YARN-7732. Support Generic AM Simulator from SynthGenerator. (Contributed by Young Chen via curino)

This commit is contained in:
Carlo Curino 2018-02-20 17:00:34 -08:00
parent 6f81cc0bee
commit 84cea0011f
19 changed files with 1448 additions and 660 deletions

View File

@ -133,6 +133,8 @@
<exclude>src/test/resources/simulate.info.html.template</exclude>
<exclude>src/test/resources/track.html.template</exclude>
<exclude>src/test/resources/syn.json</exclude>
<exclude>src/test/resources/syn_generic.json</exclude>
<exclude>src/test/resources/syn_stream.json</exclude>
<exclude>src/test/resources/inputsls.json</exclude>
<exclude>src/test/resources/nodes.json</exclude>
<exclude>src/test/resources/exit-invariants.txt</exclude>

View File

@ -47,13 +47,11 @@ import org.apache.hadoop.classification.InterfaceStability.Unstable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.TaskType;
import org.apache.hadoop.metrics2.source.JvmMetrics;
import org.apache.hadoop.tools.rumen.JobTraceReader;
import org.apache.hadoop.tools.rumen.LoggedJob;
import org.apache.hadoop.tools.rumen.LoggedTask;
import org.apache.hadoop.tools.rumen.LoggedTaskAttempt;
import org.apache.hadoop.tools.rumen.TaskAttemptInfo;
import org.apache.hadoop.util.ReflectionUtils;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
@ -627,89 +625,66 @@ public class SLSRunner extends Configured implements Tool {
localConf.set("fs.defaultFS", "file:///");
long baselineTimeMS = 0;
try {
// if we use the nodeFile this could have been not initialized yet.
if (stjp == null) {
stjp = new SynthTraceJobProducer(getConf(), new Path(inputTraces[0]));
}
// if we use the nodeFile this could have been not initialized yet.
if (stjp == null) {
stjp = new SynthTraceJobProducer(getConf(), new Path(inputTraces[0]));
SynthJob job = null;
// we use stjp, a reference to the job producer instantiated during node
// creation
while ((job = (SynthJob) stjp.getNextJob()) != null) {
// only support MapReduce currently
String user = job.getUser();
String jobQueue = job.getQueueName();
String oldJobId = job.getJobID().toString();
long jobStartTimeMS = job.getSubmissionTime();
// CARLO: Finish time is only used for logging, omit for now
long jobFinishTimeMS = jobStartTimeMS + job.getDuration();
if (baselineTimeMS == 0) {
baselineTimeMS = jobStartTimeMS;
}
jobStartTimeMS -= baselineTimeMS;
jobFinishTimeMS -= baselineTimeMS;
if (jobStartTimeMS < 0) {
LOG.warn("Warning: reset job {} start time to 0.", oldJobId);
jobFinishTimeMS = jobFinishTimeMS - jobStartTimeMS;
jobStartTimeMS = 0;
}
SynthJob job = null;
// we use stjp, a reference to the job producer instantiated during node
// creation
while ((job = (SynthJob) stjp.getNextJob()) != null) {
// only support MapReduce currently
String user = job.getUser();
String jobQueue = job.getQueueName();
String oldJobId = job.getJobID().toString();
long jobStartTimeMS = job.getSubmissionTime();
increaseQueueAppNum(jobQueue);
// CARLO: Finish time is only used for logging, omit for now
long jobFinishTimeMS = -1L;
if (baselineTimeMS == 0) {
baselineTimeMS = jobStartTimeMS;
}
jobStartTimeMS -= baselineTimeMS;
jobFinishTimeMS -= baselineTimeMS;
if (jobStartTimeMS < 0) {
LOG.warn("Warning: reset job {} start time to 0.", oldJobId);
jobFinishTimeMS = jobFinishTimeMS - jobStartTimeMS;
jobStartTimeMS = 0;
}
increaseQueueAppNum(jobQueue);
List<ContainerSimulator> containerList =
new ArrayList<ContainerSimulator>();
ArrayList<NodeId> keyAsArray = new ArrayList<NodeId>(nmMap.keySet());
Random rand = new Random(stjp.getSeed());
// map tasks
for (int i = 0; i < job.getNumberMaps(); i++) {
TaskAttemptInfo tai = job.getTaskAttemptInfo(TaskType.MAP, i, 0);
RMNode node =
nmMap.get(keyAsArray.get(rand.nextInt(keyAsArray.size())))
.getNode();
String hostname = "/" + node.getRackName() + "/" + node.getHostName();
long containerLifeTime = tai.getRuntime();
Resource containerResource =
Resource.newInstance((int) tai.getTaskInfo().getTaskMemory(),
(int) tai.getTaskInfo().getTaskVCores());
containerList.add(new ContainerSimulator(containerResource,
containerLifeTime, hostname, DEFAULT_MAPPER_PRIORITY, "map"));
}
// reduce tasks
for (int i = 0; i < job.getNumberReduces(); i++) {
TaskAttemptInfo tai = job.getTaskAttemptInfo(TaskType.REDUCE, i, 0);
RMNode node =
nmMap.get(keyAsArray.get(rand.nextInt(keyAsArray.size())))
.getNode();
String hostname = "/" + node.getRackName() + "/" + node.getHostName();
long containerLifeTime = tai.getRuntime();
Resource containerResource =
Resource.newInstance((int) tai.getTaskInfo().getTaskMemory(),
(int) tai.getTaskInfo().getTaskVCores());
containerList.add(
new ContainerSimulator(containerResource, containerLifeTime,
hostname, DEFAULT_REDUCER_PRIORITY, "reduce"));
}
ReservationId reservationId = null;
if (job.hasDeadline()) {
reservationId =
ReservationId.newInstance(this.rm.getStartTime(), AM_ID);
}
runNewAM(SLSUtils.DEFAULT_JOB_TYPE, user, jobQueue, oldJobId,
jobStartTimeMS, jobFinishTimeMS, containerList, reservationId,
job.getDeadline(), getAMContainerResource(null));
List<ContainerSimulator> containerList =
new ArrayList<ContainerSimulator>();
ArrayList<NodeId> keyAsArray = new ArrayList<NodeId>(nmMap.keySet());
Random rand = new Random(stjp.getSeed());
for (SynthJob.SynthTask task : job.getTasks()) {
RMNode node = nmMap.get(keyAsArray.get(rand.nextInt(keyAsArray.size())))
.getNode();
String hostname = "/" + node.getRackName() + "/" + node.getHostName();
long containerLifeTime = task.getTime();
Resource containerResource = Resource
.newInstance((int) task.getMemory(), (int) task.getVcores());
containerList.add(
new ContainerSimulator(containerResource, containerLifeTime,
hostname, task.getPriority(), task.getType()));
}
} finally {
stjp.close();
ReservationId reservationId = null;
if(job.hasDeadline()){
reservationId = ReservationId
.newInstance(this.rm.getStartTime(), AM_ID);
}
runNewAM(job.getType(), user, jobQueue, oldJobId,
jobStartTimeMS, jobFinishTimeMS, containerList, reservationId,
job.getDeadline(), getAMContainerResource(null),
job.getParams());
}
}
@ -753,14 +728,14 @@ public class SLSRunner extends Configured implements Tool {
Resource amContainerResource) {
runNewAM(jobType, user, jobQueue, oldJobId, jobStartTimeMS,
jobFinishTimeMS, containerList, null, -1,
amContainerResource);
amContainerResource, null);
}
private void runNewAM(String jobType, String user,
String jobQueue, String oldJobId, long jobStartTimeMS,
long jobFinishTimeMS, List<ContainerSimulator> containerList,
ReservationId reservationId, long deadline,
Resource amContainerResource) {
ReservationId reservationId, long deadline, Resource amContainerResource,
Map<String, String> params) {
AMSimulator amSim = (AMSimulator) ReflectionUtils.newInstance(
amClassMap.get(jobType), new Configuration());
@ -777,7 +752,7 @@ public class SLSRunner extends Configured implements Tool {
AM_ID++;
amSim.init(heartbeatInterval, containerList, rm, this, jobStartTimeMS,
jobFinishTimeMS, user, jobQueue, isTracked, oldJobId,
runner.getStartTimeMS(), amContainerResource);
runner.getStartTimeMS(), amContainerResource, params);
if(reservationId != null) {
// if we have a ReservationId, delegate reservation creation to
// AMSim (reservation shape is impl specific)

View File

@ -121,7 +121,7 @@ public abstract class AMSimulator extends TaskRunner.Task {
List<ContainerSimulator> containerList, ResourceManager resourceManager,
SLSRunner slsRunnner, long startTime, long finishTime, String simUser,
String simQueue, boolean tracked, String oldApp, long baseTimeMS,
Resource amResource) {
Resource amResource, Map<String, String> params) {
super.init(startTime, startTime + 1000000L * heartbeatInterval,
heartbeatInterval);
this.user = simUser;

View File

@ -65,6 +65,9 @@ public class MRAMSimulator extends AMSimulator {
scheduled when all maps have finished (not support slow-start currently).
*/
public static final String MAP_TYPE = "map";
public static final String REDUCE_TYPE = "reduce";
private static final int PRIORITY_REDUCE = 10;
private static final int PRIORITY_MAP = 20;
@ -123,10 +126,10 @@ public class MRAMSimulator extends AMSimulator {
List<ContainerSimulator> containerList, ResourceManager rm, SLSRunner se,
long traceStartTime, long traceFinishTime, String user, String queue,
boolean isTracked, String oldAppId, long baselineStartTimeMS,
Resource amContainerResource) {
Resource amContainerResource, Map<String, String> params) {
super.init(heartbeatInterval, containerList, rm, se,
traceStartTime, traceFinishTime, user, queue, isTracked, oldAppId,
baselineStartTimeMS, amContainerResource);
baselineStartTimeMS, amContainerResource, params);
amtype = "mapreduce";
// get map/reduce tasks

View File

@ -0,0 +1,273 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.yarn.sls.appmaster;
import org.apache.hadoop.classification.InterfaceAudience.Private;
import org.apache.hadoop.classification.InterfaceStability.Unstable;
import org.apache.hadoop.security.UserGroupInformation;
import org.apache.hadoop.security.token.Token;
import org.apache.hadoop.yarn.api.protocolrecords.AllocateRequest;
import org.apache.hadoop.yarn.api.protocolrecords.AllocateResponse;
import org.apache.hadoop.yarn.api.records.Container;
import org.apache.hadoop.yarn.api.records.ContainerExitStatus;
import org.apache.hadoop.yarn.api.records.ContainerId;
import org.apache.hadoop.yarn.api.records.ContainerStatus;
import org.apache.hadoop.yarn.api.records.ReservationId;
import org.apache.hadoop.yarn.api.records.Resource;
import org.apache.hadoop.yarn.api.records.ResourceRequest;
import org.apache.hadoop.yarn.exceptions.YarnException;
import org.apache.hadoop.yarn.security.AMRMTokenIdentifier;
import org.apache.hadoop.yarn.server.resourcemanager.ResourceManager;
import org.apache.hadoop.yarn.sls.SLSRunner;
import org.apache.hadoop.yarn.sls.scheduler.ContainerSimulator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.security.PrivilegedExceptionAction;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
/**
* AMSimulator that simulates streaming services - it keeps tasks
* running and resubmits them whenever they fail or complete. It finishes
* when the specified duration expires.
*/
@Private
@Unstable
public class StreamAMSimulator extends AMSimulator {
/*
Vocabulary Used:
pending -> requests which are NOT yet sent to RM
scheduled -> requests which are sent to RM but not yet assigned
assigned -> requests which are assigned to a container
completed -> request corresponding to which container has completed
streams are constantly scheduled. If a streaming job is killed, we restart it
*/
private static final int PRIORITY_MAP = 20;
// pending streams
private LinkedList<ContainerSimulator> pendingStreams =
new LinkedList<>();
// scheduled streams
private LinkedList<ContainerSimulator> scheduledStreams =
new LinkedList<ContainerSimulator>();
// assigned streams
private Map<ContainerId, ContainerSimulator> assignedStreams =
new HashMap<ContainerId, ContainerSimulator>();
// all streams
private LinkedList<ContainerSimulator> allStreams =
new LinkedList<ContainerSimulator>();
// finished
private boolean isFinished = false;
private long duration = 0;
private static final Logger LOG =
LoggerFactory.getLogger(StreamAMSimulator.class);
@SuppressWarnings("checkstyle:parameternumber")
public void init(int heartbeatInterval,
List<ContainerSimulator> containerList, ResourceManager rm, SLSRunner se,
long traceStartTime, long traceFinishTime, String user, String queue,
boolean isTracked, String oldAppId, long baselineStartTimeMS,
Resource amContainerResource, Map<String, String> params) {
super.init(heartbeatInterval, containerList, rm, se, traceStartTime,
traceFinishTime, user, queue, isTracked, oldAppId, baselineStartTimeMS,
amContainerResource, params);
amtype = "stream";
allStreams.addAll(containerList);
duration = traceFinishTime - traceStartTime;
LOG.info("Added new job with {} streams, running for {}",
allStreams.size(), duration);
}
@Override
public synchronized void notifyAMContainerLaunched(Container masterContainer)
throws Exception {
if (null != masterContainer) {
restart();
super.notifyAMContainerLaunched(masterContainer);
}
}
@Override
@SuppressWarnings("unchecked")
protected void processResponseQueue() throws Exception {
while (!responseQueue.isEmpty()) {
AllocateResponse response = responseQueue.take();
// check completed containers
if (!response.getCompletedContainersStatuses().isEmpty()) {
for (ContainerStatus cs : response.getCompletedContainersStatuses()) {
ContainerId containerId = cs.getContainerId();
if(assignedStreams.containsKey(containerId)){
// One of our containers completed. Regardless of reason,
// we want to maintain our streaming process
LOG.debug("Application {} has one streamer finished ({}).", appId,
containerId);
pendingStreams.add(assignedStreams.remove(containerId));
} else if (amContainer.getId().equals(containerId)){
// Our am container completed
if(cs.getExitStatus() == ContainerExitStatus.SUCCESS){
// am container released event (am container completed on success)
isAMContainerRunning = false;
isFinished = true;
LOG.info("Application {} goes to finish.", appId);
} else {
// am container killed - wait for re allocation
LOG.info("Application {}'s AM is "
+ "going to be killed. Waiting for rescheduling...", appId);
isAMContainerRunning = false;
}
}
}
}
// check finished
if (isAMContainerRunning &&
(System.currentTimeMillis() - simulateStartTimeMS >= duration)) {
LOG.debug("Application {} sends out event to clean up"
+ " its AM container.", appId);
isAMContainerRunning = false;
isFinished = true;
break;
}
// check allocated containers
for (Container container : response.getAllocatedContainers()) {
if (!scheduledStreams.isEmpty()) {
ContainerSimulator cs = scheduledStreams.remove();
LOG.debug("Application {} starts to launch a stream ({}).", appId,
container.getId());
assignedStreams.put(container.getId(), cs);
se.getNmMap().get(container.getNodeId()).addNewContainer(container,
cs.getLifeTime());
}
}
}
}
/**
* restart running because of the am container killed.
*/
private void restart()
throws YarnException, IOException, InterruptedException {
// clear
isFinished = false;
pendingStreams.clear();
pendingStreams.addAll(allStreams);
amContainer = null;
}
private List<ContainerSimulator> mergeLists(List<ContainerSimulator> left,
List<ContainerSimulator> right) {
List<ContainerSimulator> list = new ArrayList<>();
list.addAll(left);
list.addAll(right);
return list;
}
@Override
protected void sendContainerRequest()
throws YarnException, IOException, InterruptedException {
// send out request
List<ResourceRequest> ask = new ArrayList<>();
List<ContainerId> release = new ArrayList<>();
if (!isFinished) {
if (!pendingStreams.isEmpty()) {
ask = packageRequests(mergeLists(pendingStreams, scheduledStreams),
PRIORITY_MAP);
LOG.debug("Application {} sends out request for {} streams.",
appId, pendingStreams.size());
scheduledStreams.addAll(pendingStreams);
pendingStreams.clear();
}
}
if(isFinished){
release.addAll(assignedStreams.keySet());
ask.clear();
}
final AllocateRequest request = createAllocateRequest(ask, release);
if (totalContainers == 0) {
request.setProgress(1.0f);
} else {
request.setProgress((float) finishedContainers / totalContainers);
}
UserGroupInformation ugi =
UserGroupInformation.createRemoteUser(appAttemptId.toString());
Token<AMRMTokenIdentifier> token = rm.getRMContext().getRMApps()
.get(appAttemptId.getApplicationId())
.getRMAppAttempt(appAttemptId).getAMRMToken();
ugi.addTokenIdentifier(token.decodeIdentifier());
AllocateResponse response = ugi.doAs(
new PrivilegedExceptionAction<AllocateResponse>() {
@Override
public AllocateResponse run() throws Exception {
return rm.getApplicationMasterService().allocate(request);
}
});
if (response != null) {
responseQueue.put(response);
}
}
@Override
public void initReservation(
ReservationId reservationId, long deadline, long now){
// Streaming AM currently doesn't do reservations
setReservationRequest(null);
}
@Override
protected void checkStop() {
if (isFinished) {
super.setEndTime(System.currentTimeMillis());
}
}
@Override
public void lastStep() throws Exception {
super.lastStep();
// clear data structures
allStreams.clear();
assignedStreams.clear();
pendingStreams.clear();
scheduledStreams.clear();
responseQueue.clear();
}
}

View File

@ -0,0 +1,21 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Application Master simulators for the SLS.
*/
package org.apache.hadoop.yarn.sls.appmaster;

View File

@ -19,19 +19,25 @@ package org.apache.hadoop.yarn.sls.synthetic;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.commons.math3.distribution.LogNormalDistribution;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TaskStatus.State;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobID;
import org.apache.hadoop.mapreduce.MRJobConfig;
import org.apache.hadoop.mapreduce.TaskType;
import org.apache.hadoop.tools.rumen.*;
import org.apache.hadoop.tools.rumen.JobStory;
import org.apache.hadoop.tools.rumen.MapTaskAttemptInfo;
import org.apache.hadoop.tools.rumen.ReduceTaskAttemptInfo;
import org.apache.hadoop.tools.rumen.TaskAttemptInfo;
import org.apache.hadoop.tools.rumen.TaskInfo;
import org.apache.hadoop.tools.rumen.Pre21JobHistoryConstants.Values;
import org.apache.hadoop.yarn.sls.appmaster.MRAMSimulator;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.atomic.AtomicInteger;
import static java.util.concurrent.TimeUnit.MILLISECONDS;
@ -46,6 +52,9 @@ public class SynthJob implements JobStory {
@SuppressWarnings("StaticVariableName")
private static Log LOG = LogFactory.getLog(SynthJob.class);
private static final long MIN_MEMORY = 1024;
private static final long MIN_VCORES = 1;
private final Configuration conf;
private final int id;
@ -53,75 +62,93 @@ public class SynthJob implements JobStory {
private static final AtomicInteger sequence = new AtomicInteger(0);
private final String name;
private final String queueName;
private final SynthJobClass jobClass;
private final SynthTraceJobProducer.JobDefinition jobDef;
private String type;
// job timing
private final long submitTime;
private final long duration;
private final long deadline;
private final int numMapTasks;
private final int numRedTasks;
private final long mapMaxMemory;
private final long reduceMaxMemory;
private final long mapMaxVcores;
private final long reduceMaxVcores;
private final long[] mapRuntime;
private final float[] reduceRuntime;
private long totMapRuntime;
private long totRedRuntime;
private Map<String, String> params;
public SynthJob(JDKRandomGenerator rand, Configuration conf,
SynthJobClass jobClass, long actualSubmissionTime) {
private long totalSlotTime = 0;
// task information
private List<SynthTask> tasks = new ArrayList<>();
private Map<String, List<SynthTask>> taskByType = new HashMap<>();
private Map<String, Integer> taskCounts = new HashMap<>();
private Map<String, Long> taskMemory = new HashMap<>();
private Map<String, Long> taskVcores = new HashMap<>();
/**
* Nested class used to represent a task instance in a job. Each task
* corresponds to one container allocation for the job.
*/
public static final class SynthTask{
private String type;
private long time;
private long maxMemory;
private long maxVcores;
private int priority;
private SynthTask(String type, long time, long maxMemory, long maxVcores,
int priority){
this.type = type;
this.time = time;
this.maxMemory = maxMemory;
this.maxVcores = maxVcores;
this.priority = priority;
}
public String getType(){
return type;
}
public long getTime(){
return time;
}
public long getMemory(){
return maxMemory;
}
public long getVcores(){
return maxVcores;
}
public int getPriority(){
return priority;
}
@Override
public String toString(){
return String.format("[task]\ttype: %1$-10s\ttime: %2$3s\tmemory: "
+ "%3$4s\tvcores: %4$2s%n", getType(), getTime(), getMemory(),
getVcores());
}
}
protected SynthJob(JDKRandomGenerator rand, Configuration conf,
SynthTraceJobProducer.JobDefinition jobDef,
String queue, long actualSubmissionTime) {
this.conf = conf;
this.jobClass = jobClass;
this.jobDef = jobDef;
this.duration = MILLISECONDS.convert(jobClass.getDur(), SECONDS);
this.numMapTasks = jobClass.getMtasks();
this.numRedTasks = jobClass.getRtasks();
this.queueName = queue;
// sample memory distributions, correct for sub-minAlloc sizes
long tempMapMaxMemory = jobClass.getMapMaxMemory();
this.mapMaxMemory = tempMapMaxMemory < MRJobConfig.DEFAULT_MAP_MEMORY_MB
? MRJobConfig.DEFAULT_MAP_MEMORY_MB : tempMapMaxMemory;
long tempReduceMaxMemory = jobClass.getReduceMaxMemory();
this.reduceMaxMemory =
tempReduceMaxMemory < MRJobConfig.DEFAULT_REDUCE_MEMORY_MB
? MRJobConfig.DEFAULT_REDUCE_MEMORY_MB : tempReduceMaxMemory;
// sample vcores distributions, correct for sub-minAlloc sizes
long tempMapMaxVCores = jobClass.getMapMaxVcores();
this.mapMaxVcores = tempMapMaxVCores < MRJobConfig.DEFAULT_MAP_CPU_VCORES
? MRJobConfig.DEFAULT_MAP_CPU_VCORES : tempMapMaxVCores;
long tempReduceMaxVcores = jobClass.getReduceMaxVcores();
this.reduceMaxVcores =
tempReduceMaxVcores < MRJobConfig.DEFAULT_REDUCE_CPU_VCORES
? MRJobConfig.DEFAULT_REDUCE_CPU_VCORES : tempReduceMaxVcores;
if (numMapTasks > 0) {
conf.setLong(MRJobConfig.MAP_MEMORY_MB, this.mapMaxMemory);
conf.set(MRJobConfig.MAP_JAVA_OPTS,
"-Xmx" + (this.mapMaxMemory - 100) + "m");
}
if (numRedTasks > 0) {
conf.setLong(MRJobConfig.REDUCE_MEMORY_MB, this.reduceMaxMemory);
conf.set(MRJobConfig.REDUCE_JAVA_OPTS,
"-Xmx" + (this.reduceMaxMemory - 100) + "m");
}
this.duration = MILLISECONDS.convert(jobDef.duration.getInt(),
SECONDS);
boolean hasDeadline =
(rand.nextDouble() <= jobClass.jobClass.chance_of_reservation);
(rand.nextDouble() <= jobDef.reservation.getDouble());
LogNormalDistribution deadlineFactor =
SynthUtils.getLogNormalDist(rand, jobClass.jobClass.deadline_factor_avg,
jobClass.jobClass.deadline_factor_stddev);
double deadlineFactorSample = jobDef.deadline_factor.getDouble();
double deadlineFactorSample =
(deadlineFactor != null) ? deadlineFactor.sample() : -1;
this.queueName = jobClass.workload.getQueueName();
this.type = jobDef.type;
this.submitTime = MILLISECONDS.convert(actualSubmissionTime, SECONDS);
@ -129,6 +156,8 @@ public class SynthJob implements JobStory {
hasDeadline ? MILLISECONDS.convert(actualSubmissionTime, SECONDS)
+ (long) Math.ceil(deadlineFactorSample * duration) : -1;
this.params = jobDef.params;
conf.set(QUEUE_NAME, queueName);
// name and initialize job randomness
@ -136,75 +165,145 @@ public class SynthJob implements JobStory {
rand.setSeed(seed);
id = sequence.getAndIncrement();
name = String.format(jobClass.getClassName() + "_%06d", id);
name = String.format(jobDef.class_name + "_%06d", id);
LOG.debug(name + " (" + seed + ")");
LOG.info("JOB TIMING`: job: " + name + " submission:" + submitTime
+ " deadline:" + deadline + " duration:" + duration
+ " deadline-submission: " + (deadline - submitTime));
// generate map and reduce runtimes
mapRuntime = new long[numMapTasks];
for (int i = 0; i < numMapTasks; i++) {
mapRuntime[i] = jobClass.getMapTimeSample();
totMapRuntime += mapRuntime[i];
}
reduceRuntime = new float[numRedTasks];
for (int i = 0; i < numRedTasks; i++) {
reduceRuntime[i] = jobClass.getReduceTimeSample();
totRedRuntime += (long) Math.ceil(reduceRuntime[i]);
// Expand tasks
for(SynthTraceJobProducer.TaskDefinition task : jobDef.tasks){
int num = task.count.getInt();
String taskType = task.type;
long memory = task.max_memory.getLong();
memory = memory < MIN_MEMORY ? MIN_MEMORY: memory;
long vcores = task.max_vcores.getLong();
vcores = vcores < MIN_VCORES ? MIN_VCORES : vcores;
int priority = task.priority;
// Save task information by type
taskByType.put(taskType, new ArrayList<>());
taskCounts.put(taskType, num);
taskMemory.put(taskType, memory);
taskVcores.put(taskType, vcores);
for(int i = 0; i < num; ++i){
long time = task.time.getLong();
totalSlotTime += time;
SynthTask t = new SynthTask(taskType, time, memory, vcores,
priority);
tasks.add(t);
taskByType.get(taskType).add(t);
}
}
}
public String getType(){
return type;
}
public List<SynthTask> getTasks(){
return tasks;
}
public boolean hasDeadline() {
return deadline > 0;
}
@Override
public String getName() {
return name;
}
@Override
public String getUser() {
return jobClass.getUserName();
return jobDef.user_name;
}
@Override
public JobID getJobID() {
return new JobID("job_mock_" + name, id);
}
@Override
public Values getOutcome() {
return Values.SUCCESS;
}
@Override
public long getSubmissionTime() {
return submitTime;
}
public String getQueueName() {
return queueName;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
String res = "\nSynthJob [" + jobDef.class_name + "]: \n"
+ "\tname: " + getName() + "\n"
+ "\ttype: " + getType() + "\n"
+ "\tid: " + id + "\n"
+ "\tqueue: " + getQueueName() + "\n"
+ "\tsubmission: " + getSubmissionTime() + "\n"
+ "\tduration: " + getDuration() + "\n"
+ "\tdeadline: " + getDeadline() + "\n";
sb.append(res);
int taskno = 0;
for(SynthJob.SynthTask t : getTasks()){
sb.append("\t");
sb.append(taskno);
sb.append(": \t");
sb.append(t.toString());
taskno++;
}
return sb.toString();
}
public long getTotalSlotTime() {
return totalSlotTime;
}
public long getDuration() {
return duration;
}
public long getDeadline() {
return deadline;
}
public Map<String, String> getParams() {
return params;
}
@Override
public boolean equals(Object other) {
if (!(other instanceof SynthJob)) {
return false;
}
SynthJob o = (SynthJob) other;
return tasks.equals(o.tasks)
&& submitTime == o.submitTime
&& type.equals(o.type)
&& queueName.equals(o.queueName)
&& jobDef.class_name.equals(o.jobDef.class_name);
}
@Override
public int hashCode() {
return jobDef.class_name.hashCode()
* (int) submitTime * (int) duration;
}
@Override
public JobConf getJobConf() {
return new JobConf(conf);
}
@Override
public int getNumberMaps() {
return numMapTasks;
return taskCounts.get(MRAMSimulator.MAP_TYPE);
}
@Override
public int getNumberReduces() {
return numRedTasks;
}
@Override
public TaskInfo getTaskInfo(TaskType taskType, int taskNumber) {
switch (taskType) {
case MAP:
return new TaskInfo(-1, -1, -1, -1, mapMaxMemory, mapMaxVcores);
case REDUCE:
return new TaskInfo(-1, -1, -1, -1, reduceMaxMemory, reduceMaxVcores);
default:
throw new IllegalArgumentException("Not interested");
}
return taskCounts.get(MRAMSimulator.REDUCE_TYPE);
}
@Override
@ -212,23 +311,43 @@ public class SynthJob implements JobStory {
throw new UnsupportedOperationException();
}
@Override
public TaskInfo getTaskInfo(TaskType taskType, int taskNumber) {
switch(taskType){
case MAP:
return new TaskInfo(-1, -1, -1, -1,
taskMemory.get(MRAMSimulator.MAP_TYPE),
taskVcores.get(MRAMSimulator.MAP_TYPE));
case REDUCE:
return new TaskInfo(-1, -1, -1, -1,
taskMemory.get(MRAMSimulator.REDUCE_TYPE),
taskVcores.get(MRAMSimulator.REDUCE_TYPE));
default:
break;
}
throw new UnsupportedOperationException();
}
@Override
public TaskAttemptInfo getTaskAttemptInfo(TaskType taskType, int taskNumber,
int taskAttemptNumber) {
switch (taskType) {
case MAP:
return new MapTaskAttemptInfo(State.SUCCEEDED,
getTaskInfo(taskType, taskNumber), mapRuntime[taskNumber], null);
getTaskInfo(taskType, taskNumber),
taskByType.get(MRAMSimulator.MAP_TYPE).get(taskNumber).time,
null);
case REDUCE:
// We assume uniform split between pull/sort/reduce
// aligned with naive progress reporting assumptions
return new ReduceTaskAttemptInfo(State.SUCCEEDED,
getTaskInfo(taskType, taskNumber),
(long) Math.round((reduceRuntime[taskNumber] / 3)),
(long) Math.round((reduceRuntime[taskNumber] / 3)),
(long) Math.round((reduceRuntime[taskNumber] / 3)), null);
taskByType.get(MRAMSimulator.MAP_TYPE)
.get(taskNumber).time / 3,
taskByType.get(MRAMSimulator.MAP_TYPE)
.get(taskNumber).time / 3,
taskByType.get(MRAMSimulator.MAP_TYPE)
.get(taskNumber).time / 3, null);
default:
break;
}
@ -242,65 +361,7 @@ public class SynthJob implements JobStory {
}
@Override
public org.apache.hadoop.mapred.JobConf getJobConf() {
return new JobConf(conf);
}
@Override
public String getQueueName() {
return queueName;
}
@Override
public String toString() {
return "SynthJob [\n" + " workload=" + jobClass.getWorkload().getId()
+ "\n" + " jobClass="
+ jobClass.getWorkload().getClassList().indexOf(jobClass) + "\n"
+ " conf=" + conf + ",\n" + " id=" + id + ",\n" + " name=" + name
+ ",\n" + " mapRuntime=" + Arrays.toString(mapRuntime) + ",\n"
+ " reduceRuntime=" + Arrays.toString(reduceRuntime) + ",\n"
+ " submitTime=" + submitTime + ",\n" + " numMapTasks=" + numMapTasks
+ ",\n" + " numRedTasks=" + numRedTasks + ",\n" + " mapMaxMemory="
+ mapMaxMemory + ",\n" + " reduceMaxMemory=" + reduceMaxMemory + ",\n"
+ " queueName=" + queueName + "\n" + "]";
}
public SynthJobClass getJobClass() {
return jobClass;
}
public long getTotalSlotTime() {
return totMapRuntime + totRedRuntime;
}
public long getDuration() {
return duration;
}
public long getDeadline() {
return deadline;
}
@Override
public boolean equals(Object other) {
if (!(other instanceof SynthJob)) {
return false;
}
SynthJob o = (SynthJob) other;
return Arrays.equals(mapRuntime, o.mapRuntime)
&& Arrays.equals(reduceRuntime, o.reduceRuntime)
&& submitTime == o.submitTime && numMapTasks == o.numMapTasks
&& numRedTasks == o.numRedTasks && mapMaxMemory == o.mapMaxMemory
&& reduceMaxMemory == o.reduceMaxMemory
&& mapMaxVcores == o.mapMaxVcores
&& reduceMaxVcores == o.reduceMaxVcores && queueName.equals(o.queueName)
&& jobClass.equals(o.jobClass) && totMapRuntime == o.totMapRuntime
&& totRedRuntime == o.totRedRuntime;
}
@Override
public int hashCode() {
// could have a bad distr; investigate if a relevant use case exists
return jobClass.hashCode() * (int) submitTime;
public Values getOutcome() {
return Values.SUCCESS;
}
}

View File

@ -1,180 +0,0 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.yarn.sls.synthetic;
import org.apache.commons.math3.distribution.AbstractRealDistribution;
import org.apache.commons.math3.distribution.LogNormalDistribution;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.tools.rumen.JobStory;
import org.apache.hadoop.yarn.sls.synthetic.SynthTraceJobProducer.JobClass;
import org.apache.hadoop.yarn.sls.synthetic.SynthTraceJobProducer.Trace;
/**
* This is a class that represent a class of Jobs. It is used to generate an
* individual job, by picking random durations, task counts, container size,
* etc.
*/
public class SynthJobClass {
private final JDKRandomGenerator rand;
private final LogNormalDistribution dur;
private final LogNormalDistribution mapRuntime;
private final LogNormalDistribution redRuntime;
private final LogNormalDistribution mtasks;
private final LogNormalDistribution rtasks;
private final LogNormalDistribution mapMem;
private final LogNormalDistribution redMem;
private final LogNormalDistribution mapVcores;
private final LogNormalDistribution redVcores;
private final Trace trace;
@SuppressWarnings("VisibilityModifier")
protected final SynthWorkload workload;
@SuppressWarnings("VisibilityModifier")
protected final JobClass jobClass;
public SynthJobClass(JDKRandomGenerator rand, Trace trace,
SynthWorkload workload, int classId) {
this.trace = trace;
this.workload = workload;
this.rand = new JDKRandomGenerator();
this.rand.setSeed(rand.nextLong());
jobClass = trace.workloads.get(workload.getId()).job_classes.get(classId);
this.dur = SynthUtils.getLogNormalDist(rand, jobClass.dur_avg,
jobClass.dur_stddev);
this.mapRuntime = SynthUtils.getLogNormalDist(rand, jobClass.mtime_avg,
jobClass.mtime_stddev);
this.redRuntime = SynthUtils.getLogNormalDist(rand, jobClass.rtime_avg,
jobClass.rtime_stddev);
this.mtasks = SynthUtils.getLogNormalDist(rand, jobClass.mtasks_avg,
jobClass.mtasks_stddev);
this.rtasks = SynthUtils.getLogNormalDist(rand, jobClass.rtasks_avg,
jobClass.rtasks_stddev);
this.mapMem = SynthUtils.getLogNormalDist(rand, jobClass.map_max_memory_avg,
jobClass.map_max_memory_stddev);
this.redMem = SynthUtils.getLogNormalDist(rand,
jobClass.reduce_max_memory_avg, jobClass.reduce_max_memory_stddev);
this.mapVcores = SynthUtils.getLogNormalDist(rand,
jobClass.map_max_vcores_avg, jobClass.map_max_vcores_stddev);
this.redVcores = SynthUtils.getLogNormalDist(rand,
jobClass.reduce_max_vcores_avg, jobClass.reduce_max_vcores_stddev);
}
public JobStory getJobStory(Configuration conf, long actualSubmissionTime) {
return new SynthJob(rand, conf, this, actualSubmissionTime);
}
@Override
public String toString() {
return "SynthJobClass [workload=" + workload.getName() + ", class="
+ jobClass.class_name + " job_count=" + jobClass.class_weight + ", dur="
+ ((dur != null) ? dur.getNumericalMean() : 0) + ", mapRuntime="
+ ((mapRuntime != null) ? mapRuntime.getNumericalMean() : 0)
+ ", redRuntime="
+ ((redRuntime != null) ? redRuntime.getNumericalMean() : 0)
+ ", mtasks=" + ((mtasks != null) ? mtasks.getNumericalMean() : 0)
+ ", rtasks=" + ((rtasks != null) ? rtasks.getNumericalMean() : 0)
+ ", chance_of_reservation=" + jobClass.chance_of_reservation + "]\n";
}
public double getClassWeight() {
return jobClass.class_weight;
}
public long getDur() {
return genLongSample(dur);
}
public int getMtasks() {
return genIntSample(mtasks);
}
public int getRtasks() {
return genIntSample(rtasks);
}
public long getMapMaxMemory() {
return genLongSample(mapMem);
}
public long getReduceMaxMemory() {
return genLongSample(redMem);
}
public long getMapMaxVcores() {
return genLongSample(mapVcores);
}
public long getReduceMaxVcores() {
return genLongSample(redVcores);
}
public SynthWorkload getWorkload() {
return workload;
}
public int genIntSample(AbstractRealDistribution dist) {
if (dist == null) {
return 0;
}
double baseSample = dist.sample();
if (baseSample < 0) {
baseSample = 0;
}
return (int) (Integer.MAX_VALUE & (long) Math.ceil(baseSample));
}
public long genLongSample(AbstractRealDistribution dist) {
return dist != null ? (long) Math.ceil(dist.sample()) : 0;
}
@Override
public boolean equals(Object other) {
if (!(other instanceof SynthJobClass)) {
return false;
}
SynthJobClass o = (SynthJobClass) other;
return workload.equals(o.workload);
}
@Override
public int hashCode() {
return workload.hashCode() * workload.getId();
}
public String getClassName() {
return jobClass.class_name;
}
public long getMapTimeSample() {
return genLongSample(mapRuntime);
}
public long getReduceTimeSample() {
return genLongSample(redRuntime);
}
public String getUserName() {
return jobClass.user_name;
}
}

View File

@ -19,6 +19,7 @@ package org.apache.hadoop.yarn.sls.synthetic;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.commons.math3.distribution.AbstractRealDistribution;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
@ -26,7 +27,11 @@ import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.tools.rumen.JobStory;
import org.apache.hadoop.tools.rumen.JobStoryProducer;
import org.apache.hadoop.yarn.exceptions.YarnRuntimeException;
import org.apache.hadoop.yarn.sls.appmaster.MRAMSimulator;
import org.codehaus.jackson.annotate.JsonCreator;
import org.codehaus.jackson.annotate.JsonProperty;
import org.codehaus.jackson.map.JsonMappingException;
import org.codehaus.jackson.map.ObjectMapper;
import javax.xml.bind.annotation.XmlRootElement;
@ -39,7 +44,7 @@ import static org.codehaus.jackson.map.DeserializationConfig.Feature.FAIL_ON_UNK
/**
* This is a JobStoryProducer that operates from distribution of different
* workloads. The .json input file is used to determine how many jobs, which
* workloads. The .json input file is used to determine how many weight, which
* size, number of maps/reducers and their duration, as well as the temporal
* distributed of submissions. For each parameter we control avg and stdev, and
* generate values via normal or log-normal distributions.
@ -55,8 +60,6 @@ public class SynthTraceJobProducer implements JobStoryProducer {
private final long seed;
private int totalWeight;
private final List<Double> weightList;
private final Map<Integer, SynthWorkload> workloads;
private final Queue<StoryParams> listStoryParams;
@ -65,6 +68,9 @@ public class SynthTraceJobProducer implements JobStoryProducer {
public static final String SLS_SYNTHETIC_TRACE_FILE =
"sls.synthetic" + ".trace_file";
private final static int DEFAULT_MAPPER_PRIORITY = 20;
private final static int DEFAULT_REDUCER_PRIORITY = 10;
public SynthTraceJobProducer(Configuration conf) throws IOException {
this(conf, new Path(conf.get(SLS_SYNTHETIC_TRACE_FILE)));
}
@ -76,8 +82,6 @@ public class SynthTraceJobProducer implements JobStoryProducer {
this.conf = conf;
this.rand = new JDKRandomGenerator();
workloads = new HashMap<Integer, SynthWorkload>();
weightList = new ArrayList<Double>();
ObjectMapper mapper = new ObjectMapper();
mapper.configure(INTERN_FIELD_NAMES, true);
@ -86,44 +90,132 @@ public class SynthTraceJobProducer implements JobStoryProducer {
FileSystem ifs = path.getFileSystem(conf);
FSDataInputStream fileIn = ifs.open(path);
// Initialize the random generator and the seed
this.trace = mapper.readValue(fileIn, Trace.class);
seed = trace.rand_seed;
rand.setSeed(seed);
this.seed = trace.rand_seed;
this.rand.setSeed(seed);
// Initialize the trace
this.trace.init(rand);
this.numJobs = new AtomicInteger(trace.num_jobs);
for (int workloadId = 0; workloadId < trace.workloads
.size(); workloadId++) {
SynthWorkload workload = new SynthWorkload(workloadId, trace);
for (int classId =
0; classId < trace.workloads.get(workloadId).job_classes
.size(); classId++) {
SynthJobClass cls = new SynthJobClass(rand, trace, workload, classId);
workload.add(cls);
}
workloads.put(workloadId, workload);
}
for (int i = 0; i < workloads.size(); i++) {
double w = workloads.get(i).getWorkloadWeight();
for (Double w : trace.workload_weights) {
totalWeight += w;
weightList.add(w);
}
// Initialize our story parameters
listStoryParams = createStory();
LOG.info("Generated " + listStoryParams.size() + " deadlines for "
+ this.numJobs.get() + " jobs");
}
// StoryParams hold the minimum amount of information needed to completely
// specify a job run: job definition, start time, and queue.
// This allows us to create "jobs" and then order them according to start time
static class StoryParams {
// Time the job gets submitted to
private long actualSubmissionTime;
// The queue the job gets submitted to
private String queue;
// Definition to construct the job from
private JobDefinition jobDef;
StoryParams(long actualSubmissionTime, String queue, JobDefinition jobDef) {
this.actualSubmissionTime = actualSubmissionTime;
this.queue = queue;
this.jobDef = jobDef;
}
}
private Queue<StoryParams> createStory() {
// create priority queue to keep start-time sorted
listStoryParams =
new PriorityQueue<StoryParams>(10, new Comparator<StoryParams>() {
Queue<StoryParams> storyQueue =
new PriorityQueue<>(this.numJobs.get(), new Comparator<StoryParams>() {
@Override
public int compare(StoryParams o1, StoryParams o2) {
return Math
.toIntExact(o2.actualSubmissionTime - o1.actualSubmissionTime);
.toIntExact(o1.actualSubmissionTime - o2.actualSubmissionTime);
}
});
for (int i = 0; i < numJobs.get(); i++) {
// Generate a workload
Workload wl = trace.generateWorkload();
// Save all the parameters needed to completely define a job
long actualSubmissionTime = wl.generateSubmissionTime();
String queue = wl.queue_name;
JobDefinition job = wl.generateJobDefinition();
storyQueue.add(new StoryParams(actualSubmissionTime, queue, job));
}
return storyQueue;
}
// initialize it
createStoryParams();
LOG.info("Generated " + listStoryParams.size() + " deadlines for "
+ this.numJobs.get() + " jobs ");
@Override
public JobStory getNextJob() throws IOException {
if (numJobs.decrementAndGet() < 0) {
return null;
}
StoryParams storyParams = listStoryParams.poll();
return new SynthJob(rand, conf, storyParams.jobDef, storyParams.queue,
storyParams.actualSubmissionTime);
}
@Override
public void close(){
}
@Override
public String toString() {
return "SynthTraceJobProducer [ conf=" + conf + ", numJobs=" + numJobs
+ ", r=" + rand + ", totalWeight="
+ totalWeight + ", workloads=" + trace.workloads + "]";
}
public int getNumJobs() {
return trace.num_jobs;
}
// Helper to parse and maintain backwards compatibility with
// syn json formats
private static void validateJobDef(JobDefinition jobDef){
if(jobDef.tasks == null) {
LOG.info("Detected old JobDefinition format. Converting.");
try {
jobDef.tasks = new ArrayList<>();
jobDef.type = "mapreduce";
jobDef.deadline_factor = new Sample(jobDef.deadline_factor_avg,
jobDef.deadline_factor_stddev);
jobDef.duration = new Sample(jobDef.dur_avg,
jobDef.dur_stddev);
jobDef.reservation = new Sample(jobDef.chance_of_reservation);
TaskDefinition map = new TaskDefinition();
map.type = MRAMSimulator.MAP_TYPE;
map.count = new Sample(jobDef.mtasks_avg, jobDef.mtasks_stddev);
map.time = new Sample(jobDef.mtime_avg, jobDef.mtime_stddev);
map.max_memory = new Sample((double) jobDef.map_max_memory_avg,
jobDef.map_max_memory_stddev);
map.max_vcores = new Sample((double) jobDef.map_max_vcores_avg,
jobDef.map_max_vcores_stddev);
map.priority = DEFAULT_MAPPER_PRIORITY;
jobDef.tasks.add(map);
TaskDefinition reduce = new TaskDefinition();
reduce.type = MRAMSimulator.REDUCE_TYPE;
reduce.count = new Sample(jobDef.rtasks_avg, jobDef.rtasks_stddev);
reduce.time = new Sample(jobDef.rtime_avg, jobDef.rtime_stddev);
reduce.max_memory = new Sample((double) jobDef.reduce_max_memory_avg,
jobDef.reduce_max_memory_stddev);
reduce.max_vcores = new Sample((double) jobDef.reduce_max_vcores_avg,
jobDef.reduce_max_vcores_stddev);
reduce.priority = DEFAULT_REDUCER_PRIORITY;
jobDef.tasks.add(reduce);
} catch (JsonMappingException e) {
LOG.warn("Error converting old JobDefinition format", e);
}
}
}
public long getSeed() {
@ -159,6 +251,25 @@ public class SynthTraceJobProducer implements JobStoryProducer {
@JsonProperty("workloads")
List<Workload> workloads;
List<Double> workload_weights;
JDKRandomGenerator rand;
public void init(JDKRandomGenerator random){
this.rand = random;
// Pass rand forward
for(Workload w : workloads){
w.init(rand);
}
// Initialize workload weights
workload_weights = new ArrayList<>();
for(Workload w : workloads){
workload_weights.add(w.workload_weight);
}
}
Workload generateWorkload(){
return workloads.get(SynthUtils.getWeighted(workload_weights, rand));
}
}
/**
@ -174,16 +285,67 @@ public class SynthTraceJobProducer implements JobStoryProducer {
@JsonProperty("queue_name")
String queue_name;
@JsonProperty("job_classes")
List<JobClass> job_classes;
List<JobDefinition> job_classes;
@JsonProperty("time_distribution")
List<TimeSample> time_distribution;
JDKRandomGenerator rand;
List<Double> job_weights;
List<Double> time_weights;
public void init(JDKRandomGenerator random){
this.rand = random;
// Validate and pass rand forward
for(JobDefinition def : job_classes){
validateJobDef(def);
def.init(rand);
}
// Initialize job weights
job_weights = new ArrayList<>();
job_weights = new ArrayList<>();
for(JobDefinition j : job_classes){
job_weights.add(j.class_weight);
}
// Initialize time weights
time_weights = new ArrayList<>();
for(TimeSample ts : time_distribution){
time_weights.add(ts.weight);
}
}
public long generateSubmissionTime(){
int index = SynthUtils.getWeighted(time_weights, rand);
// Retrieve the lower and upper bounds for this time "bucket"
int start = time_distribution.get(index).time;
// Get the beginning of the next time sample (if it exists)
index = (index+1)<time_distribution.size() ? index+1 : index;
int end = time_distribution.get(index).time;
int range = end-start;
// Within this time "bucket", uniformly pick a time if our
// range is non-zero, otherwise just use the start time of the bucket
return start + (range>0 ? rand.nextInt(range) : 0);
}
public JobDefinition generateJobDefinition(){
return job_classes.get(SynthUtils.getWeighted(job_weights, rand));
}
@Override
public String toString(){
return "\nWorkload " + workload_name + ", weight: " + workload_weight
+ ", queue: " + queue_name + " "
+ job_classes.toString().replace("\n", "\n\t");
}
}
/**
* Class used to parse a job class from file.
*/
@SuppressWarnings({ "membername", "checkstyle:visibilitymodifier" })
public static class JobClass {
public static class JobDefinition {
@JsonProperty("class_name")
String class_name;
@ -194,6 +356,23 @@ public class SynthTraceJobProducer implements JobStoryProducer {
@JsonProperty("class_weight")
double class_weight;
// am type to launch
@JsonProperty("type")
String type;
@JsonProperty("deadline_factor")
Sample deadline_factor;
@JsonProperty("duration")
Sample duration;
@JsonProperty("reservation")
Sample reservation;
@JsonProperty("tasks")
List<TaskDefinition> tasks;
@JsonProperty("params")
Map<String, String> params;
// Old JSON fields for backwards compatibility
// reservation related params
@JsonProperty("chance_of_reservation")
double chance_of_reservation;
@ -246,6 +425,215 @@ public class SynthTraceJobProducer implements JobStoryProducer {
@JsonProperty("reduce_max_vcores_stddev")
double reduce_max_vcores_stddev;
public void init(JDKRandomGenerator rand){
deadline_factor.init(rand);
duration.init(rand);
reservation.init(rand);
for(TaskDefinition t : tasks){
t.count.init(rand);
t.time.init(rand);
t.max_memory.init(rand);
t.max_vcores.init(rand);
}
}
@Override
public String toString(){
return "\nJobDefinition " + class_name + ", weight: " + class_weight
+ ", type: " + type + " "
+ tasks.toString().replace("\n", "\n\t");
}
}
/**
* A task representing a type of container - e.g. "map" in mapreduce
*/
@SuppressWarnings({ "membername", "checkstyle:visibilitymodifier" })
public static class TaskDefinition {
@JsonProperty("type")
String type;
@JsonProperty("count")
Sample count;
@JsonProperty("time")
Sample time;
@JsonProperty("max_memory")
Sample max_memory;
@JsonProperty("max_vcores")
Sample max_vcores;
@JsonProperty("priority")
int priority;
@Override
public String toString(){
return "\nTaskDefinition " + type
+ " Count[" + count + "] Time[" + time + "] Memory[" + max_memory
+ "] Vcores[" + max_vcores + "] Priority[" + priority + "]";
}
}
/**
* Class used to parse value sample information.
*/
@SuppressWarnings({ "membername", "checkstyle:visibilitymodifier" })
public static class Sample {
private static final Dist DEFAULT_DIST = Dist.LOGNORM;
private final double val;
private final double std;
private final Dist dist;
private AbstractRealDistribution dist_instance;
private final List<String> discrete;
private final List<Double> weights;
private final Mode mode;
private JDKRandomGenerator rand;
private enum Mode{
CONST,
DIST,
DISC
}
private enum Dist{
LOGNORM,
NORM
}
public Sample(Double val) throws JsonMappingException{
this(val, null);
}
public Sample(Double val, Double std) throws JsonMappingException{
this(val, std, null, null, null);
}
@JsonCreator
public Sample(@JsonProperty("val") Double val,
@JsonProperty("std") Double std, @JsonProperty("dist") String dist,
@JsonProperty("discrete") List<String> discrete,
@JsonProperty("weights") List<Double> weights)
throws JsonMappingException{
// Different Modes
// - Constant: val must be specified, all else null. Sampling will
// return val.
// - Distribution: val, std specified, dist optional (defaults to
// LogNormal). Sampling will sample from the appropriate distribution
// - Discrete: discrete must be set to a list of strings or numbers,
// weights optional (defaults to uniform)
if(val!=null){
if(std==null){
// Constant
if(dist!=null || discrete!=null || weights!=null){
throw new JsonMappingException("Instantiation of " + Sample.class
+ " failed");
}
mode = Mode.CONST;
this.val = val;
this.std = 0;
this.dist = null;
this.discrete = null;
this.weights = null;
} else {
// Distribution
if(discrete!=null || weights != null){
throw new JsonMappingException("Instantiation of " + Sample.class
+ " failed");
}
mode = Mode.DIST;
this.val = val;
this.std = std;
this.dist = dist!=null ? Dist.valueOf(dist) : DEFAULT_DIST;
this.discrete = null;
this.weights = null;
}
} else {
// Discrete
if(discrete==null){
throw new JsonMappingException("Instantiation of " + Sample.class
+ " failed");
}
mode = Mode.DISC;
this.val = 0;
this.std = 0;
this.dist = null;
this.discrete = discrete;
if(weights == null){
weights = new ArrayList<>(Collections.nCopies(
discrete.size(), 1.0));
}
if(weights.size() != discrete.size()){
throw new JsonMappingException("Instantiation of " + Sample.class
+ " failed");
}
this.weights = weights;
}
}
public void init(JDKRandomGenerator random){
if(this.rand != null){
throw new YarnRuntimeException("init called twice");
}
this.rand = random;
if(mode == Mode.DIST){
switch(this.dist){
case LOGNORM:
this.dist_instance = SynthUtils.getLogNormalDist(rand, val, std);
return;
case NORM:
this.dist_instance = SynthUtils.getNormalDist(rand, val, std);
return;
default:
throw new YarnRuntimeException("Unknown distribution " + dist.name());
}
}
}
public int getInt(){
return Math.toIntExact(getLong());
}
public long getLong(){
return Math.round(getDouble());
}
public double getDouble(){
return Double.parseDouble(getString());
}
public String getString(){
if(this.rand == null){
throw new YarnRuntimeException("getValue called without init");
}
switch(mode){
case CONST:
return Double.toString(val);
case DIST:
return Double.toString(dist_instance.sample());
case DISC:
return this.discrete.get(SynthUtils.getWeighted(this.weights, rand));
default:
throw new YarnRuntimeException("Unknown sampling mode " + mode.name());
}
}
@Override
public String toString(){
switch(mode){
case CONST:
return "value: " + Double.toString(val);
case DIST:
return "value: " + this.val + " std: " + this.std + " dist: "
+ this.dist.name();
case DISC:
return "discrete: " + this.discrete + ", weights: " + this.weights;
default:
throw new YarnRuntimeException("Unknown sampling mode " + mode.name());
}
}
}
/**
@ -258,59 +646,6 @@ public class SynthTraceJobProducer implements JobStoryProducer {
@JsonProperty("time")
int time;
@JsonProperty("weight")
double jobs;
double weight;
}
static class StoryParams {
private SynthJobClass pickedJobClass;
private long actualSubmissionTime;
StoryParams(SynthJobClass pickedJobClass, long actualSubmissionTime) {
this.pickedJobClass = pickedJobClass;
this.actualSubmissionTime = actualSubmissionTime;
}
}
void createStoryParams() {
for (int i = 0; i < numJobs.get(); i++) {
int workload = SynthUtils.getWeighted(weightList, rand);
SynthWorkload pickedWorkload = workloads.get(workload);
long jobClass =
SynthUtils.getWeighted(pickedWorkload.getWeightList(), rand);
SynthJobClass pickedJobClass =
pickedWorkload.getClassList().get((int) jobClass);
long actualSubmissionTime = pickedWorkload.getBaseSubmissionTime(rand);
// long actualSubmissionTime = (i + 1) * 10;
listStoryParams
.add(new StoryParams(pickedJobClass, actualSubmissionTime));
}
}
@Override
public JobStory getNextJob() throws IOException {
if (numJobs.decrementAndGet() < 0) {
return null;
}
StoryParams storyParams = listStoryParams.poll();
return storyParams.pickedJobClass.getJobStory(conf,
storyParams.actualSubmissionTime);
}
@Override
public void close() {
}
@Override
public String toString() {
return "SynthTraceJobProducer [ conf=" + conf + ", numJobs=" + numJobs
+ ", weightList=" + weightList + ", r=" + rand + ", totalWeight="
+ totalWeight + ", workloads=" + workloads + "]";
}
public int getNumJobs() {
return trace.num_jobs;
}
}

View File

@ -1,121 +0,0 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.yarn.sls.synthetic;
import org.apache.hadoop.yarn.sls.synthetic.SynthTraceJobProducer.Trace;
import java.util.*;
/**
* This class represent a workload (made up of multiple SynthJobClass(es)). It
* also stores the temporal distributions of jobs in this workload.
*/
public class SynthWorkload {
private final int id;
private final List<SynthJobClass> classList;
private final Trace trace;
private final SortedMap<Integer, Double> timeWeights;
public SynthWorkload(int identifier, Trace inTrace) {
classList = new ArrayList<SynthJobClass>();
this.id = identifier;
this.trace = inTrace;
timeWeights = new TreeMap<Integer, Double>();
for (SynthTraceJobProducer.TimeSample ts : trace.workloads
.get(id).time_distribution) {
timeWeights.put(ts.time, ts.jobs);
}
}
public boolean add(SynthJobClass s) {
return classList.add(s);
}
public List<Double> getWeightList() {
ArrayList<Double> ret = new ArrayList<Double>();
for (SynthJobClass s : classList) {
ret.add(s.getClassWeight());
}
return ret;
}
public int getId() {
return id;
}
@Override
public boolean equals(Object other) {
if (!(other instanceof SynthWorkload)) {
return false;
}
// assume ID determines job classes by construction
return getId() == ((SynthWorkload) other).getId();
}
@Override
public int hashCode() {
return getId();
}
@Override
public String toString() {
return "SynthWorkload " + trace.workloads.get(id).workload_name + "[\n"
+ classList + "]\n";
}
public String getName() {
return trace.workloads.get(id).workload_name;
}
public double getWorkloadWeight() {
return trace.workloads.get(id).workload_weight;
}
public String getQueueName() {
return trace.workloads.get(id).queue_name;
}
public long getBaseSubmissionTime(Random rand) {
// pick based on weights the "bucket" for this start time
int position = SynthUtils.getWeighted(timeWeights.values(), rand);
int[] time = new int[timeWeights.keySet().size()];
int index = 0;
for (Integer i : timeWeights.keySet()) {
time[index++] = i;
}
// uniformly pick a time between start and end time of this bucket
int startRange = time[position];
int endRange = startRange;
// if there is no subsequent bucket pick startRange
if (position < timeWeights.keySet().size() - 1) {
endRange = time[position + 1];
return startRange + rand.nextInt((endRange - startRange));
} else {
return startRange;
}
}
public List<SynthJobClass> getClassList() {
return classList;
}
}

View File

@ -125,7 +125,7 @@ public abstract class BaseSLSRunnerTest {
if (!exceptionList.isEmpty()) {
sls.stop();
Assert.fail("TestSLSRunner catched exception from child thread "
+ "(TaskRunner.Task): " + exceptionList);
+ "(TaskRunner.TaskDefinition): " + exceptionList);
break;
}
timeout--;

View File

@ -0,0 +1,76 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.yarn.sls;
import net.jcip.annotations.NotThreadSafe;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
import java.util.Arrays;
import java.util.Collection;
/**
* This test performs simple runs of the SLS with the generic syn json format.
*/
@RunWith(value = Parameterized.class)
@NotThreadSafe
public class TestSLSGenericSynth extends BaseSLSRunnerTest {
@Parameters(name = "Testing with: {1}, {0}, (nodeFile {3})")
public static Collection<Object[]> data() {
String capScheduler = CapacityScheduler.class.getCanonicalName();
String fairScheduler = FairScheduler.class.getCanonicalName();
String synthTraceFile = "src/test/resources/syn_generic.json";
String nodeFile = "src/test/resources/nodes.json";
// Test with both schedulers
return Arrays.asList(new Object[][] {
// covering the no nodeFile case
{capScheduler, "SYNTH", synthTraceFile, null },
// covering new commandline and CapacityScheduler
{capScheduler, "SYNTH", synthTraceFile, nodeFile },
// covering FairScheduler
{fairScheduler, "SYNTH", synthTraceFile, nodeFile },
});
}
@Before
public void setup() {
ongoingInvariantFile = "src/test/resources/ongoing-invariants.txt";
exitInvariantFile = "src/test/resources/exit-invariants.txt";
}
@Test(timeout = 90000)
@SuppressWarnings("all")
public void testSimulatorRunning() throws Exception {
Configuration conf = new Configuration(false);
long timeTillShutdownInsec = 20L;
runSLS(conf, timeTillShutdownInsec);
}
}

View File

@ -0,0 +1,76 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.yarn.sls;
import net.jcip.annotations.NotThreadSafe;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
import java.util.Arrays;
import java.util.Collection;
/**
* This test performs simple runs of the SLS with the generic syn json format.
*/
@RunWith(value = Parameterized.class)
@NotThreadSafe
public class TestSLSStreamAMSynth extends BaseSLSRunnerTest {
@Parameters(name = "Testing with: {1}, {0}, (nodeFile {3})")
public static Collection<Object[]> data() {
String capScheduler = CapacityScheduler.class.getCanonicalName();
String fairScheduler = FairScheduler.class.getCanonicalName();
String synthTraceFile = "src/test/resources/syn_stream.json";
String nodeFile = "src/test/resources/nodes.json";
// Test with both schedulers
return Arrays.asList(new Object[][] {
// covering the no nodeFile case
{capScheduler, "SYNTH", synthTraceFile, null },
// covering new commandline and CapacityScheduler
{capScheduler, "SYNTH", synthTraceFile, nodeFile },
// covering FairScheduler
{fairScheduler, "SYNTH", synthTraceFile, nodeFile },
});
}
@Before
public void setup() {
ongoingInvariantFile = "src/test/resources/ongoing-invariants.txt";
exitInvariantFile = "src/test/resources/exit-invariants.txt";
}
@Test(timeout = 90000)
@SuppressWarnings("all")
public void testSimulatorRunning() throws Exception {
Configuration conf = new Configuration(false);
long timeTillShutdownInsec = 20L;
runSLS(conf, timeTillShutdownInsec);
}
}

View File

@ -17,20 +17,25 @@
*/
package org.apache.hadoop.yarn.sls;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.codehaus.jackson.map.JsonMappingException;
import org.codehaus.jackson.map.ObjectMapper;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.TaskType;
import org.apache.hadoop.tools.rumen.TaskAttemptInfo;
import org.apache.hadoop.yarn.sls.synthetic.SynthJob;
import org.apache.hadoop.yarn.sls.synthetic.SynthTraceJobProducer;
import org.apache.hadoop.mapreduce.MRJobConfig;
import org.apache.log4j.Logger;
import org.junit.Assert;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.util.Arrays;
import static org.junit.Assert.assertTrue;
import static org.codehaus.jackson.JsonParser.Feature.INTERN_FIELD_NAMES;
import static org.codehaus.jackson.map.DeserializationConfig.Feature.FAIL_ON_UNKNOWN_PROPERTIES;
/**
* Simple test class driving the {@code SynthTraceJobProducer}, and validating
* jobs produce are within expected range.
@ -38,10 +43,60 @@ import static org.junit.Assert.assertTrue;
public class TestSynthJobGeneration {
public final static Logger LOG =
Logger.getLogger(TestSynthJobGeneration.class);
LoggerFactory.getLogger(TestSynthJobGeneration.class);
@Test
public void test() throws IllegalArgumentException, IOException {
public void testWorkloadGenerateTime()
throws IllegalArgumentException, IOException {
String workloadJson = "{\"job_classes\": [], \"time_distribution\":["
+ "{\"time\": 0, \"weight\": 1}, " + "{\"time\": 30, \"weight\": 0},"
+ "{\"time\": 60, \"weight\": 2}," + "{\"time\": 90, \"weight\": 1}"
+ "]}";
ObjectMapper mapper = new ObjectMapper();
mapper.configure(INTERN_FIELD_NAMES, true);
mapper.configure(FAIL_ON_UNKNOWN_PROPERTIES, false);
SynthTraceJobProducer.Workload wl =
mapper.readValue(workloadJson, SynthTraceJobProducer.Workload.class);
JDKRandomGenerator rand = new JDKRandomGenerator();
rand.setSeed(0);
wl.init(rand);
int bucket0 = 0;
int bucket1 = 0;
int bucket2 = 0;
int bucket3 = 0;
for (int i = 0; i < 1000; ++i) {
long time = wl.generateSubmissionTime();
LOG.info("Generated time " + time);
if (time < 30) {
bucket0++;
} else if (time < 60) {
bucket1++;
} else if (time < 90) {
bucket2++;
} else {
bucket3++;
}
}
Assert.assertTrue(bucket0 > 0);
Assert.assertTrue(bucket1 == 0);
Assert.assertTrue(bucket2 > 0);
Assert.assertTrue(bucket3 > 0);
Assert.assertTrue(bucket2 > bucket0);
Assert.assertTrue(bucket2 > bucket3);
LOG.info("bucket0 {}, bucket1 {}, bucket2 {}, bucket3 {}", bucket0, bucket1,
bucket2, bucket3);
}
@Test
public void testMapReduce() throws IllegalArgumentException, IOException {
Configuration conf = new Configuration();
@ -50,47 +105,155 @@ public class TestSynthJobGeneration {
SynthTraceJobProducer stjp = new SynthTraceJobProducer(conf);
LOG.info(stjp.toString());
SynthJob js = (SynthJob) stjp.getNextJob();
int jobCount = 0;
while (js != null) {
LOG.info((jobCount++) + " " + js.getQueueName() + " -- "
+ js.getJobClass().getClassName() + " (conf: "
+ js.getJobConf().get(MRJobConfig.QUEUE_NAME) + ") " + " submission: "
+ js.getSubmissionTime() + ", " + " duration: " + js.getDuration()
+ " numMaps: " + js.getNumberMaps() + " numReduces: "
+ js.getNumberReduces());
LOG.info(js.toString());
validateJob(js);
js = (SynthJob) stjp.getNextJob();
jobCount++;
}
Assert.assertEquals(stjp.getNumJobs(), jobCount);
}
@Test
public void testGeneric() throws IllegalArgumentException, IOException {
Configuration conf = new Configuration();
conf.set(SynthTraceJobProducer.SLS_SYNTHETIC_TRACE_FILE,
"src/test/resources/syn_generic.json");
SynthTraceJobProducer stjp = new SynthTraceJobProducer(conf);
LOG.info(stjp.toString());
SynthJob js = (SynthJob) stjp.getNextJob();
int jobCount = 0;
while (js != null) {
LOG.info(js.toString());
validateJob(js);
js = (SynthJob) stjp.getNextJob();
jobCount++;
}
Assert.assertEquals(stjp.getNumJobs(), jobCount);
}
@Test
public void testStream() throws IllegalArgumentException, IOException {
Configuration conf = new Configuration();
conf.set(SynthTraceJobProducer.SLS_SYNTHETIC_TRACE_FILE,
"src/test/resources/syn_stream.json");
SynthTraceJobProducer stjp = new SynthTraceJobProducer(conf);
LOG.info(stjp.toString());
SynthJob js = (SynthJob) stjp.getNextJob();
int jobCount = 0;
while (js != null) {
LOG.info(js.toString());
validateJob(js);
js = (SynthJob) stjp.getNextJob();
jobCount++;
}
Assert.assertEquals(stjp.getNumJobs(), jobCount);
}
@Test
public void testSample() throws IOException {
ObjectMapper mapper = new ObjectMapper();
mapper.configure(INTERN_FIELD_NAMES, true);
mapper.configure(FAIL_ON_UNKNOWN_PROPERTIES, false);
JDKRandomGenerator rand = new JDKRandomGenerator();
rand.setSeed(0);
String valJson = "{\"val\" : 5 }";
SynthTraceJobProducer.Sample valSample =
mapper.readValue(valJson, SynthTraceJobProducer.Sample.class);
valSample.init(rand);
int val = valSample.getInt();
Assert.assertEquals(5, val);
String distJson = "{\"val\" : 5, \"std\" : 1 }";
SynthTraceJobProducer.Sample distSample =
mapper.readValue(distJson, SynthTraceJobProducer.Sample.class);
distSample.init(rand);
double dist = distSample.getDouble();
Assert.assertTrue(dist > 2 && dist < 8);
String normdistJson = "{\"val\" : 5, \"std\" : 1, \"dist\": \"NORM\" }";
SynthTraceJobProducer.Sample normdistSample =
mapper.readValue(normdistJson, SynthTraceJobProducer.Sample.class);
normdistSample.init(rand);
double normdist = normdistSample.getDouble();
Assert.assertTrue(normdist > 2 && normdist < 8);
String discreteJson = "{\"discrete\" : [2, 4, 6, 8]}";
SynthTraceJobProducer.Sample discreteSample =
mapper.readValue(discreteJson, SynthTraceJobProducer.Sample.class);
discreteSample.init(rand);
int discrete = discreteSample.getInt();
Assert.assertTrue(
Arrays.asList(new Integer[] {2, 4, 6, 8}).contains(discrete));
String discreteWeightsJson =
"{\"discrete\" : [2, 4, 6, 8], " + "\"weights\": [0, 0, 0, 1]}";
SynthTraceJobProducer.Sample discreteWeightsSample = mapper
.readValue(discreteWeightsJson, SynthTraceJobProducer.Sample.class);
discreteWeightsSample.init(rand);
int discreteWeights = discreteWeightsSample.getInt();
Assert.assertEquals(8, discreteWeights);
String invalidJson = "{\"val\" : 5, \"discrete\" : [2, 4, 6, 8], "
+ "\"weights\": [0, 0, 0, 1]}";
try {
mapper.readValue(invalidJson, SynthTraceJobProducer.Sample.class);
Assert.fail();
} catch (JsonMappingException e) {
Assert.assertTrue(e.getMessage().startsWith("Instantiation of"));
}
String invalidDistJson =
"{\"val\" : 5, \"std\" : 1, " + "\"dist\": \"INVALID\" }";
try {
mapper.readValue(invalidDistJson, SynthTraceJobProducer.Sample.class);
Assert.fail();
} catch (JsonMappingException e) {
Assert.assertTrue(e.getMessage().startsWith("Instantiation of"));
}
}
private void validateJob(SynthJob js) {
assertTrue(js.getSubmissionTime() > 0);
assertTrue(js.getDuration() > 0);
assertTrue(js.getNumberMaps() >= 0);
assertTrue(js.getNumberReduces() >= 0);
assertTrue(js.getNumberMaps() + js.getNumberReduces() > 0);
assertTrue(js.getTotalSlotTime() >= 0);
for (int i = 0; i < js.getNumberMaps(); i++) {
TaskAttemptInfo tai = js.getTaskAttemptInfo(TaskType.MAP, i, 0);
assertTrue(tai.getRuntime() > 0);
}
for (int i = 0; i < js.getNumberReduces(); i++) {
TaskAttemptInfo tai = js.getTaskAttemptInfo(TaskType.REDUCE, i, 0);
assertTrue(tai.getRuntime() > 0);
}
if (js.hasDeadline()) {
assertTrue(js.getDeadline() > js.getSubmissionTime() + js.getDuration());
}
assertTrue(js.getTasks().size() > 0);
for (SynthJob.SynthTask t : js.getTasks()) {
assertTrue(t.getType() != null);
assertTrue(t.getTime() > 0);
assertTrue(t.getMemory() > 0);
assertTrue(t.getVcores() > 0);
}
}
}

View File

@ -139,7 +139,7 @@ public class TestAMSimulator {
String queue = "default";
List<ContainerSimulator> containers = new ArrayList<>();
app.init(1000, containers, rm, null, 0, 1000000L, "user1", queue, true,
appId, 0, SLSConfiguration.getAMContainerResource(conf));
appId, 0, SLSConfiguration.getAMContainerResource(conf), null);
app.firstStep();
verifySchedulerMetrics(appId);

View File

@ -45,6 +45,10 @@
<name>yarn.sls.am.type.mapreduce</name>
<value>org.apache.hadoop.yarn.sls.appmaster.MRAMSimulator</value>
</property>
<property>
<name>yarn.sls.am.type.stream</name>
<value>org.apache.hadoop.yarn.sls.appmaster.StreamAMSimulator</value>
</property>
<!-- Containers configuration -->
<property>

View File

@ -45,7 +45,7 @@
},
{
"time": 60,
"jobs": 0
"weight": 0
}
]
}

View File

@ -0,0 +1,54 @@
{
"description": "tiny jobs workload",
"num_nodes": 20,
"nodes_per_rack": 4,
"num_jobs": 10,
"rand_seed": 2,
"workloads": [
{
"workload_name": "tiny-test",
"workload_weight": 0.5,
"description": "Sort jobs",
"queue_name": "sls_queue_1",
"job_classes": [
{
"class_name": "class_1",
"user_name": "foobar",
"class_weight": 1.0,
"type": "mapreduce",
"deadline_factor": {"val": 10},
"duration": {"val": 60, "std": 5},
"reservation": {"val": 0.5},
"tasks":[
{
"type": "map",
"priority": 20,
"count": { "val": 5, "std": 1},
"time": {"val": 10, "std": 2},
"max_memory": {"val": 1024},
"max_vcores": {"val": 1}
},
{
"type": "reduce",
"priority": 10,
"count": { "val": 5, "std": 1},
"time": {"val": 20, "std": 4},
"max_memory": {"val": 2048},
"max_vcores": {"val": 2}
}
]
}
],
"time_distribution": [
{
"time": 1,
"weight": 100
},
{
"time": 60,
"weight": 0
}
]
}
]
}

View File

@ -0,0 +1,46 @@
{
"description": "stream workload",
"num_nodes": 20,
"nodes_per_rack": 4,
"num_jobs": 5,
"rand_seed": 2,
"workloads": [
{
"workload_name": "tiny-test",
"workload_weight": 1,
"description": "long lived streaming jobs",
"queue_name": "sls_queue_1",
"job_classes": [
{
"class_name": "class_1",
"user_name": "foobar",
"class_weight": 1.0,
"type": "stream",
"deadline_factor": {"val": 10},
"duration": {"val": 30, "std": 5},
"reservation": {"val": 0.5},
"tasks":[
{
"type": "stream",
"priority": 20,
"count": { "val": 2},
"time": {"val": 60000},
"max_memory": {"val": 4096},
"max_vcores": {"val": 4}
}
]
}
],
"time_distribution": [
{
"time": 1,
"weight": 100
},
{
"time": 2,
"weight": 0
}
]
}
]
}