HBASE-13168 Backport HBASE-12590 "A solution for data skew in HBase-Mapreduce Job"

This commit is contained in:
tedyu 2015-03-10 18:47:31 -07:00
parent 619d58f9b5
commit 05aef46d94
3 changed files with 338 additions and 3 deletions

View File

@ -31,6 +31,7 @@ import javax.naming.NamingException;
import org.apache.commons.logging.Log; import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory; import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.classification.InterfaceAudience; import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.classification.InterfaceStability; import org.apache.hadoop.hbase.classification.InterfaceStability;
import org.apache.hadoop.hbase.HConstants; import org.apache.hadoop.hbase.HConstants;
@ -104,6 +105,16 @@ import org.apache.hadoop.util.StringUtils;
public abstract class TableInputFormatBase public abstract class TableInputFormatBase
extends InputFormat<ImmutableBytesWritable, Result> { extends InputFormat<ImmutableBytesWritable, Result> {
/** Specify if we enable auto-balance for input in M/R jobs.*/
public static final String MAPREDUCE_INPUT_AUTOBALANCE = "hbase.mapreduce.input.autobalance";
/** Specify if ratio for data skew in M/R jobs, it goes well with the enabling hbase.mapreduce
* .input.autobalance property.*/
public static final String INPUT_AUTOBALANCE_MAXSKEWRATIO = "hbase.mapreduce.input.autobalance" +
".maxskewratio";
/** Specify if the row key in table is text (ASCII between 32~126),
* default is true. False means the table is using binary row key*/
public static final String TABLE_ROW_TEXTKEY = "hbase.table.row.textkey";
final Log LOG = LogFactory.getLog(TableInputFormatBase.class); final Log LOG = LogFactory.getLog(TableInputFormatBase.class);
private static final String NOT_INITIALIZED = "The input format instance has not been properly " + private static final String NOT_INITIALIZED = "The input format instance has not been properly " +
@ -304,7 +315,26 @@ extends InputFormat<ImmutableBytesWritable, Result> {
} }
} }
} }
return splits; //The default value of "hbase.mapreduce.input.autobalance" is false, which means not enabled.
boolean enableAutoBalance = context.getConfiguration().getBoolean(
MAPREDUCE_INPUT_AUTOBALANCE, false);
if (enableAutoBalance) {
long totalRegionSize=0;
for (int i = 0; i < splits.size(); i++){
TableSplit ts = (TableSplit)splits.get(i);
totalRegionSize += ts.getLength();
}
long averageRegionSize = totalRegionSize / splits.size();
// the averageRegionSize must be positive.
if (averageRegionSize <= 0) {
LOG.warn("The averageRegionSize is not positive: "+ averageRegionSize + ", " +
"set it to 1.");
averageRegionSize = 1;
}
return calculateRebalancedSplits(splits, context, averageRegionSize);
} else {
return splits;
}
} finally { } finally {
if (closeOnFinish) { if (closeOnFinish) {
closeTable(); closeTable();
@ -335,6 +365,170 @@ extends InputFormat<ImmutableBytesWritable, Result> {
return hostName; return hostName;
} }
/**
* Calculates the number of MapReduce input splits for the map tasks. The number of
* MapReduce input splits depends on the average region size and the "data skew ratio" user set in
* configuration.
*
* @param list The list of input splits before balance.
* @param context The current job context.
* @param average The average size of all regions .
* @return The list of input splits.
* @throws IOException When creating the list of splits fails.
* @see org.apache.hadoop.mapreduce.InputFormat#getSplits(
* org.apache.hadoop.mapreduce.JobContext)
*/
public List<InputSplit> calculateRebalancedSplits(List<InputSplit> list, JobContext context,
long average) throws IOException {
List<InputSplit> resultList = new ArrayList<InputSplit>();
Configuration conf = context.getConfiguration();
//The default data skew ratio is 3
long dataSkewRatio = conf.getLong(INPUT_AUTOBALANCE_MAXSKEWRATIO, 3);
//It determines which mode to use: text key mode or binary key mode. The default is text mode.
boolean isTextKey = context.getConfiguration().getBoolean(TABLE_ROW_TEXTKEY, true);
long dataSkewThreshold = dataSkewRatio * average;
int count = 0;
while (count < list.size()) {
TableSplit ts = (TableSplit)list.get(count);
String regionLocation = ts.getRegionLocation();
long regionSize = ts.getLength();
if (regionSize >= dataSkewThreshold) {
// if the current region size is large than the data skew threshold,
// split the region into two MapReduce input splits.
byte[] splitKey = getSplitKey(ts.getStartRow(), ts.getEndRow(), isTextKey);
//Set the size of child TableSplit as 1/2 of the region size. The exact size of the
// MapReduce input splits is not far off.
TableSplit t1 = new TableSplit(table.getName(), ts.getStartRow(), splitKey, regionLocation,
regionSize / 2);
TableSplit t2 = new TableSplit(table.getName(), splitKey, ts.getEndRow(), regionLocation,
regionSize - regionSize / 2);
resultList.add(t1);
resultList.add(t2);
count++;
} else if (regionSize >= average) {
// if the region size between average size and data skew threshold size,
// make this region as one MapReduce input split.
resultList.add(ts);
count++;
} else {
// if the total size of several small continuous regions less than the average region size,
// combine them into one MapReduce input split.
long totalSize = regionSize;
byte[] splitStartKey = ts.getStartRow();
byte[] splitEndKey = ts.getEndRow();
count++;
for (; count < list.size(); count++) {
TableSplit nextRegion = (TableSplit)list.get(count);
long nextRegionSize = nextRegion.getLength();
if (totalSize + nextRegionSize <= dataSkewThreshold) {
totalSize = totalSize + nextRegionSize;
splitEndKey = nextRegion.getEndRow();
} else {
break;
}
}
TableSplit t = new TableSplit(table.getName(), splitStartKey, splitEndKey,
regionLocation, totalSize);
resultList.add(t);
}
}
return resultList;
}
/**
* select a split point in the region. The selection of the split point is based on an uniform
* distribution assumption for the keys in a region.
* Here are some examples:
* startKey: aaabcdefg endKey: aaafff split point: aaad
* startKey: 111000 endKey: 1125790 split point: 111b
* startKey: 1110 endKey: 1120 split point: 111_
* startKey: binary key { 13, -19, 126, 127 }, endKey: binary key { 13, -19, 127, 0 },
* split point: binary key { 13, -19, 127, -64 }
* Set this function as "public static", make it easier for test.
*
* @param start Start key of the region
* @param end End key of the region
* @param isText It determines to use text key mode or binary key mode
* @return The split point in the region.
*/
public static byte[] getSplitKey(byte[] start, byte[] end, boolean isText) {
byte upperLimitByte;
byte lowerLimitByte;
//Use text mode or binary mode.
if (isText) {
//The range of text char set in ASCII is [32,126], the lower limit is space and the upper
// limit is '~'.
upperLimitByte = '~';
lowerLimitByte = ' ';
} else {
upperLimitByte = Byte.MAX_VALUE;
lowerLimitByte = Byte.MIN_VALUE;
}
// For special case
// Example 1 : startkey=null, endkey="hhhqqqwww", splitKey="h"
// Example 2 (text key mode): startKey="ffffaaa", endKey=null, splitkey="f~~~~~~"
if (start.length == 0 && end.length == 0){
return new byte[]{(byte) ((lowerLimitByte + upperLimitByte) / 2)};
}
if (start.length == 0 && end.length != 0){
return new byte[]{ end[0] };
}
if (start.length != 0 && end.length == 0){
byte[] result =new byte[start.length];
result[0]=start[0];
for (int k = 1; k < start.length; k++){
result[k] = upperLimitByte;
}
return result;
}
// A list to store bytes in split key
List resultBytesList = new ArrayList();
int maxLength = start.length > end.length ? start.length : end.length;
for (int i = 0; i < maxLength; i++) {
//calculate the midpoint byte between the first difference
//for example: "11ae" and "11chw", the midpoint is "11b"
//another example: "11ae" and "11bhw", the first different byte is 'a' and 'b',
// there is no midpoint between 'a' and 'b', so we need to check the next byte.
if (start[i] == end[i]) {
resultBytesList.add(start[i]);
//For special case like: startKey="aaa", endKey="aaaz", splitKey="aaaM"
if (i + 1 == start.length) {
resultBytesList.add((byte) ((lowerLimitByte + end[i + 1]) / 2));
break;
}
} else {
//if the two bytes differ by 1, like ['a','b'], We need to check the next byte to find
// the midpoint.
if ((int)end[i] - (int)start[i] == 1) {
//get next byte after the first difference
byte startNextByte = (i + 1 < start.length) ? start[i + 1] : lowerLimitByte;
byte endNextByte = (i + 1 < end.length) ? end[i + 1] : lowerLimitByte;
int byteRange = (upperLimitByte - startNextByte) + (endNextByte - lowerLimitByte) + 1;
int halfRange = byteRange / 2;
if ((int)startNextByte + halfRange > (int)upperLimitByte) {
resultBytesList.add(end[i]);
resultBytesList.add((byte) (startNextByte + halfRange - upperLimitByte +
lowerLimitByte));
} else {
resultBytesList.add(start[i]);
resultBytesList.add((byte) (startNextByte + halfRange));
}
} else {
//calculate the midpoint key by the fist different byte (normal case),
// like "11ae" and "11chw", the midpoint is "11b"
resultBytesList.add((byte) ((start[i] + end[i]) / 2));
}
break;
}
}
//transform the List of bytes to byte[]
byte result[] = new byte[resultBytesList.size()];
for (int k = 0; k < resultBytesList.size(); k++) {
result[k] = (byte) resultBytesList.get(k);
}
return result;
}
/** /**
* *
* *
@ -344,12 +538,14 @@ extends InputFormat<ImmutableBytesWritable, Result> {
* This optimization is effective when there is a specific reasoning to exclude an entire region from the M-R job, * This optimization is effective when there is a specific reasoning to exclude an entire region from the M-R job,
* (and hence, not contributing to the InputSplit), given the start and end keys of the same. <br> * (and hence, not contributing to the InputSplit), given the start and end keys of the same. <br>
* Useful when we need to remember the last-processed top record and revisit the [last, current) interval for M-R processing, * Useful when we need to remember the last-processed top record and revisit the [last, current) interval for M-R processing,
* continuously. In addition to reducing InputSplits, reduces the load on the region server as well, due to the ordering of the keys. * continuously. In addition to reducing InputSplits, reduces the load on the region server as
* well, due to the ordering of the keys.
* <br> * <br>
* <br> * <br>
* Note: It is possible that <code>endKey.length() == 0 </code> , for the last (recent) region. * Note: It is possible that <code>endKey.length() == 0 </code> , for the last (recent) region.
* <br> * <br>
* Override this method, if you want to bulk exclude regions altogether from M-R. By default, no region is excluded( i.e. all regions are included). * Override this method, if you want to bulk exclude regions altogether from M-R.
* By default, no region is excluded( i.e. all regions are included).
* *
* *
* @param startKey Start key of the region * @param startKey Start key of the region

View File

@ -19,7 +19,10 @@
package org.apache.hadoop.hbase.mapreduce; package org.apache.hadoop.hbase.mapreduce;
import java.io.IOException; import java.io.IOException;
import java.util.List;
import org.apache.hadoop.hbase.HRegionLocation;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.testclassification.LargeTests; import org.apache.hadoop.hbase.testclassification.LargeTests;
import org.junit.Test; import org.junit.Test;
import org.junit.experimental.categories.Category; import org.junit.experimental.categories.Category;
@ -95,4 +98,97 @@ public class TestTableInputFormatScan1 extends TestTableInputFormatScanBase {
throws IOException, InterruptedException, ClassNotFoundException { throws IOException, InterruptedException, ClassNotFoundException {
testScan(null, "opp", "opo"); testScan(null, "opp", "opo");
} }
/**
* Tests a MR scan using specific number of mappers. The test table has 25 regions,
* and all region sizes are set as 0 as default. The average region size is 1 (the smallest
* positive). When we set hbase.mapreduce.input.ratio as -1, all regions will be cut into two
* MapRedcue input splits, the number of MR input splits should be 50; when we set hbase
* .mapreduce.input.ratio as 100, the sum of all region sizes is less then the average region
* size, all regions will be combined into 1 MapRedcue input split.
*
* @throws IOException
* @throws ClassNotFoundException
* @throws InterruptedException
*/
@Test
public void testGetSplits() throws IOException, InterruptedException, ClassNotFoundException {
HTable table = new HTable(TEST_UTIL.getConfiguration(), TABLE_NAME);
List<HRegionLocation> locs = table.getRegionLocator().getAllRegionLocations();
testNumOfSplits("-1", locs.size()*2);
table.close();
testNumOfSplits("100", 1);
}
/**
* Tests the getSplitKey() method in TableInputFormatBase.java
*
* @throws IOException
* @throws ClassNotFoundException
* @throws InterruptedException
*/
@Test
public void testGetSplitsPoint() throws IOException, InterruptedException,
ClassNotFoundException {
// Test Case 1: "aaabcdef" and "aaaff", split point is "aaad".
byte[] start1 = { 'a', 'a', 'a', 'b', 'c', 'd', 'e', 'f' };
byte[] end1 = { 'a', 'a', 'a', 'f', 'f' };
byte[] splitPoint1 = { 'a', 'a', 'a', 'd' };
testGetSplitKey(start1, end1, splitPoint1, true);
// Test Case 2: "111000" and "1125790", split point is "111b".
byte[] start2 = { '1', '1', '1', '0', '0', '0' };
byte[] end2 = { '1', '1', '2', '5', '7', '9', '0' };
byte[] splitPoint2 = { '1', '1', '1', 'b' };
testGetSplitKey(start2, end2, splitPoint2, true);
// Test Case 3: "aaaaaa" and "aab", split point is "aaap".
byte[] start3 = { 'a', 'a', 'a', 'a', 'a', 'a' };
byte[] end3 = { 'a', 'a', 'b' };
byte[] splitPoint3 = { 'a', 'a', 'a', 'p' };
testGetSplitKey(start3, end3, splitPoint3, true);
// Test Case 4: "aaa" and "aaaz", split point is "aaaM".
byte[] start4 = { 'a', 'a', 'a' };
byte[] end4 = { 'a', 'a', 'a', 'z' };
byte[] splitPoint4 = { 'a', 'a', 'a', 'M' };
testGetSplitKey(start4, end4, splitPoint4, true);
// Test Case 5: "aaa" and "aaba", split point is "aaap".
byte[] start5 = { 'a', 'a', 'a' };
byte[] end5 = { 'a', 'a', 'b', 'a' };
byte[] splitPoint5 = { 'a', 'a', 'a', 'p' };
testGetSplitKey(start5, end5, splitPoint5, true);
// Test Case 6: empty key and "hhhqqqwww", split point is "h"
byte[] start6 = {};
byte[] end6 = { 'h', 'h', 'h', 'q', 'q', 'q', 'w', 'w' };
byte[] splitPoint6 = { 'h' };
testGetSplitKey(start6, end6, splitPoint6, true);
// Test Case 7: "ffffaaa" and empty key, split point depends on the mode we choose(text key or
// binary key).
byte[] start7 = { 'f', 'f', 'f', 'f', 'a', 'a', 'a' };
byte[] end7 = {};
byte[] splitPointText7 = { 'f', '~', '~', '~', '~', '~', '~' };
byte[] splitPointBinary7 = { 'f', 127, 127, 127, 127, 127, 127 };
testGetSplitKey(start7, end7, splitPointText7, true);
testGetSplitKey(start7, end7, splitPointBinary7, false);
// Test Case 8: both start key and end key are empty. Split point depends on the mode we
// choose (text key or binary key).
byte[] start8 = {};
byte[] end8 = {};
byte[] splitPointText8 = { 'O' };
byte[] splitPointBinary8 = { 0 };
testGetSplitKey(start8, end8, splitPointText8, true);
testGetSplitKey(start8, end8, splitPointBinary8, false);
// Test Case 9: Binary Key example
byte[] start9 = { 13, -19, 126, 127 };
byte[] end9 = { 13, -19, 127, 0 };
byte[] splitPoint9 = { 13, -19, 127, -64 };
testGetSplitKey(start9, end9, splitPoint9, false);
}
} }

View File

@ -22,6 +22,8 @@ import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue; import static org.junit.Assert.assertTrue;
import java.io.IOException; import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.Map; import java.util.Map;
import java.util.NavigableMap; import java.util.NavigableMap;
@ -30,6 +32,7 @@ import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseTestingUtility; import org.apache.hadoop.hbase.HBaseTestingUtility;
import org.apache.hadoop.hbase.HRegionLocation;
import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Result;
@ -37,12 +40,15 @@ import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.junit.AfterClass; import org.junit.AfterClass;
import org.junit.Assert;
import org.junit.BeforeClass; import org.junit.BeforeClass;
/** /**
* <p> * <p>
* Tests various scan start and stop row scenarios. This is set in a scan and * Tests various scan start and stop row scenarios. This is set in a scan and
@ -239,5 +245,42 @@ public abstract class TestTableInputFormatScanBase {
LOG.info("After map/reduce completion - job " + jobName); LOG.info("After map/reduce completion - job " + jobName);
} }
/**
* Tests a MR scan using data skew auto-balance
*
* @throws IOException
* @throws ClassNotFoundException
* @throws InterruptedException
*/
public void testNumOfSplits(String ratio, int expectedNumOfSplits) throws IOException,
InterruptedException,
ClassNotFoundException {
String jobName = "TestJobForNumOfSplits";
LOG.info("Before map/reduce startup - job " + jobName);
Configuration c = new Configuration(TEST_UTIL.getConfiguration());
Scan scan = new Scan();
scan.addFamily(INPUT_FAMILY);
c.set("hbase.mapreduce.input.autobalance", "true");
c.set("hbase.mapreduce.input.autobalance.maxskewratio", ratio);
c.set(KEY_STARTROW, "");
c.set(KEY_LASTROW, "");
Job job = new Job(c, jobName);
TableMapReduceUtil.initTableMapperJob(Bytes.toString(TABLE_NAME), scan, ScanMapper.class,
ImmutableBytesWritable.class, ImmutableBytesWritable.class, job);
TableInputFormat tif = new TableInputFormat();
tif.setConf(job.getConfiguration());
Assert.assertEquals(new String(TABLE_NAME), new String(table.getTableName()));
List<InputSplit> splits = tif.getSplits(job);
Assert.assertEquals(expectedNumOfSplits, splits.size());
}
/**
* Tests for the getSplitKey() method in TableInputFormatBase.java
*/
public void testGetSplitKey(byte[] startKey, byte[] endKey, byte[] splitKey, boolean isText) {
byte[] result = TableInputFormatBase.getSplitKey(startKey, endKey, isText);
Assert.assertArrayEquals(splitKey, result);
}
} }