||||
}
|
||||
|
||||
String clusterId =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[0]));
|
||||
String userId =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[1]));
|
||||
String flowName =
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(rowKeyComponents[2]));
|
||||
long flowRunId =
|
||||
TimelineStorageUtils.invertLong(Bytes.toLong(rowKeyComponents[3]));
|
||||
return new FlowRunRowKey(clusterId, userId, flowName, flowRunId);
|
||||
return FlowRunRowKeyConverter.getInstance().decode(rowKey);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -0,0 +1,120 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.flow;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
|
||||
/**
|
||||
* Encodes and decodes row key for flow run table.
|
||||
* The row key is of the form : clusterId!userId!flowName!flowrunId.
|
||||
* flowrunId is a long and rest are strings.
|
||||
*/
|
||||
public final class FlowRunRowKeyConverter implements
|
||||
KeyConverter<FlowRunRowKey> {
|
||||
private static final FlowRunRowKeyConverter INSTANCE =
|
||||
new FlowRunRowKeyConverter();
|
||||
|
||||
public static FlowRunRowKeyConverter getInstance() {
|
||||
return INSTANCE;
|
||||
}
|
||||
|
||||
private FlowRunRowKeyConverter() {
|
||||
}
|
||||
|
||||
// Flow run row key is of the form
|
||||
// clusterId!userId!flowName!flowrunId with each segment separated by !.
|
||||
// The sizes below indicate sizes of each one of these segments in sequence.
|
||||
// clusterId, userId and flowName are strings. flowrunId is a long hence 8
|
||||
// bytes in size. Strings are variable in size (i.e. end whenever separator is
|
||||
// encountered). This is used while decoding and helps in determining where to
|
||||
// split.
|
||||
private static final int[] SEGMENT_SIZES = {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Bytes.SIZEOF_LONG };
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Encodes FlowRunRowKey object into a byte array with each component/field in
|
||||
* FlowRunRowKey separated by Separator#QUALIFIERS. This leads to an
|
||||
* flow run row key of the form clusterId!userId!flowName!flowrunId
|
||||
* If flowRunId in passed FlowRunRowKey object is null (and the fields
|
||||
* preceding it i.e. clusterId, userId and flowName are not null), this
|
||||
* returns a row key prefix of the form clusterId!userName!flowName!
|
||||
* flowRunId is inverted while encoding as it helps maintain a descending
|
||||
* order for flow keys in flow run table.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #encode(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public byte[] encode(FlowRunRowKey rowKey) {
|
||||
byte[] first = Separator.QUALIFIERS.join(
|
||||
Separator.encode(rowKey.getClusterId(), Separator.SPACE, Separator.TAB,
|
||||
Separator.QUALIFIERS),
|
||||
Separator.encode(rowKey.getUserId(), Separator.SPACE, Separator.TAB,
|
||||
Separator.QUALIFIERS),
|
||||
Separator.encode(rowKey.getFlowName(), Separator.SPACE, Separator.TAB,
|
||||
Separator.QUALIFIERS));
|
||||
if (rowKey.getFlowRunId() == null) {
|
||||
return Separator.QUALIFIERS.join(first, Separator.EMPTY_BYTES);
|
||||
} else {
|
||||
// Note that flowRunId is a long, so we can't encode them all at the same
|
||||
// time.
|
||||
byte[] second = Bytes.toBytes(TimelineStorageUtils.invertLong(
|
||||
rowKey.getFlowRunId()));
|
||||
return Separator.QUALIFIERS.join(first, second);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* Decodes an flow run row key of the form
|
||||
* clusterId!userId!flowName!flowrunId represented in byte format and converts
|
||||
* it into an FlowRunRowKey object. flowRunId is inverted while decoding as
|
||||
* it was inverted while encoding.
|
||||
*
|
||||
* @see
|
||||
* org.apache.hadoop.yarn.server.timelineservice.storage.common.KeyConverter
|
||||
* #decode(byte[])
|
||||
*/
|
||||
@Override
|
||||
public FlowRunRowKey decode(byte[] rowKey) {
|
||||
byte[][] rowKeyComponents =
|
||||
Separator.QUALIFIERS.split(rowKey, SEGMENT_SIZES);
|
||||
if (rowKeyComponents.length != 4) {
|
||||
throw new IllegalArgumentException("the row key is not valid for " +
|
||||
"a flow run");
|
||||
}
|
||||
String clusterId = Separator.decode(Bytes.toString(rowKeyComponents[0]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String userId = Separator.decode(Bytes.toString(rowKeyComponents[1]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
String flowName = Separator.decode(Bytes.toString(rowKeyComponents[2]),
|
||||
Separator.QUALIFIERS, Separator.TAB, Separator.SPACE);
|
||||
Long flowRunId =
|
||||
TimelineStorageUtils.invertLong(Bytes.toLong(rowKeyComponents[3]));
|
||||
return new FlowRunRowKey(clusterId, userId, flowName, flowRunId);
|
||||
}
|
||||
}
|
|
@ -44,9 +44,10 @@ import org.apache.hadoop.hbase.util.Bytes.ByteArrayComparator;
|
|||
import org.apache.hadoop.yarn.conf.YarnConfiguration;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.GenericConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.NumericValueConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.Separator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimelineStorageUtils;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ValueConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.TimestampGenerator;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ValueConverter;
|
||||
|
||||
import com.google.common.annotations.VisibleForTesting;
|
||||
|
||||
|
@ -193,7 +194,7 @@ class FlowScanner implements RegionScanner, Closeable {
|
|||
// So all cells in one qualifier come one after the other before we see the
|
||||
// next column qualifier
|
||||
ByteArrayComparator comp = new ByteArrayComparator();
|
||||
byte[] currentColumnQualifier = TimelineStorageUtils.EMPTY_BYTES;
|
||||
byte[] currentColumnQualifier = Separator.EMPTY_BYTES;
|
||||
AggregationOperation currentAggOp = null;
|
||||
SortedSet<Cell> currentColumnCells = new TreeSet<>(KeyValue.COMPARATOR);
|
||||
Set<String> alreadySeenAggDim = new HashSet<>();
|
||||
|
@ -314,7 +315,7 @@ class FlowScanner implements RegionScanner, Closeable {
|
|||
+ " cell qualifier="
|
||||
+ Bytes.toString(CellUtil.cloneQualifier(cell))
|
||||
+ " cell value= "
|
||||
+ (Number) converter.decodeValue(CellUtil.cloneValue(cell))
|
||||
+ converter.decodeValue(CellUtil.cloneValue(cell))
|
||||
+ " timestamp=" + cell.getTimestamp());
|
||||
}
|
||||
|
||||
|
@ -480,7 +481,7 @@ class FlowScanner implements RegionScanner, Closeable {
|
|||
LOG.trace("MAJOR COMPACTION loop sum= " + sum
|
||||
+ " discarding now: " + " qualifier="
|
||||
+ Bytes.toString(CellUtil.cloneQualifier(cell)) + " value="
|
||||
+ (Number) converter.decodeValue(CellUtil.cloneValue(cell))
|
||||
+ converter.decodeValue(CellUtil.cloneValue(cell))
|
||||
+ " timestamp=" + cell.getTimestamp() + " " + this.action);
|
||||
}
|
||||
} else {
|
||||
|
|
|
@ -35,6 +35,7 @@ import org.apache.hadoop.yarn.server.timelineservice.reader.TimelineDataToRetrie
|
|||
import org.apache.hadoop.yarn.server.timelineservice.reader.TimelineEntityFilters;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.reader.TimelineReaderContext;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.BaseTable;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.LongKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.FlowActivityColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.FlowActivityRowKey;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.FlowActivityTable;
|
||||
|
@ -125,7 +126,7 @@ class FlowActivityEntityReader extends TimelineEntityReader {
|
|||
protected TimelineEntity parseEntity(Result result) throws IOException {
|
||||
FlowActivityRowKey rowKey = FlowActivityRowKey.parseRowKey(result.getRow());
|
||||
|
||||
long time = rowKey.getDayTimestamp();
|
||||
Long time = rowKey.getDayTimestamp();
|
||||
String user = rowKey.getUserId();
|
||||
String flowName = rowKey.getFlowName();
|
||||
|
||||
|
@ -135,10 +136,11 @@ class FlowActivityEntityReader extends TimelineEntityReader {
|
|||
flowActivity.setId(flowActivity.getId());
|
||||
// get the list of run ids along with the version that are associated with
|
||||
// this flow on this day
|
||||
Map<String, Object> runIdsMap =
|
||||
FlowActivityColumnPrefix.RUN_ID.readResults(result);
|
||||
for (Map.Entry<String, Object> e : runIdsMap.entrySet()) {
|
||||
Long runId = Long.valueOf(e.getKey());
|
||||
Map<Long, Object> runIdsMap =
|
||||
FlowActivityColumnPrefix.RUN_ID.readResults(result,
|
||||
LongKeyConverter.getInstance());
|
||||
for (Map.Entry<Long, Object> e : runIdsMap.entrySet()) {
|
||||
Long runId = e.getKey();
|
||||
String version = (String)e.getValue();
|
||||
FlowRunEntity flowRun = new FlowRunEntity();
|
||||
flowRun.setUser(user);
|
||||
|
|
|
@ -38,6 +38,7 @@ import org.apache.hadoop.yarn.server.timelineservice.reader.TimelineEntityFilter
|
|||
import org.apache.hadoop.yarn.server.timelineservice.reader.TimelineReaderContext;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.BaseTable;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.ColumnPrefix;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.common.StringKeyConverter;
|
||||
|
||||
/**
|
||||
* The base class for reading and deserializing timeline entities from the
|
||||
|
@ -329,7 +330,8 @@ public abstract class TimelineEntityReader {
|
|||
protected void readMetrics(TimelineEntity entity, Result result,
|
||||
ColumnPrefix<?> columnPrefix) throws IOException {
|
||||
NavigableMap<String, NavigableMap<Long, Number>> metricsResult =
|
||||
columnPrefix.readResultsWithTimestamps(result);
|
||||
columnPrefix.readResultsWithTimestamps(
|
||||
result, StringKeyConverter.getInstance());
|
||||
for (Map.Entry<String, NavigableMap<Long, Number>> metricResult:
|
||||
metricsResult.entrySet()) {
|
||||
TimelineMetric metric = new TimelineMetric();
|
||||
|
|
|
@ -0,0 +1,293 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertNull;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationRowKey;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.application.ApplicationRowKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.apptoflow.AppToFlowRowKey;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.apptoflow.AppToFlowRowKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.entity.EntityRowKey;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.entity.EntityRowKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.FlowActivityRowKey;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.FlowActivityRowKeyConverter;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.FlowRunRowKey;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.storage.flow.FlowRunRowKeyConverter;
|
||||
import org.junit.Test;
|
||||
|
||||
public class TestKeyConverters {
|
||||
private final static String QUALIFIER_SEP = Separator.QUALIFIERS.getValue();
|
||||
private final static byte[] QUALIFIER_SEP_BYTES =
|
||||
Bytes.toBytes(QUALIFIER_SEP);
|
||||
private final static String CLUSTER = "cl" + QUALIFIER_SEP + "uster";
|
||||
private final static String USER = QUALIFIER_SEP + "user";
|
||||
private final static String FLOW_NAME =
|
||||
"dummy_" + QUALIFIER_SEP + "flow" + QUALIFIER_SEP;
|
||||
private final static Long FLOW_RUN_ID;
|
||||
private final static String APPLICATION_ID;
|
||||
static {
|
||||
long runid = Long.MAX_VALUE - 900L;
|
||||
byte[] longMaxByteArr = Bytes.toBytes(Long.MAX_VALUE);
|
||||
byte[] byteArr = Bytes.toBytes(runid);
|
||||
int sepByteLen = QUALIFIER_SEP_BYTES.length;
|
||||
if (sepByteLen <= byteArr.length) {
|
||||
for (int i = 0; i < sepByteLen; i++) {
|
||||
byteArr[i] = (byte)(longMaxByteArr[i] - QUALIFIER_SEP_BYTES[i]);
|
||||
}
|
||||
}
|
||||
FLOW_RUN_ID = Bytes.toLong(byteArr);
|
||||
long clusterTs = System.currentTimeMillis();
|
||||
byteArr = Bytes.toBytes(clusterTs);
|
||||
if (sepByteLen <= byteArr.length) {
|
||||
for (int i = 0; i < sepByteLen; i++) {
|
||||
byteArr[byteArr.length - sepByteLen + i] =
|
||||
(byte)(longMaxByteArr[byteArr.length - sepByteLen + i] -
|
||||
QUALIFIER_SEP_BYTES[i]);
|
||||
}
|
||||
}
|
||||
clusterTs = Bytes.toLong(byteArr);
|
||||
int seqId = 222;
|
||||
APPLICATION_ID = ApplicationId.newInstance(clusterTs, seqId).toString();
|
||||
}
|
||||
|
||||
private static void verifyRowPrefixBytes(byte[] byteRowKeyPrefix) {
|
||||
int sepLen = QUALIFIER_SEP_BYTES.length;
|
||||
for (int i = 0; i < sepLen; i++) {
|
||||
assertTrue("Row key prefix not encoded properly.",
|
||||
byteRowKeyPrefix[byteRowKeyPrefix.length - sepLen + i] ==
|
||||
QUALIFIER_SEP_BYTES[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFlowActivityRowKeyConverter() {
|
||||
Long ts = TimelineStorageUtils.getTopOfTheDayTimestamp(1459900830000L);
|
||||
byte[] byteRowKey = FlowActivityRowKeyConverter.getInstance().encode(
|
||||
new FlowActivityRowKey(CLUSTER, ts, USER, FLOW_NAME));
|
||||
FlowActivityRowKey rowKey =
|
||||
FlowActivityRowKeyConverter.getInstance().decode(byteRowKey);
|
||||
assertEquals(CLUSTER, rowKey.getClusterId());
|
||||
assertEquals(ts, rowKey.getDayTimestamp());
|
||||
assertEquals(USER, rowKey.getUserId());
|
||||
assertEquals(FLOW_NAME, rowKey.getFlowName());
|
||||
|
||||
byte[] byteRowKeyPrefix = FlowActivityRowKeyConverter.getInstance().encode(
|
||||
new FlowActivityRowKey(CLUSTER, null, null, null));
|
||||
byte[][] splits = Separator.QUALIFIERS.split(byteRowKeyPrefix, new int[] {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE });
|
||||
assertEquals(2, splits.length);
|
||||
assertEquals(0, splits[1].length);
|
||||
assertEquals(CLUSTER,
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(splits[0])));
|
||||
verifyRowPrefixBytes(byteRowKeyPrefix);
|
||||
|
||||
byteRowKeyPrefix = FlowActivityRowKeyConverter.getInstance().encode(
|
||||
new FlowActivityRowKey(CLUSTER, ts, null, null));
|
||||
splits = Separator.QUALIFIERS.split(byteRowKeyPrefix, new int[] {
|
||||
Separator.VARIABLE_SIZE, Bytes.SIZEOF_LONG, Separator.VARIABLE_SIZE });
|
||||
assertEquals(3, splits.length);
|
||||
assertEquals(0, splits[2].length);
|
||||
assertEquals(CLUSTER,
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(splits[0])));
|
||||
assertEquals(ts, (Long) TimelineStorageUtils.invertLong(
|
||||
Bytes.toLong(splits[1])));
|
||||
verifyRowPrefixBytes(byteRowKeyPrefix);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFlowRunRowKeyConverter() {
|
||||
byte[] byteRowKey = FlowRunRowKeyConverter.getInstance().encode(
|
||||
new FlowRunRowKey(CLUSTER, USER, FLOW_NAME, FLOW_RUN_ID));
|
||||
FlowRunRowKey rowKey =
|
||||
FlowRunRowKeyConverter.getInstance().decode(byteRowKey);
|
||||
assertEquals(CLUSTER, rowKey.getClusterId());
|
||||
assertEquals(USER, rowKey.getUserId());
|
||||
assertEquals(FLOW_NAME, rowKey.getFlowName());
|
||||
assertEquals(FLOW_RUN_ID, rowKey.getFlowRunId());
|
||||
|
||||
byte[] byteRowKeyPrefix = FlowRunRowKeyConverter.getInstance().encode(
|
||||
new FlowRunRowKey(CLUSTER, USER, FLOW_NAME, null));
|
||||
byte[][] splits = Separator.QUALIFIERS.split(byteRowKeyPrefix, new int[] {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE });
|
||||
assertEquals(4, splits.length);
|
||||
assertEquals(0, splits[3].length);
|
||||
assertEquals(FLOW_NAME,
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(splits[2])));
|
||||
verifyRowPrefixBytes(byteRowKeyPrefix);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testApplicationRowKeyConverter() {
|
||||
byte[] byteRowKey = ApplicationRowKeyConverter.getInstance().encode(
|
||||
new ApplicationRowKey(CLUSTER, USER, FLOW_NAME, FLOW_RUN_ID,
|
||||
APPLICATION_ID));
|
||||
ApplicationRowKey rowKey =
|
||||
ApplicationRowKeyConverter.getInstance().decode(byteRowKey);
|
||||
assertEquals(CLUSTER, rowKey.getClusterId());
|
||||
assertEquals(USER, rowKey.getUserId());
|
||||
assertEquals(FLOW_NAME, rowKey.getFlowName());
|
||||
assertEquals(FLOW_RUN_ID, rowKey.getFlowRunId());
|
||||
assertEquals(APPLICATION_ID, rowKey.getAppId());
|
||||
|
||||
byte[] byteRowKeyPrefix = ApplicationRowKeyConverter.getInstance().encode(
|
||||
new ApplicationRowKey(CLUSTER, USER, FLOW_NAME, FLOW_RUN_ID, null));
|
||||
byte[][] splits =
|
||||
Separator.QUALIFIERS.split(byteRowKeyPrefix, new int[] {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Separator.VARIABLE_SIZE, Bytes.SIZEOF_LONG,
|
||||
Separator.VARIABLE_SIZE });
|
||||
assertEquals(5, splits.length);
|
||||
assertEquals(0, splits[4].length);
|
||||
assertEquals(FLOW_NAME,
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(splits[2])));
|
||||
assertEquals(FLOW_RUN_ID, (Long)TimelineStorageUtils.invertLong(
|
||||
Bytes.toLong(splits[3])));
|
||||
verifyRowPrefixBytes(byteRowKeyPrefix);
|
||||
|
||||
byteRowKeyPrefix = ApplicationRowKeyConverter.getInstance().encode(
|
||||
new ApplicationRowKey(CLUSTER, USER, FLOW_NAME, null, null));
|
||||
splits = Separator.QUALIFIERS.split(byteRowKeyPrefix, new int[] {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE });
|
||||
assertEquals(4, splits.length);
|
||||
assertEquals(0, splits[3].length);
|
||||
assertEquals(FLOW_NAME,
|
||||
Separator.QUALIFIERS.decode(Bytes.toString(splits[2])));
|
||||
verifyRowPrefixBytes(byteRowKeyPrefix);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testEntityRowKeyConverter() {
|
||||
String entityId = "!ent!ity!!id!";
|
||||
String entityType = "entity!Type";
|
||||
byte[] byteRowKey = EntityRowKeyConverter.getInstance().encode(
|
||||
new EntityRowKey(CLUSTER, USER, FLOW_NAME, FLOW_RUN_ID, APPLICATION_ID,
|
||||
entityType, entityId));
|
||||
EntityRowKey rowKey =
|
||||
EntityRowKeyConverter.getInstance().decode(byteRowKey);
|
||||
assertEquals(CLUSTER, rowKey.getClusterId());
|
||||
assertEquals(USER, rowKey.getUserId());
|
||||
assertEquals(FLOW_NAME, rowKey.getFlowName());
|
||||
assertEquals(FLOW_RUN_ID, rowKey.getFlowRunId());
|
||||
assertEquals(APPLICATION_ID, rowKey.getAppId());
|
||||
assertEquals(entityType, rowKey.getEntityType());
|
||||
assertEquals(entityId, rowKey.getEntityId());
|
||||
|
||||
byte[] byteRowKeyPrefix = EntityRowKeyConverter.getInstance().encode(
|
||||
new EntityRowKey(CLUSTER, USER, FLOW_NAME, FLOW_RUN_ID, APPLICATION_ID,
|
||||
entityType, null));
|
||||
byte[][] splits =
|
||||
Separator.QUALIFIERS.split(byteRowKeyPrefix, new int[] {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Separator.VARIABLE_SIZE, Bytes.SIZEOF_LONG,
|
||||
AppIdKeyConverter.getKeySize(), Separator.VARIABLE_SIZE,
|
||||
Separator.VARIABLE_SIZE });
|
||||
assertEquals(7, splits.length);
|
||||
assertEquals(0, splits[6].length);
|
||||
assertEquals(APPLICATION_ID,
|
||||
AppIdKeyConverter.getInstance().decode(splits[4]));
|
||||
assertEquals(entityType, Separator.QUALIFIERS.decode(
|
||||
Bytes.toString(splits[5])));
|
||||
verifyRowPrefixBytes(byteRowKeyPrefix);
|
||||
|
||||
byteRowKeyPrefix = EntityRowKeyConverter.getInstance().encode(
|
||||
new EntityRowKey(CLUSTER, USER, FLOW_NAME, FLOW_RUN_ID, APPLICATION_ID,
|
||||
null, null));
|
||||
splits = Separator.QUALIFIERS.split(byteRowKeyPrefix, new int[] {
|
||||
Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Separator.VARIABLE_SIZE, Bytes.SIZEOF_LONG,
|
||||
AppIdKeyConverter.getKeySize(), Separator.VARIABLE_SIZE });
|
||||
assertEquals(6, splits.length);
|
||||
assertEquals(0, splits[5].length);
|
||||
assertEquals(APPLICATION_ID,
|
||||
AppIdKeyConverter.getInstance().decode(splits[4]));
|
||||
verifyRowPrefixBytes(byteRowKeyPrefix);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAppToFlowRowKeyConverter() {
|
||||
byte[] byteRowKey = AppToFlowRowKeyConverter.getInstance().encode(
|
||||
new AppToFlowRowKey(CLUSTER, APPLICATION_ID));
|
||||
AppToFlowRowKey rowKey =
|
||||
AppToFlowRowKeyConverter.getInstance().decode(byteRowKey);
|
||||
assertEquals(CLUSTER, rowKey.getClusterId());
|
||||
assertEquals(APPLICATION_ID, rowKey.getAppId());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAppIdKeyConverter() {
|
||||
long currentTs = System.currentTimeMillis();
|
||||
ApplicationId appId1 = ApplicationId.newInstance(currentTs, 1);
|
||||
ApplicationId appId2 = ApplicationId.newInstance(currentTs, 2);
|
||||
ApplicationId appId3 = ApplicationId.newInstance(currentTs + 300, 1);
|
||||
String appIdStr1 = appId1.toString();
|
||||
String appIdStr2 = appId2.toString();
|
||||
String appIdStr3 = appId3.toString();
|
||||
byte[] appIdBytes1 = AppIdKeyConverter.getInstance().encode(appIdStr1);
|
||||
byte[] appIdBytes2 = AppIdKeyConverter.getInstance().encode(appIdStr2);
|
||||
byte[] appIdBytes3 = AppIdKeyConverter.getInstance().encode(appIdStr3);
|
||||
// App ids' should be encoded in a manner wherein descending order
|
||||
// is maintained.
|
||||
assertTrue("Ordering of app ids' is incorrect",
|
||||
Bytes.compareTo(appIdBytes1, appIdBytes2) > 0 &&
|
||||
Bytes.compareTo(appIdBytes1, appIdBytes3) > 0 &&
|
||||
Bytes.compareTo(appIdBytes2, appIdBytes3) > 0);
|
||||
String decodedAppId1 = AppIdKeyConverter.getInstance().decode(appIdBytes1);
|
||||
String decodedAppId2 = AppIdKeyConverter.getInstance().decode(appIdBytes2);
|
||||
String decodedAppId3 = AppIdKeyConverter.getInstance().decode(appIdBytes3);
|
||||
assertTrue("Decoded app id is not same as the app id encoded",
|
||||
appIdStr1.equals(decodedAppId1));
|
||||
assertTrue("Decoded app id is not same as the app id encoded",
|
||||
appIdStr2.equals(decodedAppId2));
|
||||
assertTrue("Decoded app id is not same as the app id encoded",
|
||||
appIdStr3.equals(decodedAppId3));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testEventColumnNameConverter() {
|
||||
String eventId = "=foo_=eve=nt=";
|
||||
byte[] valSepBytes = Bytes.toBytes(Separator.VALUES.getValue());
|
||||
byte[] maxByteArr =
|
||||
Bytes.createMaxByteArray(Bytes.SIZEOF_LONG - valSepBytes.length);
|
||||
byte[] ts = Bytes.add(valSepBytes, maxByteArr);
|
||||
Long eventTs = Bytes.toLong(ts);
|
||||
byte[] byteEventColName = EventColumnNameConverter.getInstance().encode(
|
||||
new EventColumnName(eventId, eventTs, null));
|
||||
EventColumnName eventColName =
|
||||
EventColumnNameConverter.getInstance().decode(byteEventColName);
|
||||
assertEquals(eventId, eventColName.getId());
|
||||
assertEquals(eventTs, eventColName.getTimestamp());
|
||||
assertNull(eventColName.getInfoKey());
|
||||
|
||||
String infoKey = "f=oo_event_in=fo=_key";
|
||||
byteEventColName = EventColumnNameConverter.getInstance().encode(
|
||||
new EventColumnName(eventId, eventTs, infoKey));
|
||||
eventColName =
|
||||
EventColumnNameConverter.getInstance().decode(byteEventColName);
|
||||
assertEquals(eventId, eventColName.getId());
|
||||
assertEquals(eventTs, eventColName.getTimestamp());
|
||||
assertEquals(infoKey, eventColName.getInfoKey());
|
||||
}
|
||||
}
|
|
@ -19,11 +19,13 @@ package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
|||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertNull;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
import static org.junit.Assert.fail;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.junit.Test;
|
||||
|
||||
import com.google.common.collect.Iterables;
|
||||
|
@ -32,7 +34,7 @@ public class TestSeparator {
|
|||
|
||||
private static String villain = "Dr. Heinz Doofenshmirtz";
|
||||
private static String special =
|
||||
". * | ? + ( ) [ ] { } ^ $ \\ \"";
|
||||
". * | ? + \t ( ) [ ] { } ^ $ \\ \"";
|
||||
|
||||
/**
|
||||
*
|
||||
|
@ -47,6 +49,7 @@ public class TestSeparator {
|
|||
testEncodeDecode(separator, "?");
|
||||
testEncodeDecode(separator, "&");
|
||||
testEncodeDecode(separator, "+");
|
||||
testEncodeDecode(separator, "\t");
|
||||
testEncodeDecode(separator, "Dr.");
|
||||
testEncodeDecode(separator, "Heinz");
|
||||
testEncodeDecode(separator, "Doofenshmirtz");
|
||||
|
@ -79,6 +82,83 @@ public class TestSeparator {
|
|||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSplits() {
|
||||
byte[] maxLongBytes = Bytes.toBytes(Long.MAX_VALUE);
|
||||
byte[] maxIntBytes = Bytes.toBytes(Integer.MAX_VALUE);
|
||||
for (Separator separator : Separator.values()) {
|
||||
String str1 = "cl" + separator.getValue() + "us";
|
||||
String str2 = separator.getValue() + "rst";
|
||||
byte[] sepByteArr = Bytes.toBytes(separator.getValue());
|
||||
byte[] longVal1Arr = Bytes.add(sepByteArr, Bytes.copy(maxLongBytes,
|
||||
sepByteArr.length, Bytes.SIZEOF_LONG - sepByteArr.length));
|
||||
byte[] intVal1Arr = Bytes.add(sepByteArr, Bytes.copy(maxIntBytes,
|
||||
sepByteArr.length, Bytes.SIZEOF_INT - sepByteArr.length));
|
||||
byte[] arr = separator.join(
|
||||
Bytes.toBytes(separator.encode(str1)),longVal1Arr,
|
||||
Bytes.toBytes(separator.encode(str2)), intVal1Arr);
|
||||
int[] sizes = { Separator.VARIABLE_SIZE, Bytes.SIZEOF_LONG,
|
||||
Separator.VARIABLE_SIZE, Bytes.SIZEOF_INT };
|
||||
byte[][] splits = separator.split(arr, sizes);
|
||||
assertEquals(4, splits.length);
|
||||
assertEquals(str1, separator.decode(Bytes.toString(splits[0])));
|
||||
assertEquals(Bytes.toLong(longVal1Arr), Bytes.toLong(splits[1]));
|
||||
assertEquals(str2, separator.decode(Bytes.toString(splits[2])));
|
||||
assertEquals(Bytes.toInt(intVal1Arr), Bytes.toInt(splits[3]));
|
||||
|
||||
longVal1Arr = Bytes.add(Bytes.copy(maxLongBytes, 0, Bytes.SIZEOF_LONG -
|
||||
sepByteArr.length), sepByteArr);
|
||||
intVal1Arr = Bytes.add(Bytes.copy(maxIntBytes, 0, Bytes.SIZEOF_INT -
|
||||
sepByteArr.length), sepByteArr);
|
||||
arr = separator.join(Bytes.toBytes(separator.encode(str1)),longVal1Arr,
|
||||
Bytes.toBytes(separator.encode(str2)), intVal1Arr);
|
||||
splits = separator.split(arr, sizes);
|
||||
assertEquals(4, splits.length);
|
||||
assertEquals(str1, separator.decode(Bytes.toString(splits[0])));
|
||||
assertEquals(Bytes.toLong(longVal1Arr), Bytes.toLong(splits[1]));
|
||||
assertEquals(str2, separator.decode(Bytes.toString(splits[2])));
|
||||
assertEquals(Bytes.toInt(intVal1Arr), Bytes.toInt(splits[3]));
|
||||
|
||||
longVal1Arr = Bytes.add(sepByteArr, Bytes.copy(maxLongBytes,
|
||||
sepByteArr.length, 4 - sepByteArr.length), sepByteArr);
|
||||
longVal1Arr = Bytes.add(longVal1Arr, Bytes.copy(maxLongBytes, 4, 3 -
|
||||
sepByteArr.length), sepByteArr);
|
||||
arr = separator.join(Bytes.toBytes(separator.encode(str1)),longVal1Arr,
|
||||
Bytes.toBytes(separator.encode(str2)), intVal1Arr);
|
||||
splits = separator.split(arr, sizes);
|
||||
assertEquals(4, splits.length);
|
||||
assertEquals(str1, separator.decode(Bytes.toString(splits[0])));
|
||||
assertEquals(Bytes.toLong(longVal1Arr), Bytes.toLong(splits[1]));
|
||||
assertEquals(str2, separator.decode(Bytes.toString(splits[2])));
|
||||
assertEquals(Bytes.toInt(intVal1Arr), Bytes.toInt(splits[3]));
|
||||
|
||||
arr = separator.join(Bytes.toBytes(separator.encode(str1)),
|
||||
Bytes.toBytes(separator.encode(str2)), intVal1Arr, longVal1Arr);
|
||||
int[] sizes1 = { Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Bytes.SIZEOF_INT, Bytes.SIZEOF_LONG };
|
||||
splits = separator.split(arr, sizes1);
|
||||
assertEquals(4, splits.length);
|
||||
assertEquals(str1, separator.decode(Bytes.toString(splits[0])));
|
||||
assertEquals(str2, separator.decode(Bytes.toString(splits[1])));
|
||||
assertEquals(Bytes.toInt(intVal1Arr), Bytes.toInt(splits[2]));
|
||||
assertEquals(Bytes.toLong(longVal1Arr), Bytes.toLong(splits[3]));
|
||||
|
||||
try {
|
||||
int[] sizes2 = { Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE,
|
||||
Bytes.SIZEOF_INT, 7 };
|
||||
splits = separator.split(arr, sizes2);
|
||||
fail("Exception should have been thrown.");
|
||||
} catch (IllegalArgumentException e) {}
|
||||
|
||||
try {
|
||||
int[] sizes2 = { Separator.VARIABLE_SIZE, Separator.VARIABLE_SIZE, 2,
|
||||
Bytes.SIZEOF_LONG };
|
||||
splits = separator.split(arr, sizes2);
|
||||
fail("Exception should have been thrown.");
|
||||
} catch (IllegalArgumentException e) {}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Simple test to encode and decode using the same separators and confirm that
|
||||
* we end up with the same as what we started with.
|
||||
|
|
|
@ -1,56 +0,0 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with this
|
||||
* work for additional information regarding copyright ownership. The ASF
|
||||
* licenses this file to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations under
|
||||
* the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.yarn.server.timelineservice.storage.common;
|
||||
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
import org.apache.hadoop.hbase.util.Bytes;
|
||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||
import org.junit.Test;
|
||||
|
||||
public class TestTimelineStorageUtils {
|
||||
|
||||
@Test
|
||||
public void testEncodeDecodeAppId() {
|
||||
long currentTs = System.currentTimeMillis();
|
||||
ApplicationId appId1 = ApplicationId.newInstance(currentTs, 1);
|
||||
ApplicationId appId2 = ApplicationId.newInstance(currentTs, 2);
|
||||
ApplicationId appId3 = ApplicationId.newInstance(currentTs + 300, 1);
|
||||
String appIdStr1 = appId1.toString();
|
||||
String appIdStr2 = appId2.toString();
|
||||
String appIdStr3 = appId3.toString();
|
||||
byte[] appIdBytes1 = TimelineStorageUtils.encodeAppId(appIdStr1);
|
||||
byte[] appIdBytes2 = TimelineStorageUtils.encodeAppId(appIdStr2);
|
||||
byte[] appIdBytes3 = TimelineStorageUtils.encodeAppId(appIdStr3);
|
||||
// App ids' should be encoded in a manner wherein descending order
|
||||
// is maintained.
|
||||
assertTrue("Ordering of app ids' is incorrect",
|
||||
Bytes.compareTo(appIdBytes1, appIdBytes2) > 0 &&
|
||||
Bytes.compareTo(appIdBytes1, appIdBytes3) > 0 &&
|
||||
Bytes.compareTo(appIdBytes2, appIdBytes3) > 0);
|
||||
String decodedAppId1 = TimelineStorageUtils.decodeAppId(appIdBytes1);
|
||||
String decodedAppId2 = TimelineStorageUtils.decodeAppId(appIdBytes2);
|
||||
String decodedAppId3 = TimelineStorageUtils.decodeAppId(appIdBytes3);
|
||||
assertTrue("Decoded app id is not same as the app id encoded",
|
||||
appIdStr1.equals(decodedAppId1));
|
||||
assertTrue("Decoded app id is not same as the app id encoded",
|
||||
appIdStr2.equals(decodedAppId2));
|
||||
assertTrue("Decoded app id is not same as the app id encoded",
|
||||
appIdStr3.equals(decodedAppId3));
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue