MAPREDUCE-5637. Convert Hadoop Streaming document to APT (Akira AJISAKA via jeagles)
git-svn-id: https://svn.apache.org/repos/asf/hadoop/common/trunk@1592789 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
f4b687b873
commit
bd54137afa
|
@ -182,6 +182,9 @@ Release 2.5.0 - UNRELEASED
|
|||
MAX_CHUNKS_IDEAL, MIN_RECORDS_PER_CHUNK and SPLIT_RATIO to be configurable.
|
||||
(Tsuyoshi OZAWA via szetszwo)
|
||||
|
||||
MAPREDUCE-5637. Convert Hadoop Streaming document to APT (Akira AJISAKA via
|
||||
jeagles)
|
||||
|
||||
OPTIMIZATIONS
|
||||
|
||||
BUG FIXES
|
||||
|
|
|
@ -0,0 +1,792 @@
|
|||
~~ Licensed under the Apache License, Version 2.0 (the "License");
|
||||
~~ you may not use this file except in compliance with the License.
|
||||
~~ You may obtain a copy of the License at
|
||||
~~
|
||||
~~ http://www.apache.org/licenses/LICENSE-2.0
|
||||
~~
|
||||
~~ Unless required by applicable law or agreed to in writing, software
|
||||
~~ distributed under the License is distributed on an "AS IS" BASIS,
|
||||
~~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
~~ See the License for the specific language governing permissions and
|
||||
~~ limitations under the License. See accompanying LICENSE file.
|
||||
|
||||
---
|
||||
Hadoop Streaming
|
||||
---
|
||||
---
|
||||
${maven.build.timestamp}
|
||||
|
||||
Hadoop Streaming
|
||||
|
||||
%{toc|section=1|fromDepth=0|toDepth=4}
|
||||
|
||||
* Hadoop Streaming
|
||||
|
||||
Hadoop streaming is a utility that comes with the Hadoop distribution. The
|
||||
utility allows you to create and run Map/Reduce jobs with any executable or
|
||||
script as the mapper and/or the reducer. For example:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper /bin/cat \
|
||||
-reducer /usr/bin/wc
|
||||
+---+
|
||||
|
||||
* How Streaming Works
|
||||
|
||||
In the above example, both the mapper and the reducer are executables that
|
||||
read the input from stdin (line by line) and emit the output to stdout. The
|
||||
utility will create a Map/Reduce job, submit the job to an appropriate
|
||||
cluster, and monitor the progress of the job until it completes.
|
||||
|
||||
When an executable is specified for mappers, each mapper task will launch the
|
||||
executable as a separate process when the mapper is initialized. As the
|
||||
mapper task runs, it converts its inputs into lines and feed the lines to the
|
||||
stdin of the process. In the meantime, the mapper collects the line oriented
|
||||
outputs from the stdout of the process and converts each line into a
|
||||
key/value pair, which is collected as the output of the mapper. By default,
|
||||
the <prefix of a line up to the first tab character> is the <<<key>>> and the
|
||||
rest of the line (excluding the tab character) will be the <<<value>>>. If
|
||||
there is no tab character in the line, then entire line is considered as key
|
||||
and the value is null. However, this can be customized by setting
|
||||
<<<-inputformat>>> command option, as discussed later.
|
||||
|
||||
When an executable is specified for reducers, each reducer task will launch
|
||||
the executable as a separate process then the reducer is initialized. As the
|
||||
reducer task runs, it converts its input key/values pairs into lines and
|
||||
feeds the lines to the stdin of the process. In the meantime, the reducer
|
||||
collects the line oriented outputs from the stdout of the process, converts
|
||||
each line into a key/value pair, which is collected as the output of the
|
||||
reducer. By default, the prefix of a line up to the first tab character is
|
||||
the key and the rest of the line (excluding the tab character) is the value.
|
||||
However, this can be customized by setting <<<-outputformat>>> command
|
||||
option, as discussed later.
|
||||
|
||||
This is the basis for the communication protocol between the Map/Reduce
|
||||
framework and the streaming mapper/reducer.
|
||||
|
||||
User can specify <<<stream.non.zero.exit.is.failure>>> as <<<true>>> or
|
||||
<<<false>>> to make a streaming task that exits with a non-zero status to be
|
||||
<<<Failure>>> or <<<Success>>> respectively. By default, streaming tasks
|
||||
exiting with non-zero status are considered to be failed tasks.
|
||||
|
||||
* Streaming Command Options
|
||||
|
||||
Streaming supports streaming command options as well as
|
||||
{{{Generic_Command_Options}generic command options}}. The general command
|
||||
line syntax is shown below.
|
||||
|
||||
<<Note:>> Be sure to place the generic options before the streaming options,
|
||||
otherwise the command will fail. For an example, see
|
||||
{{{Making_Archives_Available_to_Tasks}Making Archives Available to Tasks}}.
|
||||
|
||||
+---+
|
||||
hadoop command [genericOptions] [streamingOptions]
|
||||
+---+
|
||||
|
||||
The Hadoop streaming command options are listed here:
|
||||
|
||||
*-------------*--------------------*------------------------------------------*
|
||||
|| Parameter || Optional/Required || Description |
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -input directoryname or filename | Required | Input location for mapper
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -output directoryname | Required | Output location for reducer
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -mapper executable or JavaClassName | Required | Mapper executable
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -reducer executable or JavaClassName | Required | Reducer executable
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -file filename | Optional | Make the mapper, reducer, or combiner executable
|
||||
| | | available locally on the compute nodes
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -inputformat JavaClassName | Optional | Class you supply should return
|
||||
| | | key/value pairs of Text class. If not
|
||||
| | | specified, TextInputFormat is used as
|
||||
| | | the default
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -outputformat JavaClassName | Optional | Class you supply should take
|
||||
| | | key/value pairs of Text class. If
|
||||
| | | not specified, TextOutputformat is
|
||||
| | | used as the default
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -partitioner JavaClassName | Optional | Class that determines which reduce a
|
||||
| | | key is sent to
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -combiner streamingCommand | Optional | Combiner executable for map output
|
||||
| or JavaClassName | |
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -cmdenv name=value | Optional | Pass environment variable to streaming
|
||||
| | | commands
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -inputreader | Optional | For backwards-compatibility: specifies a record
|
||||
| | | reader class (instead of an input format class)
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -verbose | Optional | Verbose output
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -lazyOutput | Optional | Create output lazily. For example, if the output
|
||||
| | | format is based on FileOutputFormat, the output file
|
||||
| | | is created only on the first call to Context.write
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -numReduceTasks | Optional | Specify the number of reducers
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -mapdebug | Optional | Script to call when map task fails
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -reducedebug | Optional | Script to call when reduce task fails
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
|
||||
** Specifying a Java Class as the Mapper/Reducer
|
||||
|
||||
You can supply a Java class as the mapper and/or the reducer.
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-inputformat org.apache.hadoop.mapred.KeyValueTextInputFormat \
|
||||
-mapper org.apache.hadoop.mapred.lib.IdentityMapper \
|
||||
-reducer /usr/bin/wc
|
||||
+---+
|
||||
|
||||
You can specify <<<stream.non.zero.exit.is.failure>>> as <<<true>>> or
|
||||
<<<false>>> to make a streaming task that exits with a non-zero status to be
|
||||
<<<Failure>>> or <<<Success>>> respectively. By default, streaming tasks
|
||||
exiting with non-zero status are considered to be failed tasks.
|
||||
|
||||
** Packaging Files With Job Submissions
|
||||
|
||||
You can specify any executable as the mapper and/or the reducer. The
|
||||
executables do not need to pre-exist on the machines in the cluster; however,
|
||||
if they don't, you will need to use "-file" option to tell the framework to
|
||||
pack your executable files as a part of job submission. For example:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper myPythonScript.py \
|
||||
-reducer /usr/bin/wc \
|
||||
-file myPythonScript.py
|
||||
+---+
|
||||
|
||||
The above example specifies a user defined Python executable as the mapper.
|
||||
The option "-file myPythonScript.py" causes the python executable shipped
|
||||
to the cluster machines as a part of job submission.
|
||||
|
||||
In addition to executable files, you can also package other auxiliary files
|
||||
(such as dictionaries, configuration files, etc) that may be used by the
|
||||
mapper and/or the reducer. For example:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper myPythonScript.py \
|
||||
-reducer /usr/bin/wc \
|
||||
-file myPythonScript.py \
|
||||
-file myDictionary.txt
|
||||
+---+
|
||||
|
||||
** Specifying Other Plugins for Jobs
|
||||
|
||||
Just as with a normal Map/Reduce job, you can specify other plugins for a
|
||||
streaming job:
|
||||
|
||||
+---+
|
||||
-inputformat JavaClassName
|
||||
-outputformat JavaClassName
|
||||
-partitioner JavaClassName
|
||||
-combiner streamingCommand or JavaClassName
|
||||
+---+
|
||||
|
||||
The class you supply for the input format should return key/value pairs of
|
||||
Text class. If you do not specify an input format class, the TextInputFormat
|
||||
is used as the default. Since the TextInputFormat returns keys of
|
||||
LongWritable class, which are actually not part of the input data, the keys
|
||||
will be discarded; only the values will be piped to the streaming mapper.
|
||||
|
||||
The class you supply for the output format is expected to take key/value
|
||||
pairs of Text class. If you do not specify an output format class, the
|
||||
TextOutputFormat is used as the default.
|
||||
|
||||
** Setting Environment Variables
|
||||
|
||||
To set an environment variable in a streaming command use:
|
||||
|
||||
+---+
|
||||
-cmdenv EXAMPLE_DIR=/home/example/dictionaries/
|
||||
+---+
|
||||
|
||||
* Generic Command Options
|
||||
|
||||
Streaming supports {{{Streaming_Command_Options}streaming command options}}
|
||||
as well as generic command options. The general command line syntax is shown
|
||||
below.
|
||||
|
||||
<<Note:>> Be sure to place the generic options before the streaming options,
|
||||
otherwise the command will fail. For an example, see
|
||||
{{{Making_Archives_Available_to_Tasks}Making Archives Available to Tasks}}.
|
||||
|
||||
+---+
|
||||
hadoop command [genericOptions] [streamingOptions]
|
||||
+---+
|
||||
|
||||
The Hadoop generic command options you can use with streaming are listed
|
||||
here:
|
||||
|
||||
*-------------*--------------------*------------------------------------------*
|
||||
|| Parameter || Optional/Required || Description |
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -conf configuration_file | Optional | Specify an application configuration
|
||||
| | | file
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -D property=value | Optional | Use value for given property
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -fs host:port or local | Optional | Specify a namenode
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -files | Optional | Specify comma-separated files to be copied to the
|
||||
| | | Map/Reduce cluster
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -libjars | Optional | Specify comma-separated jar files to include in the
|
||||
| | | classpath
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
| -archives | Optional | Specify comma-separated archives to be unarchived on
|
||||
| | | the compute machines
|
||||
*-------------+--------------------+------------------------------------------+
|
||||
|
||||
** Specifying Configuration Variables with the -D Option
|
||||
|
||||
You can specify additional configuration variables by using
|
||||
"-D \<property\>=\<value\>".
|
||||
|
||||
*** Specifying Directories
|
||||
|
||||
To change the local temp directory use:
|
||||
|
||||
+---+
|
||||
-D dfs.data.dir=/tmp
|
||||
+---+
|
||||
|
||||
To specify additional local temp directories use:
|
||||
|
||||
+---+
|
||||
-D mapred.local.dir=/tmp/local
|
||||
-D mapred.system.dir=/tmp/system
|
||||
-D mapred.temp.dir=/tmp/temp
|
||||
+---+
|
||||
|
||||
<<Note:>> For more details on job configuration parameters see:
|
||||
{{{./mapred-default.xml}mapred-default.xml}}
|
||||
|
||||
*** Specifying Map-Only Jobs
|
||||
|
||||
Often, you may want to process input data using a map function only. To do
|
||||
this, simply set <<<mapreduce.job.reduces>>> to zero. The Map/Reduce
|
||||
framework will not create any reducer tasks. Rather, the outputs of the
|
||||
mapper tasks will be the final output of the job.
|
||||
|
||||
+---+
|
||||
-D mapreduce.job.reduces=0
|
||||
+---+
|
||||
|
||||
To be backward compatible, Hadoop Streaming also supports the "-reducer NONE"
|
||||
option, which is equivalent to "-D mapreduce.job.reduces=0".
|
||||
|
||||
*** Specifying the Number of Reducers
|
||||
|
||||
To specify the number of reducers, for example two, use:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-D mapreduce.job.reduces=2 \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper /bin/cat \
|
||||
-reducer /usr/bin/wc
|
||||
+---+
|
||||
|
||||
*** Customizing How Lines are Split into Key/Value Pairs
|
||||
|
||||
As noted earlier, when the Map/Reduce framework reads a line from the stdout
|
||||
of the mapper, it splits the line into a key/value pair. By default, the
|
||||
prefix of the line up to the first tab character is the key and the rest of
|
||||
the line (excluding the tab character) is the value.
|
||||
|
||||
However, you can customize this default. You can specify a field separator
|
||||
other than the tab character (the default), and you can specify the nth
|
||||
(n >= 1) character rather than the first character in a line (the default) as
|
||||
the separator between the key and value. For example:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-D stream.map.output.field.separator=. \
|
||||
-D stream.num.map.output.key.fields=4 \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper /bin/cat \
|
||||
-reducer /bin/cat
|
||||
+---+
|
||||
|
||||
In the above example, "-D stream.map.output.field.separator=." specifies "."
|
||||
as the field separator for the map outputs, and the prefix up to the fourth
|
||||
"." in a line will be the key and the rest of the line (excluding the fourth
|
||||
".") will be the value. If a line has less than four "."s, then the whole
|
||||
line will be the key and the value will be an empty Text object (like the one
|
||||
created by new Text("")).
|
||||
|
||||
Similarly, you can use "-D stream.reduce.output.field.separator=SEP" and
|
||||
"-D stream.num.reduce.output.fields=NUM" to specify the nth field separator
|
||||
in a line of the reduce outputs as the separator between the key and the
|
||||
value.
|
||||
|
||||
Similarly, you can specify "stream.map.input.field.separator" and
|
||||
"stream.reduce.input.field.separator" as the input separator for Map/Reduce
|
||||
inputs. By default the separator is the tab character.
|
||||
|
||||
** Working with Large Files and Archives
|
||||
|
||||
The -files and -archives options allow you to make files and archives
|
||||
available to the tasks. The argument is a URI to the file or archive that you
|
||||
have already uploaded to HDFS. These files and archives are cached across
|
||||
jobs. You can retrieve the host and fs_port values from the fs.default.name
|
||||
config variable.
|
||||
|
||||
<<Note:>> The -files and -archives options are generic options. Be sure to
|
||||
place the generic options before the command options, otherwise the command
|
||||
will fail.
|
||||
|
||||
*** Making Files Available to Tasks
|
||||
|
||||
The -files option creates a symlink in the current working directory of the
|
||||
tasks that points to the local copy of the file.
|
||||
|
||||
In this example, Hadoop automatically creates a symlink named testfile.txt in
|
||||
the current working directory of the tasks. This symlink points to the local
|
||||
copy of testfile.txt.
|
||||
|
||||
+---+
|
||||
-files hdfs://host:fs_port/user/testfile.txt
|
||||
+---+
|
||||
|
||||
User can specify a different symlink name for -files using #.
|
||||
|
||||
+---+
|
||||
-files hdfs://host:fs_port/user/testfile.txt#testfile
|
||||
+---+
|
||||
|
||||
Multiple entries can be specified like this:
|
||||
|
||||
+---+
|
||||
-files hdfs://host:fs_port/user/testfile1.txt,hdfs://host:fs_port/user/testfile2.txt
|
||||
+---+
|
||||
|
||||
*** Making Archives Available to Tasks
|
||||
|
||||
The -archives option allows you to copy jars locally to the current working
|
||||
directory of tasks and automatically unjar the files.
|
||||
|
||||
In this example, Hadoop automatically creates a symlink named testfile.jar in
|
||||
the current working directory of tasks. This symlink points to the directory
|
||||
that stores the unjarred contents of the uploaded jar file.
|
||||
|
||||
+---+
|
||||
-archives hdfs://host:fs_port/user/testfile.jar
|
||||
+---+
|
||||
|
||||
User can specify a different symlink name for -archives using #.
|
||||
|
||||
+---+
|
||||
-archives hdfs://host:fs_port/user/testfile.tgz#tgzdir
|
||||
+---+
|
||||
|
||||
In this example, the input.txt file has two lines specifying the names of the
|
||||
two files: cachedir.jar/cache.txt and cachedir.jar/cache2.txt. "cachedir.jar"
|
||||
is a symlink to the archived directory, which has the files "cache.txt" and
|
||||
"cache2.txt".
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-archives 'hdfs://hadoop-nn1.example.com/user/me/samples/cachefile/cachedir.jar' \
|
||||
-D mapreduce.job.maps=1 \
|
||||
-D mapreduce.job.reduces=1 \
|
||||
-D mapreduce.job.name="Experiment" \
|
||||
-input "/user/me/samples/cachefile/input.txt" \
|
||||
-output "/user/me/samples/cachefile/out" \
|
||||
-mapper "xargs cat" \
|
||||
-reducer "cat"
|
||||
|
||||
$ ls test_jar/
|
||||
cache.txt cache2.txt
|
||||
|
||||
$ jar cvf cachedir.jar -C test_jar/ .
|
||||
added manifest
|
||||
adding: cache.txt(in = 30) (out= 29)(deflated 3%)
|
||||
adding: cache2.txt(in = 37) (out= 35)(deflated 5%)
|
||||
|
||||
$ hdfs dfs -put cachedir.jar samples/cachefile
|
||||
|
||||
$ hdfs dfs -cat /user/me/samples/cachefile/input.txt
|
||||
cachedir.jar/cache.txt
|
||||
cachedir.jar/cache2.txt
|
||||
|
||||
$ cat test_jar/cache.txt
|
||||
This is just the cache string
|
||||
|
||||
$ cat test_jar/cache2.txt
|
||||
This is just the second cache string
|
||||
|
||||
$ hdfs dfs -ls /user/me/samples/cachefile/out
|
||||
Found 2 items
|
||||
-rw-r--r-- 1 me supergroup 0 2013-11-14 17:00 /user/me/samples/cachefile/out/_SUCCESS
|
||||
-rw-r--r-- 1 me supergroup 69 2013-11-14 17:00 /user/me/samples/cachefile/out/part-00000
|
||||
|
||||
$ hdfs dfs -cat /user/me/samples/cachefile/out/part-00000
|
||||
This is just the cache string
|
||||
This is just the second cache string
|
||||
+---+
|
||||
|
||||
* More Usage Examples
|
||||
|
||||
** Hadoop Partitioner Class
|
||||
|
||||
Hadoop has a library class,
|
||||
{{{../../api/org/apache/hadoop/mapred/lib/KeyFieldBasedPartitioner.html}
|
||||
KeyFieldBasedPartitioner}}, that is useful for many applications. This class
|
||||
allows the Map/Reduce framework to partition the map outputs based on certain
|
||||
key fields, not the whole keys. For example:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-D stream.map.output.field.separator=. \
|
||||
-D stream.num.map.output.key.fields=4 \
|
||||
-D map.output.key.field.separator=. \
|
||||
-D mapreduce.partition.keypartitioner.options=-k1,2 \
|
||||
-D mapreduce.job.reduces=12 \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper /bin/cat \
|
||||
-reducer /bin/cat \
|
||||
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
|
||||
+---+
|
||||
|
||||
Here, <-D stream.map.output.field.separator=.> and
|
||||
<-D stream.num.map.output.key.fields=4> are as explained in previous example.
|
||||
The two variables are used by streaming to identify the key/value pair of
|
||||
mapper.
|
||||
|
||||
The map output keys of the above Map/Reduce job normally have four fields
|
||||
separated by ".". However, the Map/Reduce framework will partition the map
|
||||
outputs by the first two fields of the keys using the
|
||||
<-D mapred.text.key.partitioner.options=-k1,2> option. Here,
|
||||
<-D map.output.key.field.separator=.> specifies the separator for the
|
||||
partition. This guarantees that all the key/value pairs with the same first
|
||||
two fields in the keys will be partitioned into the same reducer.
|
||||
|
||||
<This is effectively equivalent to specifying the first two fields as the
|
||||
primary key and the next two fields as the secondary. The primary key is used
|
||||
for partitioning, and the combination of the primary and secondary keys is
|
||||
used for sorting.> A simple illustration is shown here:
|
||||
|
||||
Output of map (the keys)
|
||||
|
||||
+---+
|
||||
11.12.1.2
|
||||
11.14.2.3
|
||||
11.11.4.1
|
||||
11.12.1.1
|
||||
11.14.2.2
|
||||
+---+
|
||||
|
||||
Partition into 3 reducers (the first 2 fields are used as keys for partition)
|
||||
|
||||
+---+
|
||||
11.11.4.1
|
||||
-----------
|
||||
11.12.1.2
|
||||
11.12.1.1
|
||||
-----------
|
||||
11.14.2.3
|
||||
11.14.2.2
|
||||
+---+
|
||||
|
||||
Sorting within each partition for the reducer(all 4 fields used for sorting)
|
||||
|
||||
+---+
|
||||
11.11.4.1
|
||||
-----------
|
||||
11.12.1.1
|
||||
11.12.1.2
|
||||
-----------
|
||||
11.14.2.2
|
||||
11.14.2.3
|
||||
+---+
|
||||
|
||||
** Hadoop Comparator Class
|
||||
|
||||
Hadoop has a library class,
|
||||
{{{../../api/org/apache/hadoop/mapreduce/lib/partition/KeyFieldBasedComparator.html}
|
||||
KeyFieldBasedComparator}}, that is useful for many applications. This class
|
||||
provides a subset of features provided by the Unix/GNU Sort. For example:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-D mapreduce.job.output.key.comparator.class=org.apache.hadoop.mapreduce.lib.partition.KeyFieldBasedComparator \
|
||||
-D stream.map.output.field.separator=. \
|
||||
-D stream.num.map.output.key.fields=4 \
|
||||
-D mapreduce.map.output.key.field.separator=. \
|
||||
-D mapreduce.partition.keycomparator.options=-k2,2nr \
|
||||
-D mapreduce.job.reduces=1 \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper /bin/cat \
|
||||
-reducer /bin/cat
|
||||
+---+
|
||||
|
||||
The map output keys of the above Map/Reduce job normally have four fields
|
||||
separated by ".". However, the Map/Reduce framework will sort the outputs by
|
||||
the second field of the keys using the
|
||||
<-D mapreduce.partition.keycomparator.options=-k2,2nr> option. Here, <-n>
|
||||
specifies that the sorting is numerical sorting and <-r> specifies that the
|
||||
result should be reversed. A simple illustration is shown below:
|
||||
|
||||
Output of map (the keys)
|
||||
|
||||
+---+
|
||||
11.12.1.2
|
||||
11.14.2.3
|
||||
11.11.4.1
|
||||
11.12.1.1
|
||||
11.14.2.2
|
||||
+---+
|
||||
|
||||
Sorting output for the reducer (where second field used for sorting)
|
||||
|
||||
+---+
|
||||
11.14.2.3
|
||||
11.14.2.2
|
||||
11.12.1.2
|
||||
11.12.1.1
|
||||
11.11.4.1
|
||||
+---+
|
||||
|
||||
** Hadoop Aggregate Package
|
||||
|
||||
Hadoop has a library package called
|
||||
{{{../../org/apache/hadoop/mapred/lib/aggregate/package-summary.html}
|
||||
Aggregate}}. Aggregate provides a special reducer class and a special
|
||||
combiner class, and a list of simple aggregators that perform aggregations
|
||||
such as "sum", "max", "min" and so on over a sequence of values. Aggregate
|
||||
allows you to define a mapper plugin class that is expected to generate
|
||||
"aggregatable items" for each input key/value pair of the mappers. The
|
||||
combiner/reducer will aggregate those aggregatable items by invoking the
|
||||
appropriate aggregators.
|
||||
|
||||
To use Aggregate, simply specify "-reducer aggregate":
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper myAggregatorForKeyCount.py \
|
||||
-reducer aggregate \
|
||||
-file myAggregatorForKeyCount.py \
|
||||
+---+
|
||||
|
||||
The python program myAggregatorForKeyCount.py looks like:
|
||||
|
||||
+---+
|
||||
#!/usr/bin/python
|
||||
|
||||
import sys;
|
||||
|
||||
def generateLongCountToken(id):
|
||||
return "LongValueSum:" + id + "\t" + "1"
|
||||
|
||||
def main(argv):
|
||||
line = sys.stdin.readline();
|
||||
try:
|
||||
while line:
|
||||
line = line[:-1];
|
||||
fields = line.split("\t");
|
||||
print generateLongCountToken(fields[0]);
|
||||
line = sys.stdin.readline();
|
||||
except "end of file":
|
||||
return None
|
||||
if __name__ == "__main__":
|
||||
main(sys.argv)
|
||||
+---+
|
||||
|
||||
** Hadoop Field Selection Class
|
||||
|
||||
Hadoop has a library class,
|
||||
{{{../../api/org/apache/hadoop/mapred/lib/FieldSelectionMapReduce.html}
|
||||
FieldSelectionMapReduce}}, that effectively allows you to process text data
|
||||
like the unix "cut" utility. The map function defined in the class treats
|
||||
each input key/value pair as a list of fields. You can specify the field
|
||||
separator (the default is the tab character). You can select an arbitrary
|
||||
list of fields as the map output key, and an arbitrary list of fields as the
|
||||
map output value. Similarly, the reduce function defined in the class treats
|
||||
each input key/value pair as a list of fields. You can select an arbitrary
|
||||
list of fields as the reduce output key, and an arbitrary list of fields as
|
||||
the reduce output value. For example:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-D mapreduce.map.output.key.field.separator=. \
|
||||
-D mapreduce.partition.keypartitioner.options=-k1,2 \
|
||||
-D mapreduce.fieldsel.data.field.separator=. \
|
||||
-D mapreduce.fieldsel.map.output.key.value.fields.spec=6,5,1-3:0- \
|
||||
-D mapreduce.fieldsel.reduce.output.key.value.fields.spec=0-2:5- \
|
||||
-D mapreduce.map.output.key.class=org.apache.hadoop.io.Text \
|
||||
-D mapreduce.job.reduces=12 \
|
||||
-input myInputDirs \
|
||||
-output myOutputDir \
|
||||
-mapper org.apache.hadoop.mapred.lib.FieldSelectionMapReduce \
|
||||
-reducer org.apache.hadoop.mapred.lib.FieldSelectionMapReduce \
|
||||
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
|
||||
+---+
|
||||
|
||||
The option "-D
|
||||
mapreduce.fieldsel.map.output.key.value.fields.spec=6,5,1-3:0-" specifies
|
||||
key/value selection for the map outputs. Key selection spec and value
|
||||
selection spec are separated by ":". In this case, the map output key will
|
||||
consist of fields 6, 5, 1, 2, and 3. The map output value will consist of all
|
||||
fields (0- means field 0 and all the subsequent fields).
|
||||
|
||||
The option "-D mapreduce.fieldsel.reduce.output.key.value.fields.spec=0-2:5-"
|
||||
specifies key/value selection for the reduce outputs. In this case, the
|
||||
reduce output key will consist of fields 0, 1, 2 (corresponding to the
|
||||
original fields 6, 5, 1). The reduce output value will consist of all fields
|
||||
starting from field 5 (corresponding to all the original fields).
|
||||
|
||||
* Frequently Asked Questions
|
||||
|
||||
** How do I use Hadoop Streaming to run an arbitrary set of (semi) independent
|
||||
tasks?
|
||||
|
||||
Often you do not need the full power of Map Reduce, but only need to run
|
||||
multiple instances of the same program - either on different parts of the
|
||||
data, or on the same data, but with different parameters. You can use Hadoop
|
||||
Streaming to do this.
|
||||
|
||||
** How do I process files, one per map?
|
||||
|
||||
As an example, consider the problem of zipping (compressing) a set of files
|
||||
across the hadoop cluster. You can achieve this by using Hadoop Streaming
|
||||
and custom mapper script:
|
||||
|
||||
* Generate a file containing the full HDFS path of the input files. Each map
|
||||
task would get one file name as input.
|
||||
|
||||
* Create a mapper script which, given a filename, will get the file to local
|
||||
disk, gzip the file and put it back in the desired output directory.
|
||||
|
||||
** How many reducers should I use?
|
||||
|
||||
See MapReduce Tutorial for details: {{{./MapReduceTutorial.html#Reducer}
|
||||
Reducer}}
|
||||
|
||||
** If I set up an alias in my shell script, will that work after -mapper?
|
||||
|
||||
For example, say I do: alias c1='cut -f1'. Will -mapper "c1" work?
|
||||
|
||||
Using an alias will not work, but variable substitution is allowed as shown
|
||||
in this example:
|
||||
|
||||
+---+
|
||||
$ hdfs dfs -cat /user/me/samples/student_marks
|
||||
alice 50
|
||||
bruce 70
|
||||
charlie 80
|
||||
dan 75
|
||||
|
||||
$ c2='cut -f2'; hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-D mapreduce.job.name='Experiment' \
|
||||
-input /user/me/samples/student_marks \
|
||||
-output /user/me/samples/student_out \
|
||||
-mapper "$c2" -reducer 'cat'
|
||||
|
||||
$ hdfs dfs -cat /user/me/samples/student_out/part-00000
|
||||
50
|
||||
70
|
||||
75
|
||||
80
|
||||
+---+
|
||||
|
||||
** Can I use UNIX pipes?
|
||||
|
||||
For example, will -mapper "cut -f1 | sed s/foo/bar/g" work?
|
||||
|
||||
Currently this does not work and gives an "java.io.IOException: Broken pipe"
|
||||
error. This is probably a bug that needs to be investigated.
|
||||
|
||||
** What do I do if I get the "No space left on device" error?
|
||||
|
||||
For example, when I run a streaming job by distributing large executables
|
||||
(for example, 3.6G) through the -file option, I get a "No space left on
|
||||
device" error.
|
||||
|
||||
The jar packaging happens in a directory pointed to by the configuration
|
||||
variable stream.tmpdir. The default value of stream.tmpdir is /tmp. Set the
|
||||
value to a directory with more space:
|
||||
|
||||
+---+
|
||||
-D stream.tmpdir=/export/bigspace/...
|
||||
+---+
|
||||
|
||||
** How do I specify multiple input directories?
|
||||
|
||||
You can specify multiple input directories with multiple '-input' options:
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-input '/user/foo/dir1' -input '/user/foo/dir2' \
|
||||
(rest of the command)
|
||||
+---+
|
||||
|
||||
** How do I generate output files with gzip format?
|
||||
|
||||
Instead of plain text files, you can generate gzip files as your generated
|
||||
output. Pass '-D mapreduce.output.fileoutputformat.compress=true -D
|
||||
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec'
|
||||
as option to your streaming job.
|
||||
|
||||
** How do I provide my own input/output format with streaming?
|
||||
|
||||
You can specify your own custom class by packing them and putting the custom
|
||||
jar to \$\{HADOOP_CLASSPATH\}.
|
||||
|
||||
** How do I parse XML documents using streaming?
|
||||
|
||||
You can use the record reader StreamXmlRecordReader to process XML documents.
|
||||
|
||||
+---+
|
||||
hadoop jar hadoop-streaming-${project.version}.jar \
|
||||
-inputreader "StreamXmlRecord,begin=BEGIN_STRING,end=END_STRING" \
|
||||
(rest of the command)
|
||||
+---+
|
||||
|
||||
Anything found between BEGIN_STRING and END_STRING would be treated as one
|
||||
record for map tasks.
|
||||
|
||||
** How do I update counters in streaming applications?
|
||||
|
||||
A streaming process can use the stderr to emit counter information.
|
||||
<<<reporter:counter:\<group\>,\<counter\>,\<amount\>>>> should be sent to
|
||||
stderr to update the counter.
|
||||
|
||||
** How do I update status in streaming applications?
|
||||
|
||||
A streaming process can use the stderr to emit status information. To set a
|
||||
status, <<<reporter:status:\<message\>>>> should be sent to stderr.
|
||||
|
||||
** How do I get the Job variables in a streaming job's mapper/reducer?
|
||||
|
||||
See {{{./MapReduceTutorial.html#Configured_Parameters}
|
||||
Configured Parameters}}. During the execution of a streaming job, the names
|
||||
of the "mapred" parameters are transformed. The dots ( . ) become underscores
|
||||
( _ ). For example, mapreduce.job.id becomes mapreduce_job_id and
|
||||
mapreduce.job.jar becomes mapreduce_job_jar. In your code, use the parameter
|
||||
names with the underscores.
|
|
@ -93,6 +93,7 @@
|
|||
<item name="Encrypted Shuffle" href="hadoop-mapreduce-client/hadoop-mapreduce-client-core/EncryptedShuffle.html"/>
|
||||
<item name="Pluggable Shuffle/Sort" href="hadoop-mapreduce-client/hadoop-mapreduce-client-core/PluggableShuffleAndPluggableSort.html"/>
|
||||
<item name="Distributed Cache Deploy" href="hadoop-mapreduce-client/hadoop-mapreduce-client-core/DistributedCacheDeploy.html"/>
|
||||
<item name="Hadoop Streaming" href="hadoop-mapreduce-client/hadoop-mapreduce-client-core/HadoopStreaming.html"/>
|
||||
<item name="Hadoop Archives" href="hadoop-mapreduce-client/hadoop-mapreduce-client-core/HadoopArchives.html"/>
|
||||
<item name="DistCp" href="hadoop-mapreduce-client/hadoop-mapreduce-client-core/DistCp.html"/>
|
||||
</menu>
|
||||
|
|
Loading…
Reference in New Issue