MAPREDUCE-6335. Created MR job based performance test driver for the timeline service v2. Contributed by Sangjin Lee.
(cherry picked from commit b689f5d43d3f5434a30fe52f1a7e12e1fc5c71f4)
This commit is contained in:
parent
b50a6d78f5
commit
8c7b6dd2c7
|
@ -0,0 +1,298 @@
|
|||
/**
|
||||
* Licensed to the Apache Software Foundation (ASF) under one
|
||||
* or more contributor license agreements. See the NOTICE file
|
||||
* distributed with this work for additional information
|
||||
* regarding copyright ownership. The ASF licenses this file
|
||||
* to you under the Apache License, Version 2.0 (the
|
||||
* "License"); you may not use this file except in compliance
|
||||
* with the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.hadoop.mapred;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Date;
|
||||
import java.util.Random;
|
||||
|
||||
import org.apache.commons.logging.Log;
|
||||
import org.apache.commons.logging.LogFactory;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.conf.Configured;
|
||||
import org.apache.hadoop.io.IntWritable;
|
||||
import org.apache.hadoop.io.Writable;
|
||||
import org.apache.hadoop.mapreduce.Job;
|
||||
import org.apache.hadoop.mapreduce.MRJobConfig;
|
||||
import org.apache.hadoop.mapreduce.SleepJob.SleepInputFormat;
|
||||
import org.apache.hadoop.mapreduce.TaskAttemptID;
|
||||
import org.apache.hadoop.mapreduce.lib.output.NullOutputFormat;
|
||||
import org.apache.hadoop.security.UserGroupInformation;
|
||||
import org.apache.hadoop.util.GenericOptionsParser;
|
||||
import org.apache.hadoop.util.Tool;
|
||||
import org.apache.hadoop.util.ToolRunner;
|
||||
import org.apache.hadoop.yarn.api.records.ApplicationId;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntities;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEntity;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineEvent;
|
||||
import org.apache.hadoop.yarn.api.records.timelineservice.TimelineMetric;
|
||||
import org.apache.hadoop.yarn.conf.YarnConfiguration;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.collector.AppLevelTimelineCollector;
|
||||
import org.apache.hadoop.yarn.server.timelineservice.collector.TimelineCollectorContext;
|
||||
|
||||
public class TimelineServicePerformanceV2 extends Configured implements Tool {
|
||||
private static final Log LOG =
|
||||
LogFactory.getLog(TimelineServicePerformanceV2.class);
|
||||
|
||||
static final int NUM_MAPS_DEFAULT = 1;
|
||||
|
||||
static final int SIMPLE_ENTITY_WRITER = 1;
|
||||
// constants for mtype = 1
|
||||
static final String KBS_SENT = "kbs sent";
|
||||
static final int KBS_SENT_DEFAULT = 1;
|
||||
static final String TEST_TIMES = "testtimes";
|
||||
static final int TEST_TIMES_DEFAULT = 100;
|
||||
static final String TIMELINE_SERVICE_PERFORMANCE_RUN_ID =
|
||||
"timeline.server.performance.run.id";
|
||||
|
||||
static int mapperType = SIMPLE_ENTITY_WRITER;
|
||||
|
||||
protected static int printUsage() {
|
||||
// TODO is there a way to handle mapper-specific options more gracefully?
|
||||
System.err.println(
|
||||
"Usage: [-m <maps>] number of mappers (default: " + NUM_MAPS_DEFAULT +
|
||||
")\n" +
|
||||
" [-mtype <mapper type in integer>] \n" +
|
||||
" 1. simple entity write mapper\n" +
|
||||
" [-s <(KBs)test>] number of KB per put (default: " +
|
||||
KBS_SENT_DEFAULT + " KB)\n" +
|
||||
" [-t] package sending iterations per mapper (default: " +
|
||||
TEST_TIMES_DEFAULT + ")\n");
|
||||
GenericOptionsParser.printGenericCommandUsage(System.err);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure a job given argv.
|
||||
*/
|
||||
public static boolean parseArgs(String[] args, Job job) throws IOException {
|
||||
// set the defaults
|
||||
Configuration conf = job.getConfiguration();
|
||||
conf.setInt(MRJobConfig.NUM_MAPS, NUM_MAPS_DEFAULT);
|
||||
conf.setInt(KBS_SENT, KBS_SENT_DEFAULT);
|
||||
conf.setInt(TEST_TIMES, TEST_TIMES_DEFAULT);
|
||||
|
||||
for (int i = 0; i < args.length; i++) {
|
||||
if (args.length == i + 1) {
|
||||
System.out.println("ERROR: Required parameter missing from " + args[i]);
|
||||
return printUsage() == 0;
|
||||
}
|
||||
try {
|
||||
if ("-m".equals(args[i])) {
|
||||
if (Integer.parseInt(args[++i]) > 0) {
|
||||
job.getConfiguration()
|
||||
.setInt(MRJobConfig.NUM_MAPS, (Integer.parseInt(args[i])));
|
||||
}
|
||||
} else if ("-mtype".equals(args[i])) {
|
||||
mapperType = Integer.parseInt(args[++i]);
|
||||
switch (mapperType) {
|
||||
case SIMPLE_ENTITY_WRITER:
|
||||
job.setMapperClass(SimpleEntityWriter.class);
|
||||
break;
|
||||
default:
|
||||
job.setMapperClass(SimpleEntityWriter.class);
|
||||
}
|
||||
} else if ("-s".equals(args[i])) {
|
||||
if (Integer.parseInt(args[++i]) > 0) {
|
||||
conf.setInt(KBS_SENT, (Integer.parseInt(args[i])));
|
||||
}
|
||||
} else if ("-t".equals(args[i])) {
|
||||
if (Integer.parseInt(args[++i]) > 0) {
|
||||
conf.setInt(TEST_TIMES, (Integer.parseInt(args[i])));
|
||||
}
|
||||
} else {
|
||||
System.out.println("Unexpected argument: " + args[i]);
|
||||
return printUsage() == 0;
|
||||
}
|
||||
} catch (NumberFormatException except) {
|
||||
System.out.println("ERROR: Integer expected instead of " + args[i]);
|
||||
return printUsage() == 0;
|
||||
} catch (Exception e) {
|
||||
throw (IOException)new IOException().initCause(e);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* TimelineServer Performance counters
|
||||
*/
|
||||
static enum PerfCounters {
|
||||
TIMELINE_SERVICE_WRITE_TIME,
|
||||
TIMELINE_SERVICE_WRITE_COUNTER,
|
||||
TIMELINE_SERVICE_WRITE_FAILURES,
|
||||
TIMELINE_SERVICE_WRITE_KBS,
|
||||
}
|
||||
|
||||
public int run(String[] args) throws Exception {
|
||||
|
||||
Job job = Job.getInstance(getConf());
|
||||
job.setJarByClass(TimelineServicePerformanceV2.class);
|
||||
job.setMapperClass(SimpleEntityWriter.class);
|
||||
job.setInputFormatClass(SleepInputFormat.class);
|
||||
job.setOutputFormatClass(NullOutputFormat.class);
|
||||
job.setNumReduceTasks(0);
|
||||
if (!parseArgs(args, job)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// for mtype = 1
|
||||
// use the current timestamp as the "run id" of the test: this will be used
|
||||
// as simulating the cluster timestamp for apps
|
||||
Configuration conf = job.getConfiguration();
|
||||
conf.setLong(TIMELINE_SERVICE_PERFORMANCE_RUN_ID,
|
||||
System.currentTimeMillis());
|
||||
|
||||
Date startTime = new Date();
|
||||
System.out.println("Job started: " + startTime);
|
||||
int ret = job.waitForCompletion(true) ? 0 : 1;
|
||||
org.apache.hadoop.mapreduce.Counters counters = job.getCounters();
|
||||
long writetime =
|
||||
counters.findCounter(PerfCounters.TIMELINE_SERVICE_WRITE_TIME).getValue();
|
||||
long writecounts =
|
||||
counters.findCounter(PerfCounters.TIMELINE_SERVICE_WRITE_COUNTER).getValue();
|
||||
long writesize =
|
||||
counters.findCounter(PerfCounters.TIMELINE_SERVICE_WRITE_KBS).getValue();
|
||||
double transacrate = writecounts * 1000 / (double)writetime;
|
||||
double iorate = writesize * 1000 / (double)writetime;
|
||||
int numMaps = Integer.parseInt(conf.get(MRJobConfig.NUM_MAPS));
|
||||
|
||||
System.out.println("TRANSACTION RATE (per mapper): " + transacrate +
|
||||
" ops/s");
|
||||
System.out.println("IO RATE (per mapper): " + iorate + " KB/s");
|
||||
|
||||
System.out.println("TRANSACTION RATE (total): " + transacrate*numMaps +
|
||||
" ops/s");
|
||||
System.out.println("IO RATE (total): " + iorate*numMaps + " KB/s");
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
int res =
|
||||
ToolRunner.run(new Configuration(), new TimelineServicePerformanceV2(),
|
||||
args);
|
||||
System.exit(res);
|
||||
}
|
||||
|
||||
/**
|
||||
* To ensure that the compression really gets exercised, generate a
|
||||
* random alphanumeric fixed length payload
|
||||
*/
|
||||
static final char[] alphaNums = new char[] { 'a', 'b', 'c', 'd', 'e', 'f',
|
||||
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
|
||||
's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D',
|
||||
'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
|
||||
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '1', '2',
|
||||
'3', '4', '5', '6', '7', '8', '9', '0', ' ' };
|
||||
|
||||
/**
|
||||
* Adds simple entities with random string payload, events, metrics, and
|
||||
* configuration.
|
||||
*/
|
||||
public static class SimpleEntityWriter
|
||||
extends org.apache.hadoop.mapreduce.Mapper<IntWritable,IntWritable,Writable,Writable> {
|
||||
public void map(IntWritable key, IntWritable val, Context context)
|
||||
throws IOException {
|
||||
|
||||
Configuration conf = context.getConfiguration();
|
||||
// simulate the app id with the task id
|
||||
int taskId = context.getTaskAttemptID().getTaskID().getId();
|
||||
long timestamp = conf.getLong(TIMELINE_SERVICE_PERFORMANCE_RUN_ID, 0);
|
||||
ApplicationId appId = ApplicationId.newInstance(timestamp, taskId);
|
||||
|
||||
// create the app level timeline collector
|
||||
Configuration tlConf = new YarnConfiguration();
|
||||
AppLevelTimelineCollector collector =
|
||||
new AppLevelTimelineCollector(appId);
|
||||
collector.init(tlConf);
|
||||
collector.start();
|
||||
|
||||
try {
|
||||
// set the context
|
||||
// flow id: job name, flow run id: timestamp, user id
|
||||
TimelineCollectorContext tlContext =
|
||||
collector.getTimelineEntityContext();
|
||||
tlContext.setFlowName(context.getJobName());
|
||||
tlContext.setFlowRunId(timestamp);
|
||||
tlContext.setUserId(context.getUser());
|
||||
|
||||
final int kbs = Integer.parseInt(conf.get(KBS_SENT));
|
||||
|
||||
long totalTime = 0;
|
||||
final int testtimes = Integer.parseInt(conf.get(TEST_TIMES));
|
||||
final Random rand = new Random();
|
||||
final TaskAttemptID taskAttemptId = context.getTaskAttemptID();
|
||||
final char[] payLoad = new char[kbs * 1024];
|
||||
|
||||
for (int i = 0; i < testtimes; i++) {
|
||||
// Generate a fixed length random payload
|
||||
for (int xx = 0; xx < kbs * 1024; xx++) {
|
||||
int alphaNumIdx = rand.nextInt(alphaNums.length);
|
||||
payLoad[xx] = alphaNums[alphaNumIdx];
|
||||
}
|
||||
String entId = taskAttemptId + "_" + Integer.toString(i);
|
||||
final TimelineEntity entity = new TimelineEntity();
|
||||
entity.setId(entId);
|
||||
entity.setType("FOO_ATTEMPT");
|
||||
entity.addInfo("PERF_TEST", payLoad);
|
||||
// add an event
|
||||
TimelineEvent event = new TimelineEvent();
|
||||
event.setTimestamp(System.currentTimeMillis());
|
||||
event.addInfo("foo_event", "test");
|
||||
entity.addEvent(event);
|
||||
// add a metric
|
||||
TimelineMetric metric = new TimelineMetric();
|
||||
metric.setId("foo_metric");
|
||||
metric.setSingleData(123456789L);
|
||||
entity.addMetric(metric);
|
||||
// add a config
|
||||
entity.addConfig("foo", "bar");
|
||||
|
||||
TimelineEntities entities = new TimelineEntities();
|
||||
entities.addEntity(entity);
|
||||
// use the current user for this purpose
|
||||
UserGroupInformation ugi = UserGroupInformation.getCurrentUser();
|
||||
long startWrite = System.nanoTime();
|
||||
try {
|
||||
collector.putEntities(entities, ugi);
|
||||
} catch (Exception e) {
|
||||
context.getCounter(PerfCounters.TIMELINE_SERVICE_WRITE_FAILURES).
|
||||
increment(1);
|
||||
e.printStackTrace();
|
||||
}
|
||||
long endWrite = System.nanoTime();
|
||||
totalTime += (endWrite-startWrite)/1000000L;
|
||||
}
|
||||
LOG.info("wrote " + testtimes + " entities (" + kbs*testtimes +
|
||||
" kB) in " + totalTime + " ms");
|
||||
context.getCounter(PerfCounters.TIMELINE_SERVICE_WRITE_TIME).
|
||||
increment(totalTime);
|
||||
context.getCounter(PerfCounters.TIMELINE_SERVICE_WRITE_COUNTER).
|
||||
increment(testtimes);
|
||||
context.getCounter(PerfCounters.TIMELINE_SERVICE_WRITE_KBS).
|
||||
increment(kbs*testtimes);
|
||||
} finally {
|
||||
// clean up
|
||||
collector.close();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -29,6 +29,7 @@ import org.apache.hadoop.mapred.TestSequenceFileInputFormat;
|
|||
import org.apache.hadoop.mapred.TestTextInputFormat;
|
||||
import org.apache.hadoop.mapred.ThreadedMapBenchmark;
|
||||
import org.apache.hadoop.mapreduce.TimelineServicePerformance;
|
||||
import org.apache.hadoop.mapred.TimelineServicePerformanceV2;
|
||||
import org.apache.hadoop.mapreduce.FailJob;
|
||||
import org.apache.hadoop.mapreduce.LargeSorter;
|
||||
import org.apache.hadoop.mapreduce.MiniHadoopClusterManager;
|
||||
|
@ -93,6 +94,8 @@ public class MapredTestDriver {
|
|||
"A job that sleeps at each map and reduce task.");
|
||||
pgd.addClass("timelineperformance", TimelineServicePerformance.class,
|
||||
"A job that launches mappers to test timlineserver performance.");
|
||||
pgd.addClass("timelineperformance", TimelineServicePerformanceV2.class,
|
||||
"A job that launch mappers to test timline service v.2 performance.");
|
||||
pgd.addClass("nnbench", NNBench.class,
|
||||
"A benchmark that stresses the namenode w/ MR.");
|
||||
pgd.addClass("nnbenchWithoutMR", NNBenchWithoutMR.class,
|
||||
|
|
Loading…
Reference in New Issue