HBASE-18010: CellChunkMap integration into CompactingMemStore. Continuation of the previous commit

This commit is contained in:
anastas 2017-07-05 12:56:45 +03:00
parent 8ac4308411
commit 2843214857
4 changed files with 949 additions and 0 deletions

View File

@ -0,0 +1,53 @@
/**
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.regionserver;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.util.ClassSize;
/**
* CSLMImmutableSegment is an abstract class that extends the API supported by a {@link Segment},
* and {@link ImmutableSegment}. This immutable segment is working with CellSet with
* ConcurrentSkipListMap (CSLM) delegatee.
*/
@InterfaceAudience.Private
public class CSLMImmutableSegment extends ImmutableSegment {
public static final long DEEP_OVERHEAD_CSLM =
ImmutableSegment.DEEP_OVERHEAD + ClassSize.CONCURRENT_SKIPLISTMAP;
/**------------------------------------------------------------------------
* Copy C-tor to be used when new CSLMImmutableSegment is being built from a Mutable one.
* This C-tor should be used when active MutableSegment is pushed into the compaction
* pipeline and becomes an ImmutableSegment.
*/
protected CSLMImmutableSegment(Segment segment) {
super(segment);
// update the segment metadata heap size
incSize(0, -MutableSegment.DEEP_OVERHEAD + DEEP_OVERHEAD_CSLM);
}
@Override
protected long indexEntrySize() {
return ClassSize.CONCURRENT_SKIPLISTMAP_ENTRY;
}
@Override protected boolean canBeFlattened() {
return true;
}
}

View File

@ -0,0 +1,132 @@
/**
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.regionserver;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellComparator;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.util.ClassSize;
import java.io.IOException;
/**
* CellArrayImmutableSegment extends the API supported by a {@link Segment},
* and {@link ImmutableSegment}. This immutable segment is working with CellSet with
* CellArrayMap delegatee.
*/
@InterfaceAudience.Private
public class CellArrayImmutableSegment extends ImmutableSegment {
public static final long DEEP_OVERHEAD_CAM = DEEP_OVERHEAD + ClassSize.CELL_ARRAY_MAP;
///////////////////// CONSTRUCTORS /////////////////////
/**------------------------------------------------------------------------
* C-tor to be used when new CellArrayImmutableSegment is a result of compaction of a
* list of older ImmutableSegments.
* The given iterator returns the Cells that "survived" the compaction.
*/
protected CellArrayImmutableSegment(CellComparator comparator, MemStoreSegmentsIterator iterator,
MemStoreLAB memStoreLAB, int numOfCells, MemStoreCompactor.Action action) {
super(null, comparator, memStoreLAB); // initiailize the CellSet with NULL
incSize(0, DEEP_OVERHEAD_CAM);
// build the new CellSet based on CellArrayMap and update the CellSet of the new Segment
initializeCellSet(numOfCells, iterator, action);
}
/**------------------------------------------------------------------------
* C-tor to be used when new CellChunkImmutableSegment is built as a result of flattening
* of CSLMImmutableSegment
* The given iterator returns the Cells that "survived" the compaction.
*/
protected CellArrayImmutableSegment(CSLMImmutableSegment segment, MemstoreSize memstoreSize) {
super(segment); // initiailize the upper class
incSize(0, DEEP_OVERHEAD_CAM - CSLMImmutableSegment.DEEP_OVERHEAD_CSLM);
int numOfCells = segment.getCellsCount();
// build the new CellSet based on CellChunkMap and update the CellSet of this Segment
reinitializeCellSet(numOfCells, segment.getScanner(Long.MAX_VALUE), segment.getCellSet());
// arrange the meta-data size, decrease all meta-data sizes related to SkipList;
// add sizes of CellArrayMap entry (reinitializeCellSet doesn't take the care for the sizes)
long newSegmentSizeDelta = numOfCells*(indexEntrySize()-ClassSize.CONCURRENT_SKIPLISTMAP_ENTRY);
incSize(0, newSegmentSizeDelta);
memstoreSize.incMemstoreSize(0, newSegmentSizeDelta);
}
@Override
protected long indexEntrySize() {
return ClassSize.CELL_ARRAY_MAP_ENTRY;
}
@Override
protected boolean canBeFlattened() {
return false;
}
///////////////////// PRIVATE METHODS /////////////////////
/*------------------------------------------------------------------------*/
// Create CellSet based on CellArrayMap from compacting iterator
private void initializeCellSet(int numOfCells, MemStoreSegmentsIterator iterator,
MemStoreCompactor.Action action) {
Cell[] cells = new Cell[numOfCells]; // build the Cell Array
int i = 0;
while (iterator.hasNext()) {
Cell c = iterator.next();
// The scanner behind the iterator is doing all the elimination logic
if (action == MemStoreCompactor.Action.MERGE) {
// if this is merge we just move the Cell object without copying MSLAB
// the sizes still need to be updated in the new segment
cells[i] = c;
} else {
// now we just copy it to the new segment (also MSLAB copy)
cells[i] = maybeCloneWithAllocator(c);
}
// second parameter true, because in compaction/merge the addition of the cell to new segment
// is always successful
updateMetaInfo(c, true, null); // updates the size per cell
i++;
}
// build the immutable CellSet
CellArrayMap cam = new CellArrayMap(getComparator(), cells, 0, i, false);
this.setCellSet(null, new CellSet(cam)); // update the CellSet of this Segment
}
/*------------------------------------------------------------------------*/
// Create CellSet based on CellChunkMap from current ConcurrentSkipListMap based CellSet
// (without compacting iterator)
// We do not consider cells bigger than chunks!
private void reinitializeCellSet(
int numOfCells, KeyValueScanner segmentScanner, CellSet oldCellSet) {
Cell[] cells = new Cell[numOfCells]; // build the Cell Array
Cell curCell;
int idx = 0;
try {
while ((curCell = segmentScanner.next()) != null) {
cells[idx++] = curCell;
}
} catch (IOException ie) {
throw new IllegalStateException(ie);
} finally {
segmentScanner.close();
}
// build the immutable CellSet
CellArrayMap cam = new CellArrayMap(CellComparator.COMPARATOR, cells, 0, idx, false);
this.setCellSet(oldCellSet, new CellSet(cam)); // update the CellSet of this Segment
}
}

View File

@ -0,0 +1,198 @@
/**
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.regionserver;
import org.apache.hadoop.hbase.ByteBufferKeyValue;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellComparator;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.KeyValueUtil;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.util.ByteBufferUtils;
import org.apache.hadoop.hbase.util.ClassSize;
import java.io.IOException;
import java.nio.ByteBuffer;
/**
* CellChunkImmutableSegment extends the API supported by a {@link Segment},
* and {@link ImmutableSegment}. This immutable segment is working with CellSet with
* CellChunkMap delegatee.
*/
@InterfaceAudience.Private
public class CellChunkImmutableSegment extends ImmutableSegment {
public static final long DEEP_OVERHEAD_CCM =
ImmutableSegment.DEEP_OVERHEAD + ClassSize.CELL_CHUNK_MAP;
///////////////////// CONSTRUCTORS /////////////////////
/**------------------------------------------------------------------------
* C-tor to be used when new CellChunkImmutableSegment is built as a result of compaction/merge
* of a list of older ImmutableSegments.
* The given iterator returns the Cells that "survived" the compaction.
*/
protected CellChunkImmutableSegment(CellComparator comparator, MemStoreSegmentsIterator iterator,
MemStoreLAB memStoreLAB, int numOfCells, MemStoreCompactor.Action action) {
super(null, comparator, memStoreLAB); // initialize the CellSet with NULL
incSize(0, DEEP_OVERHEAD_CCM); // initiate the heapSize with the size of the segment metadata
// build the new CellSet based on CellArrayMap and update the CellSet of the new Segment
initializeCellSet(numOfCells, iterator, action);
}
/**------------------------------------------------------------------------
* C-tor to be used when new CellChunkImmutableSegment is built as a result of flattening
* of CSLMImmutableSegment
* The given iterator returns the Cells that "survived" the compaction.
*/
protected CellChunkImmutableSegment(CSLMImmutableSegment segment, MemstoreSize memstoreSize) {
super(segment); // initiailize the upper class
incSize(0,-CSLMImmutableSegment.DEEP_OVERHEAD_CSLM+ CellChunkImmutableSegment.DEEP_OVERHEAD_CCM);
int numOfCells = segment.getCellsCount();
// build the new CellSet based on CellChunkMap
reinitializeCellSet(numOfCells, segment.getScanner(Long.MAX_VALUE), segment.getCellSet());
// arrange the meta-data size, decrease all meta-data sizes related to SkipList;
// add sizes of CellChunkMap entry, decrease also Cell object sizes
// (reinitializeCellSet doesn't take the care for the sizes)
long newSegmentSizeDelta = numOfCells*(indexEntrySize()-ClassSize.CONCURRENT_SKIPLISTMAP_ENTRY);
incSize(0, newSegmentSizeDelta);
memstoreSize.incMemstoreSize(0, newSegmentSizeDelta);
}
@Override
protected long indexEntrySize() {
return (ClassSize.CELL_CHUNK_MAP_ENTRY - KeyValue.FIXED_OVERHEAD);
}
@Override
protected boolean canBeFlattened() {
return false;
}
///////////////////// PRIVATE METHODS /////////////////////
/*------------------------------------------------------------------------*/
// Create CellSet based on CellChunkMap from compacting iterator
private void initializeCellSet(int numOfCells, MemStoreSegmentsIterator iterator,
MemStoreCompactor.Action action) {
// calculate how many chunks we will need for index
int chunkSize = ChunkCreator.getInstance().getChunkSize();
int numOfCellsInChunk = CellChunkMap.NUM_OF_CELL_REPS_IN_CHUNK;
int numberOfChunks = calculateNumberOfChunks(numOfCells,numOfCellsInChunk);
int numOfCellsAfterCompaction = 0;
int currentChunkIdx = 0;
int offsetInCurentChunk = ChunkCreator.SIZEOF_CHUNK_HEADER;
// all index Chunks are allocated from ChunkCreator
Chunk[] chunks = new Chunk[numberOfChunks];
for (int i=0; i < numberOfChunks; i++) {
chunks[i] = this.getMemStoreLAB().getNewExternalChunk();
}
while (iterator.hasNext()) { // the iterator hides the elimination logic for compaction
Cell c = iterator.next();
numOfCellsAfterCompaction++;
assert (c instanceof ByteBufferKeyValue); // shouldn't get here anything but ByteBufferKeyValue
if (offsetInCurentChunk + ClassSize.CELL_CHUNK_MAP_ENTRY > chunkSize) {
currentChunkIdx++; // continue to the next index chunk
offsetInCurentChunk = ChunkCreator.SIZEOF_CHUNK_HEADER;
}
if (action == MemStoreCompactor.Action.COMPACT) {
c = maybeCloneWithAllocator(c); // for compaction copy cell to the new segment (MSLAB copy)
}
offsetInCurentChunk = // add the Cell reference to the index chunk
createCellReference((ByteBufferKeyValue)c, chunks[currentChunkIdx].getData(),
offsetInCurentChunk);
// the sizes still need to be updated in the new segment
// second parameter true, because in compaction/merge the addition of the cell to new segment
// is always successful
updateMetaInfo(c, true, null); // updates the size per cell
}
// build the immutable CellSet
CellChunkMap ccm =
new CellChunkMap(CellComparator.COMPARATOR,chunks,0,numOfCellsAfterCompaction,false);
this.setCellSet(null, new CellSet(ccm)); // update the CellSet of this Segment
}
/*------------------------------------------------------------------------*/
// Create CellSet based on CellChunkMap from current ConcurrentSkipListMap based CellSet
// (without compacting iterator)
// This is a service for not-flat immutable segments
// Assumption: cells do not exceed chunk size!
private void reinitializeCellSet(
int numOfCells, KeyValueScanner segmentScanner, CellSet oldCellSet) {
Cell curCell;
// calculate how many chunks we will need for metadata
int chunkSize = ChunkCreator.getInstance().getChunkSize();
int numOfCellsInChunk = CellChunkMap.NUM_OF_CELL_REPS_IN_CHUNK;
int numberOfChunks = calculateNumberOfChunks(numOfCells,numOfCellsInChunk);
// all index Chunks are allocated from ChunkCreator
Chunk[] chunks = new Chunk[numberOfChunks];
for (int i=0; i < numberOfChunks; i++) {
chunks[i] = this.getMemStoreLAB().getNewExternalChunk();
}
int currentChunkIdx = 0;
int offsetInCurentChunk = ChunkCreator.SIZEOF_CHUNK_HEADER;
try {
while ((curCell = segmentScanner.next()) != null) {
assert (curCell instanceof ByteBufferKeyValue); // shouldn't get here anything but ByteBufferKeyValue
if (offsetInCurentChunk + ClassSize.CELL_CHUNK_MAP_ENTRY > chunkSize) {
// continue to the next metadata chunk
currentChunkIdx++;
offsetInCurentChunk = ChunkCreator.SIZEOF_CHUNK_HEADER;
}
offsetInCurentChunk =
createCellReference((ByteBufferKeyValue) curCell, chunks[currentChunkIdx].getData(),
offsetInCurentChunk);
}
} catch (IOException ie) {
throw new IllegalStateException(ie);
} finally {
segmentScanner.close();
}
CellChunkMap ccm = new CellChunkMap(CellComparator.COMPARATOR,chunks,0,numOfCells,false);
this.setCellSet(oldCellSet, new CellSet(ccm)); // update the CellSet of this Segment
}
/*------------------------------------------------------------------------*/
// for a given cell, write the cell representation on the index chunk
private int createCellReference(ByteBufferKeyValue cell, ByteBuffer idxBuffer, int idxOffset) {
int offset = idxOffset;
int dataChunkID = cell.getChunkId();
// ensure strong pointer to data chunk, as index is no longer directly points to it
Chunk c = ChunkCreator.getInstance().saveChunkFromGC(dataChunkID);
// if c is null, it means that this cell chunks was already released shouldn't happen
assert (c!=null);
offset = ByteBufferUtils.putInt(idxBuffer, offset, dataChunkID); // write data chunk id
offset = ByteBufferUtils.putInt(idxBuffer, offset, cell.getOffset()); // offset
offset = ByteBufferUtils.putInt(idxBuffer, offset, KeyValueUtil.length(cell)); // length
offset = ByteBufferUtils.putLong(idxBuffer, offset, cell.getSequenceId()); // seqId
return offset;
}
private int calculateNumberOfChunks(int numOfCells, int numOfCellsInChunk) {
int numberOfChunks = numOfCells/numOfCellsInChunk;
if(numOfCells%numOfCellsInChunk!=0) { // if cells cannot be divided evenly between chunks
numberOfChunks++; // add one additional chunk
}
return numberOfChunks;
}
}

View File

@ -0,0 +1,566 @@
/*
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.regionserver;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.*;
import org.apache.hadoop.hbase.testclassification.MediumTests;
import org.apache.hadoop.hbase.testclassification.RegionServerTests;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.ClassSize;
import org.apache.hadoop.hbase.util.Threads;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
import org.junit.experimental.categories.Category;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import java.io.IOException;
import java.util.List;
/**
* compacted memstore test case
*/
@Category({RegionServerTests.class, MediumTests.class})
@RunWith(Parameterized.class)
public class TestCompactingToCellFlatMapMemStore extends TestCompactingMemStore {
@Parameterized.Parameters
public static Object[] data() {
return new Object[] { "CHUNK_MAP", "ARRAY_MAP" }; // test different immutable indexes
}
private static final Log LOG = LogFactory.getLog(TestCompactingToCellFlatMapMemStore.class);
public final boolean toCellChunkMap;
Configuration conf;
//////////////////////////////////////////////////////////////////////////////
// Helpers
//////////////////////////////////////////////////////////////////////////////
public TestCompactingToCellFlatMapMemStore(String type){
if (type == "CHUNK_MAP") {
toCellChunkMap = true;
} else {
toCellChunkMap = false;
}
}
@Override public void tearDown() throws Exception {
chunkCreator.clearChunksInPool();
}
@Override public void setUp() throws Exception {
compactingSetUp();
this.conf = HBaseConfiguration.create();
// set memstore to do data compaction
conf.set(CompactingMemStore.COMPACTING_MEMSTORE_TYPE_KEY,
String.valueOf(MemoryCompactionPolicy.EAGER));
this.memstore =
new CompactingMemStore(conf, CellComparator.COMPARATOR, store,
regionServicesForStores, MemoryCompactionPolicy.EAGER);
}
//////////////////////////////////////////////////////////////////////////////
// Compaction tests
//////////////////////////////////////////////////////////////////////////////
public void testCompaction1Bucket() throws IOException {
int counter = 0;
String[] keys1 = { "A", "A", "B", "C" }; //A1, A2, B3, C4
if (toCellChunkMap) {
// set memstore to flat into CellChunkMap
conf.set(CompactingMemStore.COMPACTING_MEMSTORE_INDEX_KEY,
String.valueOf(CompactingMemStore.IndexType.CHUNK_MAP));
((CompactingMemStore)memstore).setIndexType();
}
// test 1 bucket
long totalCellsLen = addRowsByKeys(memstore, keys1);
long cellBeforeFlushSize = cellBeforeFlushSize();
long cellAfterFlushSize = cellAfterFlushSize();
long totalHeapSize = MutableSegment.DEEP_OVERHEAD + 4 * cellBeforeFlushSize;
assertEquals(totalCellsLen, regionServicesForStores.getMemstoreSize());
assertEquals(totalHeapSize, ((CompactingMemStore)memstore).heapSize());
assertEquals(4, memstore.getActive().getCellsCount());
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline and compact
assertEquals(0, memstore.getSnapshot().getCellsCount());
// One cell is duplicated and the compaction will remove it. All cells of same size so adjusting
// totalCellsLen
totalCellsLen = (totalCellsLen * 3) / 4;
assertEquals(totalCellsLen, regionServicesForStores.getMemstoreSize());
totalHeapSize =
3 * cellAfterFlushSize + MutableSegment.DEEP_OVERHEAD
+ (toCellChunkMap ?
CellChunkImmutableSegment.DEEP_OVERHEAD_CCM :
CellArrayImmutableSegment.DEEP_OVERHEAD_CAM);
assertEquals(totalHeapSize, ((CompactingMemStore)memstore).heapSize());
for ( Segment s : memstore.getSegments()) {
counter += s.getCellsCount();
}
assertEquals(3, counter);
MemstoreSize size = memstore.getFlushableSize();
MemStoreSnapshot snapshot = memstore.snapshot(); // push keys to snapshot
region.decrMemstoreSize(size); // simulate flusher
ImmutableSegment s = memstore.getSnapshot();
assertEquals(3, s.getCellsCount());
assertEquals(0, regionServicesForStores.getMemstoreSize());
memstore.clearSnapshot(snapshot.getId());
}
public void testCompaction2Buckets() throws IOException {
if (toCellChunkMap) {
// set memstore to flat into CellChunkMap
conf.set(CompactingMemStore.COMPACTING_MEMSTORE_INDEX_KEY,
String.valueOf(CompactingMemStore.IndexType.CHUNK_MAP));
((CompactingMemStore)memstore).setIndexType();
}
String[] keys1 = { "A", "A", "B", "C" };
String[] keys2 = { "A", "B", "D" };
long totalCellsLen1 = addRowsByKeys(memstore, keys1); // INSERT 4
long cellBeforeFlushSize = cellBeforeFlushSize();
long cellAfterFlushSize = cellAfterFlushSize();
long totalHeapSize1 = MutableSegment.DEEP_OVERHEAD + 4 * cellBeforeFlushSize;
assertEquals(totalCellsLen1, regionServicesForStores.getMemstoreSize());
assertEquals(totalHeapSize1, ((CompactingMemStore) memstore).heapSize());
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline and compact
int counter = 0; // COMPACT 4->3
for ( Segment s : memstore.getSegments()) {
counter += s.getCellsCount();
}
assertEquals(3,counter);
assertEquals(0, memstore.getSnapshot().getCellsCount());
// One cell is duplicated and the compaction will remove it. All cells of same size so adjusting
// totalCellsLen
totalCellsLen1 = (totalCellsLen1 * 3) / 4;
totalHeapSize1 = 3 * cellAfterFlushSize + MutableSegment.DEEP_OVERHEAD
+ (toCellChunkMap ?
CellChunkImmutableSegment.DEEP_OVERHEAD_CCM :
CellArrayImmutableSegment.DEEP_OVERHEAD_CAM);
assertEquals(totalCellsLen1, regionServicesForStores.getMemstoreSize());
assertEquals(totalHeapSize1, ((CompactingMemStore) memstore).heapSize());
long totalCellsLen2 = addRowsByKeys(memstore, keys2); // INSERT 3 (3+3=6)
long totalHeapSize2 = 3 * cellBeforeFlushSize;
assertEquals(totalCellsLen1 + totalCellsLen2, regionServicesForStores.getMemstoreSize());
assertEquals(totalHeapSize1 + totalHeapSize2, ((CompactingMemStore) memstore).heapSize());
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline and compact
assertEquals(0, memstore.getSnapshot().getCellsCount());// COMPACT 6->4
counter = 0;
for ( Segment s : memstore.getSegments()) {
counter += s.getCellsCount();
}
assertEquals(4,counter);
totalCellsLen2 = totalCellsLen2 / 3;// 2 cells duplicated in set 2
assertEquals(totalCellsLen1 + totalCellsLen2, regionServicesForStores.getMemstoreSize());
totalHeapSize2 = 1 * cellAfterFlushSize;
assertEquals(totalHeapSize1 + totalHeapSize2, ((CompactingMemStore) memstore).heapSize());
MemstoreSize size = memstore.getFlushableSize();
MemStoreSnapshot snapshot = memstore.snapshot(); // push keys to snapshot
region.decrMemstoreSize(size); // simulate flusher
ImmutableSegment s = memstore.getSnapshot();
assertEquals(4, s.getCellsCount());
assertEquals(0, regionServicesForStores.getMemstoreSize());
memstore.clearSnapshot(snapshot.getId());
}
public void testCompaction3Buckets() throws IOException {
if (toCellChunkMap) {
// set memstore to flat into CellChunkMap
conf.set(CompactingMemStore.COMPACTING_MEMSTORE_INDEX_KEY,
String.valueOf(CompactingMemStore.IndexType.CHUNK_MAP));
((CompactingMemStore)memstore).setIndexType();
}
String[] keys1 = { "A", "A", "B", "C" };
String[] keys2 = { "A", "B", "D" };
String[] keys3 = { "D", "B", "B" };
long totalCellsLen1 = addRowsByKeys(memstore, keys1);
long cellBeforeFlushSize = cellBeforeFlushSize();
long cellAfterFlushSize = cellAfterFlushSize();
long totalHeapSize1 = MutableSegment.DEEP_OVERHEAD + 4 * cellBeforeFlushSize;
assertEquals(totalCellsLen1, region.getMemstoreSize());
assertEquals(totalHeapSize1, ((CompactingMemStore) memstore).heapSize());
MemstoreSize size = memstore.getFlushableSize();
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline and compact
assertEquals(0, memstore.getSnapshot().getCellsCount());
// One cell is duplicated and the compaction will remove it. All cells of same size so adjusting
// totalCellsLen
totalCellsLen1 = (totalCellsLen1 * 3) / 4;
totalHeapSize1 = 3 * cellAfterFlushSize + MutableSegment.DEEP_OVERHEAD
+ (toCellChunkMap ?
CellChunkImmutableSegment.DEEP_OVERHEAD_CCM :
CellArrayImmutableSegment.DEEP_OVERHEAD_CAM);
assertEquals(totalCellsLen1, regionServicesForStores.getMemstoreSize());
assertEquals(totalHeapSize1, ((CompactingMemStore) memstore).heapSize());
long totalCellsLen2 = addRowsByKeys(memstore, keys2);
long totalHeapSize2 = 3 * cellBeforeFlushSize;
assertEquals(totalCellsLen1 + totalCellsLen2, regionServicesForStores.getMemstoreSize());
assertEquals(totalHeapSize1 + totalHeapSize2, ((CompactingMemStore) memstore).heapSize());
((CompactingMemStore) memstore).disableCompaction();
size = memstore.getFlushableSize();
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline without compaction
totalHeapSize2 = totalHeapSize2 + CSLMImmutableSegment.DEEP_OVERHEAD_CSLM;
assertEquals(0, memstore.getSnapshot().getCellsCount());
assertEquals(totalCellsLen1 + totalCellsLen2, regionServicesForStores.getMemstoreSize());
assertEquals(totalHeapSize1 + totalHeapSize2, ((CompactingMemStore) memstore).heapSize());
long totalCellsLen3 = addRowsByKeys(memstore, keys3);
long totalHeapSize3 = 3 * cellBeforeFlushSize;
assertEquals(totalCellsLen1 + totalCellsLen2 + totalCellsLen3,
regionServicesForStores.getMemstoreSize());
assertEquals(totalHeapSize1 + totalHeapSize2 + totalHeapSize3,
((CompactingMemStore) memstore).heapSize());
((CompactingMemStore) memstore).enableCompaction();
size = memstore.getFlushableSize();
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline and compact
while (((CompactingMemStore) memstore).isMemStoreFlushingInMemory()) {
Threads.sleep(10);
}
assertEquals(0, memstore.getSnapshot().getCellsCount());
// active flushed to pipeline and all 3 segments compacted. Will get rid of duplicated cells.
// Out of total 10, only 4 cells are unique
totalCellsLen2 = totalCellsLen2 / 3;// 2 out of 3 cells are duplicated
totalCellsLen3 = 0;// All duplicated cells.
assertEquals(totalCellsLen1 + totalCellsLen2 + totalCellsLen3,
regionServicesForStores.getMemstoreSize());
// Only 4 unique cells left
long totalHeapSize4 = 4 * cellAfterFlushSize + MutableSegment.DEEP_OVERHEAD
+ (toCellChunkMap ?
CellChunkImmutableSegment.DEEP_OVERHEAD_CCM :
CellArrayImmutableSegment.DEEP_OVERHEAD_CAM);
assertEquals(totalHeapSize4, ((CompactingMemStore) memstore).heapSize());
size = memstore.getFlushableSize();
MemStoreSnapshot snapshot = memstore.snapshot(); // push keys to snapshot
region.decrMemstoreSize(size); // simulate flusher
ImmutableSegment s = memstore.getSnapshot();
assertEquals(4, s.getCellsCount());
assertEquals(0, regionServicesForStores.getMemstoreSize());
memstore.clearSnapshot(snapshot.getId());
}
//////////////////////////////////////////////////////////////////////////////
// Merging tests
//////////////////////////////////////////////////////////////////////////////
@Test
public void testMerging() throws IOException {
if (toCellChunkMap) {
// set memstore to flat into CellChunkMap
conf.set(CompactingMemStore.COMPACTING_MEMSTORE_INDEX_KEY,
String.valueOf(CompactingMemStore.IndexType.CHUNK_MAP));
((CompactingMemStore)memstore).setIndexType();
}
String[] keys1 = { "A", "A", "B", "C", "F", "H"};
String[] keys2 = { "A", "B", "D", "G", "I", "J"};
String[] keys3 = { "D", "B", "B", "E" };
MemoryCompactionPolicy compactionType = MemoryCompactionPolicy.BASIC;
memstore.getConfiguration().set(CompactingMemStore.COMPACTING_MEMSTORE_TYPE_KEY,
String.valueOf(compactionType));
((CompactingMemStore)memstore).initiateType(compactionType);
addRowsByKeys(memstore, keys1);
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline should not compact
while (((CompactingMemStore) memstore).isMemStoreFlushingInMemory()) {
Threads.sleep(10);
}
assertEquals(0, memstore.getSnapshot().getCellsCount());
addRowsByKeys(memstore, keys2); // also should only flatten
int counter2 = 0;
for ( Segment s : memstore.getSegments()) {
counter2 += s.getCellsCount();
}
assertEquals(12, counter2);
((CompactingMemStore) memstore).disableCompaction();
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline without flattening
assertEquals(0, memstore.getSnapshot().getCellsCount());
int counter3 = 0;
for ( Segment s : memstore.getSegments()) {
counter3 += s.getCellsCount();
}
assertEquals(12, counter3);
addRowsByKeys(memstore, keys3);
int counter4 = 0;
for ( Segment s : memstore.getSegments()) {
counter4 += s.getCellsCount();
}
assertEquals(16, counter4);
((CompactingMemStore) memstore).enableCompaction();
((CompactingMemStore) memstore).flushInMemory(); // push keys to pipeline and compact
while (((CompactingMemStore) memstore).isMemStoreFlushingInMemory()) {
Threads.sleep(10);
}
assertEquals(0, memstore.getSnapshot().getCellsCount());
int counter = 0;
for ( Segment s : memstore.getSegments()) {
counter += s.getCellsCount();
}
assertEquals(16,counter);
MemStoreSnapshot snapshot = memstore.snapshot(); // push keys to snapshot
ImmutableSegment s = memstore.getSnapshot();
memstore.clearSnapshot(snapshot.getId());
}
@Test
public void testCountOfCellsAfterFlatteningByScan() throws IOException {
String[] keys1 = { "A", "B", "C" }; // A, B, C
addRowsByKeysWith50Cols(memstore, keys1);
// this should only flatten as there are no duplicates
((CompactingMemStore) memstore).flushInMemory();
while (((CompactingMemStore) memstore).isMemStoreFlushingInMemory()) {
Threads.sleep(10);
}
List<KeyValueScanner> scanners = memstore.getScanners(Long.MAX_VALUE);
// seek
int count = 0;
for(int i = 0; i < scanners.size(); i++) {
scanners.get(i).seek(KeyValue.LOWESTKEY);
while (scanners.get(i).next() != null) {
count++;
}
}
assertEquals("the count should be ", count, 150);
for(int i = 0; i < scanners.size(); i++) {
scanners.get(i).close();
}
}
@Test
public void testCountOfCellsAfterFlatteningByIterator() throws IOException {
String[] keys1 = { "A", "B", "C" }; // A, B, C
addRowsByKeysWith50Cols(memstore, keys1);
// this should only flatten as there are no duplicates
((CompactingMemStore) memstore).flushInMemory();
while (((CompactingMemStore) memstore).isMemStoreFlushingInMemory()) {
Threads.sleep(10);
}
// Just doing the cnt operation here
MemStoreSegmentsIterator itr = new MemStoreMergerSegmentsIterator(
((CompactingMemStore) memstore).getImmutableSegments().getStoreSegments(),
CellComparator.COMPARATOR, 10);
int cnt = 0;
try {
while (itr.next() != null) {
cnt++;
}
} finally {
itr.close();
}
assertEquals("the count should be ", cnt, 150);
}
private void addRowsByKeysWith50Cols(AbstractMemStore hmc, String[] keys) {
byte[] fam = Bytes.toBytes("testfamily");
for (int i = 0; i < keys.length; i++) {
long timestamp = System.currentTimeMillis();
Threads.sleep(1); // to make sure each kv gets a different ts
byte[] row = Bytes.toBytes(keys[i]);
for(int j =0 ;j < 50; j++) {
byte[] qf = Bytes.toBytes("testqualifier"+j);
byte[] val = Bytes.toBytes(keys[i] + j);
KeyValue kv = new KeyValue(row, fam, qf, timestamp, val);
hmc.add(kv, null);
}
}
}
@Override
@Test
public void testPuttingBackChunksWithOpeningScanner() throws IOException {
byte[] row = Bytes.toBytes("testrow");
byte[] fam = Bytes.toBytes("testfamily");
byte[] qf1 = Bytes.toBytes("testqualifier1");
byte[] qf2 = Bytes.toBytes("testqualifier2");
byte[] qf3 = Bytes.toBytes("testqualifier3");
byte[] qf4 = Bytes.toBytes("testqualifier4");
byte[] qf5 = Bytes.toBytes("testqualifier5");
byte[] qf6 = Bytes.toBytes("testqualifier6");
byte[] qf7 = Bytes.toBytes("testqualifier7");
byte[] val = Bytes.toBytes("testval");
// Setting up memstore
memstore.add(new KeyValue(row, fam, qf1, val), null);
memstore.add(new KeyValue(row, fam, qf2, val), null);
memstore.add(new KeyValue(row, fam, qf3, val), null);
// Creating a snapshot
MemStoreSnapshot snapshot = memstore.snapshot();
assertEquals(3, memstore.getSnapshot().getCellsCount());
// Adding value to "new" memstore
assertEquals(0, memstore.getActive().getCellsCount());
memstore.add(new KeyValue(row, fam, qf4, val), null);
memstore.add(new KeyValue(row, fam, qf5, val), null);
assertEquals(2, memstore.getActive().getCellsCount());
// opening scanner before clear the snapshot
List<KeyValueScanner> scanners = memstore.getScanners(0);
// Shouldn't putting back the chunks to pool,since some scanners are opening
// based on their data
// close the scanners
for(KeyValueScanner scanner : snapshot.getScanners()) {
scanner.close();
}
memstore.clearSnapshot(snapshot.getId());
assertTrue(chunkCreator.getPoolSize() == 0);
// Chunks will be put back to pool after close scanners;
for (KeyValueScanner scanner : scanners) {
scanner.close();
}
assertTrue(chunkCreator.getPoolSize() > 0);
// clear chunks
chunkCreator.clearChunksInPool();
// Creating another snapshot
snapshot = memstore.snapshot();
// Adding more value
memstore.add(new KeyValue(row, fam, qf6, val), null);
memstore.add(new KeyValue(row, fam, qf7, val), null);
// opening scanners
scanners = memstore.getScanners(0);
// close scanners before clear the snapshot
for (KeyValueScanner scanner : scanners) {
scanner.close();
}
// Since no opening scanner, the chunks of snapshot should be put back to
// pool
// close the scanners
for(KeyValueScanner scanner : snapshot.getScanners()) {
scanner.close();
}
memstore.clearSnapshot(snapshot.getId());
assertTrue(chunkCreator.getPoolSize() > 0);
}
@Test
public void testPuttingBackChunksAfterFlushing() throws IOException {
byte[] row = Bytes.toBytes("testrow");
byte[] fam = Bytes.toBytes("testfamily");
byte[] qf1 = Bytes.toBytes("testqualifier1");
byte[] qf2 = Bytes.toBytes("testqualifier2");
byte[] qf3 = Bytes.toBytes("testqualifier3");
byte[] qf4 = Bytes.toBytes("testqualifier4");
byte[] qf5 = Bytes.toBytes("testqualifier5");
byte[] val = Bytes.toBytes("testval");
// Setting up memstore
memstore.add(new KeyValue(row, fam, qf1, val), null);
memstore.add(new KeyValue(row, fam, qf2, val), null);
memstore.add(new KeyValue(row, fam, qf3, val), null);
// Creating a snapshot
MemStoreSnapshot snapshot = memstore.snapshot();
assertEquals(3, memstore.getSnapshot().getCellsCount());
// Adding value to "new" memstore
assertEquals(0, memstore.getActive().getCellsCount());
memstore.add(new KeyValue(row, fam, qf4, val), null);
memstore.add(new KeyValue(row, fam, qf5, val), null);
assertEquals(2, memstore.getActive().getCellsCount());
// close the scanners
for(KeyValueScanner scanner : snapshot.getScanners()) {
scanner.close();
}
memstore.clearSnapshot(snapshot.getId());
int chunkCount = chunkCreator.getPoolSize();
assertTrue(chunkCount > 0);
}
private long addRowsByKeys(final AbstractMemStore hmc, String[] keys) {
byte[] fam = Bytes.toBytes("testfamily");
byte[] qf = Bytes.toBytes("testqualifier");
MemstoreSize memstoreSize = new MemstoreSize();
for (int i = 0; i < keys.length; i++) {
long timestamp = System.currentTimeMillis();
Threads.sleep(1); // to make sure each kv gets a different ts
byte[] row = Bytes.toBytes(keys[i]);
byte[] val = Bytes.toBytes(keys[i] + i);
KeyValue kv = new KeyValue(row, fam, qf, timestamp, val);
hmc.add(kv, memstoreSize);
LOG.debug("added kv: " + kv.getKeyString() + ", timestamp" + kv.getTimestamp());
}
regionServicesForStores.addMemstoreSize(memstoreSize);
return memstoreSize.getDataSize();
}
private long cellBeforeFlushSize() {
// make one cell
byte[] row = Bytes.toBytes("A");
byte[] val = Bytes.toBytes("A" + 0);
KeyValue kv =
new KeyValue(row, Bytes.toBytes("testfamily"), Bytes.toBytes("testqualifier"),
System.currentTimeMillis(), val);
return ClassSize.align(
ClassSize.CONCURRENT_SKIPLISTMAP_ENTRY + KeyValue.FIXED_OVERHEAD + KeyValueUtil.length(kv));
}
private long cellAfterFlushSize() {
// make one cell
byte[] row = Bytes.toBytes("A");
byte[] val = Bytes.toBytes("A" + 0);
KeyValue kv =
new KeyValue(row, Bytes.toBytes("testfamily"), Bytes.toBytes("testqualifier"),
System.currentTimeMillis(), val);
return toCellChunkMap ?
ClassSize.align(
ClassSize.CELL_CHUNK_MAP_ENTRY + KeyValueUtil.length(kv)) :
ClassSize.align(
ClassSize.CELL_ARRAY_MAP_ENTRY + KeyValue.FIXED_OVERHEAD + KeyValueUtil.length(kv));
}
}