HADOOP-8541. Better high-percentile latency metrics. Contributed by Andrew Wang.

git-svn-id: https://svn.apache.org/repos/asf/hadoop/common/branches/branch-2@1360502 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Aaron Myers 2012-07-12 01:34:41 +00:00
parent 327ccbf07f
commit 91740f0917
8 changed files with 824 additions and 5 deletions

View File

@ -67,6 +67,8 @@ Release 2.0.1-alpha - UNRELEASED
EOFException on Snappy or LZO block-compressed data
(todd via harsh)
HADOOP-8541. Better high-percentile latency metrics. (Andrew Wang via atm)
BUG FIXES
HADOOP-8372. NetUtils.normalizeHostName() incorrectly handles hostname

View File

@ -295,4 +295,13 @@
<Class name="~org\.apache\.hadoop\.ha\.proto\.ZKFCProtocolProtos.*"/>
</Match>
<!--
Manually checked, misses child thread manually syncing on parent's intrinsic lock.
-->
<Match>
<Class name="org.apache.hadoop.metrics2.lib.MutableQuantiles" />
<Field name="previousSnapshot" />
<Bug pattern="IS2_INCONSISTENT_SYNC" />
</Match>
</FindBugsFilter>

View File

@ -180,6 +180,24 @@ public class MetricsRegistry {
return ret;
}
/**
* Create a mutable metric that estimates quantiles of a stream of values
* @param name of the metric
* @param desc metric description
* @param sampleName of the metric (e.g., "Ops")
* @param valueName of the metric (e.g., "Time" or "Latency")
* @param interval rollover interval of estimator in seconds
* @return a new quantile estimator object
*/
public synchronized MutableQuantiles newQuantiles(String name, String desc,
String sampleName, String valueName, int interval) {
checkMetricName(name);
MutableQuantiles ret =
new MutableQuantiles(name, desc, sampleName, valueName, interval);
metricsMap.put(name, ret);
return ret;
}
/**
* Create a mutable metric with stats
* @param name of the metric

View File

@ -0,0 +1,165 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.metrics2.lib;
import static org.apache.hadoop.metrics2.lib.Interns.info;
import java.io.IOException;
import java.util.Map;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.metrics2.MetricsInfo;
import org.apache.hadoop.metrics2.MetricsRecordBuilder;
import org.apache.hadoop.metrics2.util.Quantile;
import org.apache.hadoop.metrics2.util.SampleQuantiles;
import com.google.common.annotations.VisibleForTesting;
/**
* Watches a stream of long values, maintaining online estimates of specific
* quantiles with provably low error bounds. This is particularly useful for
* accurate high-percentile (e.g. 95th, 99th) latency metrics.
*/
@InterfaceAudience.Public
@InterfaceStability.Evolving
public class MutableQuantiles extends MutableMetric {
static final Quantile[] quantiles = { new Quantile(0.50, 0.050),
new Quantile(0.75, 0.025), new Quantile(0.90, 0.010),
new Quantile(0.95, 0.005), new Quantile(0.99, 0.001) };
private final MetricsInfo numInfo;
private final MetricsInfo[] quantileInfos;
private final int interval;
private SampleQuantiles estimator;
private long previousCount = 0;
@VisibleForTesting
protected Map<Quantile, Long> previousSnapshot = null;
private final ScheduledExecutorService scheduler = Executors
.newScheduledThreadPool(1);
/**
* Instantiates a new {@link MutableQuantiles} for a metric that rolls itself
* over on the specified time interval.
*
* @param name
* of the metric
* @param description
* long-form textual description of the metric
* @param sampleName
* type of items in the stream (e.g., "Ops")
* @param valueName
* type of the values
* @param interval
* rollover interval (in seconds) of the estimator
*/
public MutableQuantiles(String name, String description, String sampleName,
String valueName, int interval) {
String ucName = StringUtils.capitalize(name);
String usName = StringUtils.capitalize(sampleName);
String uvName = StringUtils.capitalize(valueName);
String desc = StringUtils.uncapitalize(description);
String lsName = StringUtils.uncapitalize(sampleName);
String lvName = StringUtils.uncapitalize(valueName);
numInfo = info(ucName + "Num" + usName, String.format(
"Number of %s for %s with %ds interval", lsName, desc, interval));
// Construct the MetricsInfos for the quantiles, converting to percentiles
quantileInfos = new MetricsInfo[quantiles.length];
String nameTemplate = ucName + "%dthPercentile" + interval + "sInterval"
+ uvName;
String descTemplate = "%d percentile " + lvName + " with " + interval
+ " second interval for " + desc;
for (int i = 0; i < quantiles.length; i++) {
int percentile = (int) (100 * quantiles[i].quantile);
quantileInfos[i] = info(String.format(nameTemplate, percentile),
String.format(descTemplate, percentile));
}
estimator = new SampleQuantiles(quantiles);
this.interval = interval;
scheduler.scheduleAtFixedRate(new RolloverSample(this), interval, interval,
TimeUnit.SECONDS);
}
@Override
public synchronized void snapshot(MetricsRecordBuilder builder, boolean all) {
if (all || changed()) {
builder.addGauge(numInfo, previousCount);
for (int i = 0; i < quantiles.length; i++) {
long newValue = 0;
// If snapshot is null, we failed to update since the window was empty
if (previousSnapshot != null) {
newValue = previousSnapshot.get(quantiles[i]);
}
builder.addGauge(quantileInfos[i], newValue);
}
if (changed()) {
clearChanged();
}
}
}
public synchronized void add(long value) {
estimator.insert(value);
}
public int getInterval() {
return interval;
}
/**
* Runnable used to periodically roll over the internal
* {@link SampleQuantiles} every interval.
*/
private static class RolloverSample implements Runnable {
MutableQuantiles parent;
public RolloverSample(MutableQuantiles parent) {
this.parent = parent;
}
@Override
public void run() {
synchronized (parent) {
try {
parent.previousCount = parent.estimator.getCount();
parent.previousSnapshot = parent.estimator.snapshot();
} catch (IOException e) {
// Couldn't get a new snapshot because the window was empty
parent.previousCount = 0;
parent.previousSnapshot = null;
}
parent.estimator.clear();
}
parent.setChanged();
}
}
}

View File

@ -0,0 +1,60 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.metrics2.util;
import org.apache.hadoop.classification.InterfaceAudience;
/**
* Specifies a quantile (with error bounds) to be watched by a
* {@link SampleQuantiles} object.
*/
@InterfaceAudience.Private
public class Quantile {
public final double quantile;
public final double error;
public Quantile(double quantile, double error) {
this.quantile = quantile;
this.error = error;
}
@Override
public boolean equals(Object aThat) {
if (this == aThat) {
return true;
}
if (!(aThat instanceof Quantile)) {
return false;
}
Quantile that = (Quantile) aThat;
long qbits = Double.doubleToLongBits(quantile);
long ebits = Double.doubleToLongBits(error);
return qbits == Double.doubleToLongBits(that.quantile)
&& ebits == Double.doubleToLongBits(that.error);
}
@Override
public int hashCode() {
return (int) (Double.doubleToLongBits(quantile) ^ Double
.doubleToLongBits(error));
}
}

View File

@ -0,0 +1,310 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.metrics2.util;
import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.ListIterator;
import java.util.Map;
import org.apache.hadoop.classification.InterfaceAudience;
import com.google.common.annotations.VisibleForTesting;
/**
* Implementation of the Cormode, Korn, Muthukrishnan, and Srivastava algorithm
* for streaming calculation of targeted high-percentile epsilon-approximate
* quantiles.
*
* This is a generalization of the earlier work by Greenwald and Khanna (GK),
* which essentially allows different error bounds on the targeted quantiles,
* which allows for far more efficient calculation of high-percentiles.
*
* See: Cormode, Korn, Muthukrishnan, and Srivastava
* "Effective Computation of Biased Quantiles over Data Streams" in ICDE 2005
*
* Greenwald and Khanna,
* "Space-efficient online computation of quantile summaries" in SIGMOD 2001
*
*/
@InterfaceAudience.Private
public class SampleQuantiles {
/**
* Total number of items in stream
*/
private long count = 0;
/**
* Current list of sampled items, maintained in sorted order with error bounds
*/
private LinkedList<SampleItem> samples;
/**
* Buffers incoming items to be inserted in batch. Items are inserted into
* the buffer linearly. When the buffer fills, it is flushed into the samples
* array in its entirety.
*/
private long[] buffer = new long[500];
private int bufferCount = 0;
/**
* Array of Quantiles that we care about, along with desired error.
*/
private final Quantile quantiles[];
public SampleQuantiles(Quantile[] quantiles) {
this.quantiles = quantiles;
this.samples = new LinkedList<SampleItem>();
}
/**
* Specifies the allowable error for this rank, depending on which quantiles
* are being targeted.
*
* This is the f(r_i, n) function from the CKMS paper. It's basically how wide
* the range of this rank can be.
*
* @param rank
* the index in the list of samples
*/
private double allowableError(int rank) {
int size = samples.size();
double minError = size + 1;
for (Quantile q : quantiles) {
double error;
if (rank <= q.quantile * size) {
error = (2.0 * q.error * (size - rank)) / (1.0 - q.quantile);
} else {
error = (2.0 * q.error * rank) / q.quantile;
}
if (error < minError) {
minError = error;
}
}
return minError;
}
/**
* Add a new value from the stream.
*
* @param v
*/
synchronized public void insert(long v) {
buffer[bufferCount] = v;
bufferCount++;
count++;
if (bufferCount == buffer.length) {
insertBatch();
compress();
}
}
/**
* Merges items from buffer into the samples array in one pass.
* This is more efficient than doing an insert on every item.
*/
private void insertBatch() {
if (bufferCount == 0) {
return;
}
Arrays.sort(buffer, 0, bufferCount);
// Base case: no samples
int start = 0;
if (samples.size() == 0) {
SampleItem newItem = new SampleItem(buffer[0], 1, 0);
samples.add(newItem);
start++;
}
ListIterator<SampleItem> it = samples.listIterator();
SampleItem item = it.next();
for (int i = start; i < bufferCount; i++) {
long v = buffer[i];
while (it.nextIndex() < samples.size() && item.value < v) {
item = it.next();
}
// If we found that bigger item, back up so we insert ourselves before it
if (item.value > v) {
it.previous();
}
// We use different indexes for the edge comparisons, because of the above
// if statement that adjusts the iterator
int delta;
if (it.previousIndex() == 0 || it.nextIndex() == samples.size()) {
delta = 0;
} else {
delta = ((int) Math.floor(allowableError(it.nextIndex()))) - 1;
}
SampleItem newItem = new SampleItem(v, 1, delta);
it.add(newItem);
item = newItem;
}
bufferCount = 0;
}
/**
* Try to remove extraneous items from the set of sampled items. This checks
* if an item is unnecessary based on the desired error bounds, and merges it
* with the adjacent item if it is.
*/
private void compress() {
if (samples.size() < 2) {
return;
}
ListIterator<SampleItem> it = samples.listIterator();
SampleItem prev = null;
SampleItem next = it.next();
while (it.hasNext()) {
prev = next;
next = it.next();
if (prev.g + next.g + next.delta <= allowableError(it.previousIndex())) {
next.g += prev.g;
// Remove prev. it.remove() kills the last thing returned.
it.previous();
it.previous();
it.remove();
// it.next() is now equal to next, skip it back forward again
it.next();
}
}
}
/**
* Get the estimated value at the specified quantile.
*
* @param quantile Queried quantile, e.g. 0.50 or 0.99.
* @return Estimated value at that quantile.
*/
private long query(double quantile) throws IOException {
if (samples.size() == 0) {
throw new IOException("No samples present");
}
int rankMin = 0;
int desired = (int) (quantile * count);
for (int i = 1; i < samples.size(); i++) {
SampleItem prev = samples.get(i - 1);
SampleItem cur = samples.get(i);
rankMin += prev.g;
if (rankMin + cur.g + cur.delta > desired + (allowableError(i) / 2)) {
return prev.value;
}
}
// edge case of wanting max value
return samples.get(samples.size() - 1).value;
}
/**
* Get a snapshot of the current values of all the tracked quantiles.
*
* @return snapshot of the tracked quantiles
* @throws IOException
* if no items have been added to the estimator
*/
synchronized public Map<Quantile, Long> snapshot() throws IOException {
// flush the buffer first for best results
insertBatch();
Map<Quantile, Long> values = new HashMap<Quantile, Long>(quantiles.length);
for (int i = 0; i < quantiles.length; i++) {
values.put(quantiles[i], query(quantiles[i].quantile));
}
return values;
}
/**
* Returns the number of items that the estimator has processed
*
* @return count total number of items processed
*/
synchronized public long getCount() {
return count;
}
/**
* Returns the number of samples kept by the estimator
*
* @return count current number of samples
*/
@VisibleForTesting
synchronized public int getSampleCount() {
return samples.size();
}
/**
* Resets the estimator, clearing out all previously inserted items
*/
synchronized public void clear() {
count = 0;
bufferCount = 0;
samples.clear();
}
/**
* Describes a measured value passed to the estimator, tracking additional
* metadata required by the CKMS algorithm.
*/
private static class SampleItem {
/**
* Value of the sampled item (e.g. a measured latency value)
*/
public final long value;
/**
* Difference between the lowest possible rank of the previous item, and
* the lowest possible rank of this item.
*
* The sum of the g of all previous items yields this item's lower bound.
*/
public int g;
/**
* Difference between the item's greatest possible rank and lowest possible
* rank.
*/
public final int delta;
public SampleItem(long value, int lowerDelta, int delta) {
this.value = value;
this.g = lowerDelta;
this.delta = delta;
}
@Override
public String toString() {
return String.format("%d, %d, %d", value, g, delta);
}
}
}

View File

@ -18,13 +18,24 @@
package org.apache.hadoop.metrics2.lib;
import org.junit.Test;
import static org.mockito.Mockito.*;
import static org.mockito.AdditionalMatchers.*;
import static org.apache.hadoop.metrics2.lib.Interns.info;
import static org.apache.hadoop.test.MetricsAsserts.assertCounter;
import static org.apache.hadoop.test.MetricsAsserts.assertGauge;
import static org.apache.hadoop.test.MetricsAsserts.mockMetricsRecordBuilder;
import static org.mockito.AdditionalMatchers.eq;
import static org.mockito.AdditionalMatchers.geq;
import static org.mockito.AdditionalMatchers.leq;
import static org.mockito.Matchers.anyLong;
import static org.mockito.Matchers.eq;
import static org.mockito.Mockito.times;
import static org.mockito.Mockito.verify;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.hadoop.metrics2.MetricsRecordBuilder;
import static org.apache.hadoop.metrics2.lib.Interns.*;
import static org.apache.hadoop.test.MetricsAsserts.*;
import org.apache.hadoop.metrics2.util.Quantile;
import org.junit.Test;
/**
* Test metrics record builder interface and mutable metrics
@ -103,4 +114,123 @@ public class TestMutableMetrics {
assertCounter("BarNumOps", 0L, rb);
assertGauge("BarAvgTime", 0.0, rb);
}
/**
* Ensure that quantile estimates from {@link MutableQuantiles} are within
* specified error bounds.
*/
@Test(timeout = 30000)
public void testMutableQuantilesError() throws Exception {
MetricsRecordBuilder mb = mockMetricsRecordBuilder();
MetricsRegistry registry = new MetricsRegistry("test");
// Use a 5s rollover period
MutableQuantiles quantiles = registry.newQuantiles("foo", "stat", "Ops",
"Latency", 5);
// Push some values in and wait for it to publish
long start = System.nanoTime() / 1000000;
for (long i = 1; i <= 1000; i++) {
quantiles.add(i);
quantiles.add(1001 - i);
}
long end = System.nanoTime() / 1000000;
Thread.sleep(6000 - (end - start));
registry.snapshot(mb, false);
// Print out the snapshot
Map<Quantile, Long> previousSnapshot = quantiles.previousSnapshot;
for (Entry<Quantile, Long> item : previousSnapshot.entrySet()) {
System.out.println(String.format("Quantile %.2f has value %d",
item.getKey().quantile, item.getValue()));
}
// Verify the results are within our requirements
verify(mb).addGauge(
info("FooNumOps", "Number of ops for stat with 5s interval"),
(long) 2000);
Quantile[] quants = MutableQuantiles.quantiles;
String name = "Foo%dthPercentile5sIntervalLatency";
String desc = "%d percentile latency with 5 second interval for stat";
for (Quantile q : quants) {
int percentile = (int) (100 * q.quantile);
int error = (int) (1000 * q.error);
String n = String.format(name, percentile);
String d = String.format(desc, percentile);
long expected = (long) (q.quantile * 1000);
verify(mb).addGauge(eq(info(n, d)), leq(expected + error));
verify(mb).addGauge(eq(info(n, d)), geq(expected - error));
}
}
/**
* Test that {@link MutableQuantiles} rolls the window over at the specified
* interval.
*/
@Test(timeout = 30000)
public void testMutableQuantilesRollover() throws Exception {
MetricsRecordBuilder mb = mockMetricsRecordBuilder();
MetricsRegistry registry = new MetricsRegistry("test");
// Use a 5s rollover period
MutableQuantiles quantiles = registry.newQuantiles("foo", "stat", "Ops",
"Latency", 5);
Quantile[] quants = MutableQuantiles.quantiles;
String name = "Foo%dthPercentile5sIntervalLatency";
String desc = "%d percentile latency with 5 second interval for stat";
// Push values for three intervals
long start = System.nanoTime() / 1000000;
for (int i = 1; i <= 3; i++) {
// Insert the values
for (long j = 1; j <= 1000; j++) {
quantiles.add(i);
}
// Sleep until 1s after the next 5s interval, to let the metrics
// roll over
long sleep = (start + (5000 * i) + 1000) - (System.nanoTime() / 1000000);
Thread.sleep(sleep);
// Verify that the window reset, check it has the values we pushed in
registry.snapshot(mb, false);
for (Quantile q : quants) {
int percentile = (int) (100 * q.quantile);
String n = String.format(name, percentile);
String d = String.format(desc, percentile);
verify(mb).addGauge(info(n, d), (long) i);
}
}
// Verify the metrics were added the right number of times
verify(mb, times(3)).addGauge(
info("FooNumOps", "Number of ops for stat with 5s interval"),
(long) 1000);
for (Quantile q : quants) {
int percentile = (int) (100 * q.quantile);
String n = String.format(name, percentile);
String d = String.format(desc, percentile);
verify(mb, times(3)).addGauge(eq(info(n, d)), anyLong());
}
}
/**
* Test that {@link MutableQuantiles} rolls over correctly even if no items
* have been added to the window
*/
@Test(timeout = 30000)
public void testMutableQuantilesEmptyRollover() throws Exception {
MetricsRecordBuilder mb = mockMetricsRecordBuilder();
MetricsRegistry registry = new MetricsRegistry("test");
// Use a 5s rollover period
MutableQuantiles quantiles = registry.newQuantiles("foo", "stat", "Ops",
"Latency", 5);
// Check it initially
quantiles.snapshot(mb, true);
verify(mb).addGauge(
info("FooNumOps", "Number of ops for stat with 5s interval"), (long) 0);
Thread.sleep(6000);
quantiles.snapshot(mb, false);
verify(mb, times(2)).addGauge(
info("FooNumOps", "Number of ops for stat with 5s interval"), (long) 0);
}
}

View File

@ -0,0 +1,125 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.metrics2.util;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import static org.junit.Assert.fail;
import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.Random;
import org.apache.hadoop.test.GenericTestUtils;
import org.junit.Before;
import org.junit.Test;
public class TestSampleQuantiles {
static final Quantile[] quantiles = { new Quantile(0.50, 0.050),
new Quantile(0.75, 0.025), new Quantile(0.90, 0.010),
new Quantile(0.95, 0.005), new Quantile(0.99, 0.001) };
SampleQuantiles estimator;
@Before
public void init() {
estimator = new SampleQuantiles(quantiles);
}
/**
* Check that the counts of the number of items in the window and sample are
* incremented correctly as items are added.
*/
@Test
public void testCount() throws IOException {
// Counts start off zero
assertEquals(estimator.getCount(), 0);
assertEquals(estimator.getSampleCount(), 0);
try {
estimator.snapshot();
fail("Expected IOException from empty window");
} catch (IOException e) {
GenericTestUtils.assertExceptionContains("No samples", e);
}
// Count increment correctly by 1
estimator.insert(1337);
assertEquals(estimator.getCount(), 1);
estimator.snapshot();
assertEquals(estimator.getSampleCount(), 1);
}
/**
* Check that counts and quantile estimates are correctly reset after a call
* to {@link SampleQuantiles#clear()}.
*/
@Test
public void testClear() throws IOException {
for (int i = 0; i < 1000; i++) {
estimator.insert(i);
}
estimator.clear();
assertEquals(estimator.getCount(), 0);
assertEquals(estimator.getSampleCount(), 0);
try {
estimator.snapshot();
fail("Expected IOException for an empty window.");
} catch (IOException e) {
GenericTestUtils.assertExceptionContains("No samples", e);
}
}
/**
* Correctness test that checks that absolute error of the estimate is within
* specified error bounds for some randomly permuted streams of items.
*/
@Test
public void testQuantileError() throws IOException {
final int count = 100000;
Random r = new Random(0xDEADDEAD);
Long[] values = new Long[count];
for (int i = 0; i < count; i++) {
values[i] = (long) (i + 1);
}
// Do 10 shuffle/insert/check cycles
for (int i = 0; i < 10; i++) {
System.out.println("Starting run " + i);
Collections.shuffle(Arrays.asList(values), r);
estimator.clear();
for (int j = 0; j < count; j++) {
estimator.insert(values[j]);
}
Map<Quantile, Long> snapshot;
snapshot = estimator.snapshot();
for (Quantile q : quantiles) {
long actual = (long) (q.quantile * count);
long error = (long) (q.error * count);
long estimate = snapshot.get(q);
System.out
.println(String.format("Expected %d with error %d, estimated %d",
actual, error, estimate));
assertTrue(estimate <= actual + error);
assertTrue(estimate >= actual - error);
}
}
}
}