
Move replication queue storage
from zookeeper to a separated
HBase table

Previous design doc
Move HBase replication tracking from ZooKeeper to HBase

Background
Almost the same with the previous design doc so just copy it here
“
It is a long story that we want to depend less on zookeeper in HBase and finally
purge it so we can easily deploy HBase on cloud.
Replication tracking system is one of the subsystems in HBase which heavily
depends on zookeeper. In our(Xiaomi) deployment, we use replication heavily, and
sometimes the replication will bring down the zookeeper cluster due to too many
znode or too large znode, and cause a lot of trouble.
So here we propose to move the replication tracking system off zookeeper, to a
system table in HBase.
”
In this design doc, we will focus on the replication queue storage, as for replication
peer, the data is small and it is easy to find somewhere to store it.

The ‘deadlock’ problem
In the current HBase WAL and replication implementation, when replication is
enabled, we always need to store the newly created WAL file in
ReplicationQueueStorage. The work must be done before we allow actual WAL
entries to go into the newly created WAL file.
But if we implement ReplicationQueueStorage based on a system table, obviously,
the region of this table needs a WAL file to write WAL entries when we want to store
something into it.
This introduces a cyclic dependency, think of we do not have any regionserver in the
cluster yet, and once a region server is started, we will assign the system table to it,
and during the assignment processing, we need to create a WAL file and write the
open marker to it, but before we can writing anything into the WAL file, we need to
store this WAL file to the system table. Deadlock.

Possible solutions

Introduce a special WAL file for system table

This is proposed in the previous design doc. The basic idea is to have a special WAL
file, which does not need to be stored into the replication queue system table. This
could break the tie.
But there are still some disadvantages:

1. Need to make a separate WAL provider for system tables too, so we can skip
adding ReplicationQueueStorage to this WAL provider.

2. Need to add more steps in SCP to recover this system table first.
3. Need to implement special bootstrap logic to initialize this system table before

serving.
And the most critical problem is that ZooKeeper is designed to be HA and its failover
is pretty fast. But for HBase, if the region server which holds the region which stores
the replication queue information crashes, we will hang the WAL rolling for the whole
cluster for a 'long' time(usually tens of seconds or even several minutes). This will
hurt the availability of the HBase cluster.

Track replication offset per queue instead of per file

The basic idea is that, for a normal replication queue, where the WAL files belong to
it is still alive, all the WAL files are kept in memory, so we do not need to get the WAL
files from replication queue storage. And for a recovered replication queue, we could
get the WAL files of the dead region server by listing the old WAL directory on HDFS.
So theoretically, we do not need to store every WAL file in replication queue storage.
And what’s more, we store the created time(usually) in the WAL file name, so for all
the WAL files in a WAL group, we can sort them(actually we will sort them in the
current replication framework), which means we only need to store one replication
offset per queue. When starting a recovered replication queue, we will skip all the
files before this offset, and start replicating from this offset.
For ReplicationLogCleaner, the logic is also straight-forward, all the files before this
offset can be deleted, otherwise not.
In this way, theoretically we do not need to touch the replication queue system table
every time when creating a WAL file, which could solve the most critical problem
mentioned in the above solution.
Of course, the implementation in the real world is not easy, we need to deal with a
bunch of corner cases. When implementing the POC of solution, I’ve already hit lots
of problems, will list more detailed designs below.

The API and storage format

The data structure and API

The queue related methods in ReplicationQueueStorage

 void setOffset(ReplicationQueueId queueId, String walGroup, ReplicationGroupOffset offset,
 Map<String, Long> lastSeqIds) throws ReplicationException;

 Map<String, ReplicationGroupOffset> getOffsets(ReplicationQueueId queueId)
 throws ReplicationException;

 List<ReplicationQueueId> listAllQueueIds(ServerName serverName) throws
ReplicationException;

 List<ReplicationQueueId> listAllQueueIds(String peerId, ServerName serverName) throws
ReplicationException;

 List<ReplicationQueueData> listAllQueues() throws ReplicationException;

 List<ServerName> listAllReplicators() throws ReplicationException;

 Map<String, ReplicationGroupOffset> claimQueue(String peerId, ReplicationQueueId
queueId,
 ServerName targetServerName) throws ReplicationException;

 void removeQueue(ReplicationQueueId queueId) throws ReplicationException;

The methods for reading last sequence ids for serial replication, and HFile references
are still the same so not posting it here.

ReplicationQueueId

public class ReplicationQueueId {

 private final ServerName serverName;

 private final String peerId;

 private final Optional<ServerName> sourceServerName;

 public ReplicationQueueId(ServerName serverName, String peerId) {
 this.serverName = serverName;
 this.peerId = peerId;
 this.sourceServerName = Optional.empty();

 }

 public ReplicationQueueId(ServerName serverName, String peerId, ServerName
sourceServerName) {
 this.serverName = serverName;
 this.peerId = peerId;
 this.sourceServerName = Optional.of(sourceServerName);
 }

 @Override
 public String toString() {
 StringBuilder sb = new StringBuilder().append(serverName.toString()).append('-
').append(peerId);
 sourceServerName.ifPresent(s -> sb.append('-').append(s.toString()));
 return sb.toString();
 }
}

The serverName field is always the region server which is currently replicating this
queue, the optional sourceServerName is the region server which creates and owns
this replication queue at the beginning. For a normal replication queue, the
sourceServerName is not presented, for a recovered replication queue, the
sourceServerName is presented. Notice that, we do not need to record all the region
servers which have replicated this queue in the history, as we only need to replicate
the WAL data of the first region server.

ReplicationGroupOffset

public class ReplicationGroupOffset {

 public static final ReplicationGroupOffset BEGIN = new ReplicationGroupOffset("", 0L);

 private final String wal;

 private final long offset;

 public ReplicationGroupOffset(String wal, long offset) {
 this.wal = wal;
 this.offset = offset;
 }
}

The meaning of this class is straight forward. As said above, we can sort all the WAL
files in a replication queue, so the offset of a replication queue is just a WAL file and
the offset in this file. We do not implement Comparable here because the code for
splitting the WAL file name is in the hbase-server module while this class is in the
hbase-replication module.

The schema in hbase:replication

Replication Queue

Let’s name the family ‘queue’.
The row key will be in format
<PeerId>-<ServerName>[-<SourceServerName>]
The WAL group will be the qualifier, and the serialized ReplicationGroupOffset will be
the value.
We only need to retain the newest version of the value.
Here we place the peer id first because

1. Since peer id can not contain ‘-’ but server name can, it will be easier to parse
the rowkey back when peer id comes first and we use ‘-’ as the separator.

2. We can group all the replication queues for a replication peer together, so we
can split the hbase:replication table. See the Split Policy for more details.

Of course, this will increase the difficulty on implementing listAllQueueIds, but it is still
possible as we know the format of the row key, so it is easy for us to jump directly to
the next peer id in the table, and then construct the correct prefix to scan for the
replication queue. And we could also add a method which accepts two parameters,
peer id and server name, to list queue ids, as we can get all the replication peers
from other places.

Last Sequence Ids

Let’s name the family ‘sid’
The peer id will be the row key.
The encoded region name will be the qualifier and the last sequence id will be the
value.
We only need to retain the newest version of the value.
The reason why we put all the data in one row is for simplifying the remove peer
logic, as we can delete all the data with one delete family.

HFile References

Let’s name the family ‘hfileref’
The peer id will be the row key.
The hfile ref will be qualifier and we just need to store a dummy value.
The reason why we put all the data in one row is for simplifying the remove peer
logic, as we can delete all the data with one delete family.

Split Policy
Since the atomic update of replication queues are always within a replication peer,
and all the row keys start with peer id, we can make use of DelimitedKeyPrefix
SplitRestriction where the delimiter is ‘-’ to make the hbase:replication splittable.

The ‘claim queue’ operation

For the storage implementation, the claim queue operation is just to remove the row
of a replication queue, and insert a new row, where we change the server name to
the region server which claims the queue. If sourceServerName is not present, i.e,
we are claiming a normal replication queue, then we fill the old leading server name
as sourceServerName.
On the whole claim queue operation in HBase, one of the problem is that, since now
we will not always record the replication queue offset when there is a new WAL file in
the replication queue, it is possible that when we arrive the claim queue stage of
SCP, there is no replication queue record in hbase:replication but actually, we need
to ‘claim’ the replication queue, otherwise there will be data loss in the peer cluster.
The idea is straightforward, in the claim queue stage of SCP, we list all the replication
peers, create a replication queue for it if it does not exist yet, and then let other
region servers to claim it. This will introduce a dependency on hbase:replication table
for SCP, but when arriving at the claim queue stage, we can make sure all the
regions on the dead server are already online, so it will not introduce the ‘deadlock’
problem back.
There are mainly two problems for this solution:

1. A region server may have a bunch of WAL files already, and when adding a
new peer, only the newest WAL file needs to be replicated. But if we haven’t
replicated anything yet, there will be no replication queue record for this peer,
and then the region server crashes, with the above solution, we will replicate
all the WAL files for this region server.

2. During the claim queue stage, we may also add or remove peers at the same
time, which may lead to race and cause incorrect results.

For #1, the solution is to add a fence when adding a replication peer. That means,
when adding a replication peer, we need to make sure that on all the region servers,
we create the replication queue for the peer and store the initial offsets too. In this
way, for the region servers which are still alive when adding the replication peer, we
will have a replication queue for it. If a region server does not have a replication
queue for the replication peer, we can make sure that the region server is started
after we add the replication peer, so we need to replicate all the WAL files of it.
Of course, there could still be race, as during the adding replication peer operation, a
region server could die too and start to claim queues, which is similar to #2 above.
So here, we need some fencing mechanisms between replication peer related
procedures and SCP.
For RemovePeerProcedure, since in the claim queue stage of SCP, we may insert
new replication queue for the dead server, we need to make sure that it does not

insert a new replication queue for the deleted replication peer, or at least, we need to
have a way to delete these replication queues properly. The idea is to wait for all the
ongoing SCPs to finish after deleting the replication peer from replication peer
storage but before deleting all the replication queues for this peer. To be more
specific, in the postPeerModification method of RemovePeerProcedure, collect all the
ongoing SCPs, store them as a class field so next time we do not need to collect
again(this is important, otherwise if there are new SCPs scheduled, it could make us
stuck here forever, which is not necessary), and then check whether all of them are
finished.If not, throw a ProcedureSuspendException to release the procedure worker
and try again later.
For AddPeerProcedure, replicating more files then expected is not a big problem, it
will not cause any data inconsistent problem, so in general, there is no special
fencing needed.

The ReplicationLogCleaner

The basic idea to test whether a WAL file under oldWALs directory is to check
whether the file is before all the replication offsets in all the replication queues which
contain this file. If so, we can delete it, otherwise not.
There are several problems when we want to actually implement this ‘simple’ idea.
First, since now we will not insert data to the replication queue storage immediately
when there is a new WAL file in the replication queue, it is possible that when we
want to check whether a file can be deleted, some of the replication queues which
contain this file are still missing. The basic idea here is that, if there is a missing
queue, then we do not delete the file. But notice that, by just listing all the replication
queue ids for the region server is not enough to find out that we miss a queue, as the
replication queues for some other replication peers may present and we do have
some return values when calling listAllQueueIds. So the idea here is that, we first list
all the replication peers, and get replication queues for each of the replication peers,
to see whether we miss some replication queues.
And then consider dead region servers, their replication queues will be claimed by
other region servers, so we can not list their replication queue ids easily. Here we
need to scan all the replication queues for a replication peer to filter out the
replication queues for a dead region server.
And here comes another problem, if a region server is dead, and all its replication
queues are claimed by other region servers and are finished replicating, then these
replication queues will be deleted. The WAL files belonging to these replications can
be deleted if they are not referenced by other queues, but based on our above rules,
if there are missing replication queues, we should not delete a WAL file. So in
ReplicationLogCleaner, we need to know whether a region server is dead or not, and
then choose different rules to determine whether a WAL file can be deleted.
Notice that, a ‘dead’ server means the region server is dead, and its associated SCP
has also been finished. If SCP is not scheduled or not finished, we should still treat it

as a live region server. So we need to find a way to expose this information to
ReplicationLogCleaner.

About sync replication

The problem is about the drain source operation. For sync replication, when
converting from STANDBY to DOWNGRADE_ACTIVE, we need to make sure we do
not replicate the data which belongs to the previous DA state. In the past, this is done
by roll the WAL writer when transiting to S, this is because when transiting to S, we
will remove all the WAL files in queue, so when can also remove the current WAL file
after rolling the WAL writer, in this way we can make sure that there will no data
belongs to the previous DA state in queue.
The problem here is that we do not store all the WAL files in the replication queue
now, so the above solution is not applicable any more. First, in the S state, we should
still keep updating the WAL offset when there is a new WAL file, so we can know that
the WAL file is not needed any more. Or maybe we could just store a special offset
which is after all possible valid offset, and when transiting to DA, we write a normal
offset to restore the replication queue.
Considering the race between SCP, we need to find a way to make sure that all the
recovered replication sources are processed. The idea here is similar to
RemovePeerProcedure. For transiting sync replication state, we will do a two step
transiting, and in the middle we will send a remote procedure to all the region servers
to drain sources or do something similar. So before we commit the final state
changes, we also need a step to wait until all the SCPs are finished. The difference
comparing to RemovePeerProcedure is that, for RemovePeerProcedure, once we
updated the replication peer storage, the newly dead region servers will not claim the
queue for this replication peer any more, so we are safe to only take care of the
ongoing SCPs, which may have already loaded the replication peers, and then
deleting all the replication queues for the peer without any races. But for
TransitPeerSyncReplicationStateProcedure, the peer is still there, and we can only
rely on the region servers to write the replication offset, so we need to make sure
that, the replication queues for all the regionservers(live, or ‘dead’ but the SCP for it
is not finished yet) are processed. So the correct step for waiting SCPs to finish is
that, we first get all the region servers and also the ‘dead’ region servers where the
associated SCPs are not finished yet, and then send remote procedure to the live
ones, and finally, we need make sure that, either the remote procedure is
successfully done, or the SCPs for the region server is done. After this condition is
met, we can finally commit the state transition and finish the
TransitPeerSyncReplicationStateProcedure.

The ReplicationSyncUp tool

Since the claim queue logic is completely different in the new implementation, the old
compatible code in ReplicationSourceManager is not functional, which breaks the
ReplicationSyncUp tool.
In general, we’d better not adding special logic in normal code, so I suggest we do
not reuse the logic in ReplicationSourceManager, we should implement our own
claim queue method in ReplicationSyncUp tool and then start
RecoveredReplicationSource by our own.
The current ReplicationSyncUp tool mainly solves the problem that existing WAL
data can be replicated to the Slave-Cluster after the HBase Master-Cluster crashed,
but ZK, HDFS and the network are available. The principle is to implement a
DummyServer. The DummyServer is used to claim the replication queues of all dead
RegionServers, and then the DummyServer is used to copy the data that has not
been replicated in the corresponding queue to the Slave-Cluster.
The info related to replication in the whole process is obtained from ZK. However, in
the new implementation, it needs to be obtained from the HBase table. But if the
HBase Master-Cluster has crashed, the info related to replication cannot be obtained
from the HBase table.
After discussion, we all agree that ReplicationSyncUp tool can directly read the
hbase:replication table data offline to implement the new ReplicationSyncUp tool.
When the ReplicationSyncUp tool is executed, the master cluster is in a down state.
Because the hbase:replication table is flushed regularly, ReplicationSyncUp can directly
read the hbase:replication table data offline. This way has no technical challenges and is
simpler. Of course, the flush way and the snapshot way have the same problem,
because flush is executed regularly, there is a certain delay time, which will also lead to
redundant data being replicated to the slave cluster when ReplicationSyncUp is
executed.
After ReplicationSyncUp is executed, the data that needs to be replicated by the master
cluster has been replicated. Theoretically, the data in the hbase:replication table needs to
be cleaned up. When ReplicationSyncUp is executed, a flag can be written to the file
system, and the master cluster HMaster recovers, the data in the hbase:replication table
can be cleaned according to this flag. After cleaning, we must delete this flag to avoid
repeatedly cleaning the hbase:replication table.

Does the data cleaning of the hbase:replication table require that the HMaster be started
before the RegionServer when the master cluster recovers to avoid inconsistency of
hbase:replication data?

HMaster does not need to be started before RegionServer for two reasons:

a. If the RegionServer is started first, the RegionServer will be in the initialization
state until the HMaster is started, no regions are assigned to it, so no data needs to
replicated, and the hbase:replication table will not be modified;

b. If the RegionServer is started first, it will not claim the replication queue of dead
RegionServer, because this process is launched in the ServerCrashProcedure, and
ServerCrashProcedure is executed by HMaster.

The DumpReplicationQueues tool

The data in the replication queue is completely different as now we do not store
every WAL file, so the output of DumpReplicationQueus tool should also be changed.
The info output by the current version of DumpReplicationQueues includes:

1. replicatedTableCFs info: columns whose table column attribute scope is not 0
2. replicationPeer info: obtain data from ZK
3. queue info: includes RegionSever info, queueId, peerId, and offset of each

wal file, etc. If '-- distributed' is set, it will poll each regionserver to obtain this
information, otherwise we will obtain it from ZK.

In general, the output info of the new and old versions of DumpReplicationQueues is
similar. In the new implementation, because we store the replication related info in
the HBase table, DumpReplicationQueues needs to obtain data from the HBase
table instead. At the same time, each queue in the new implementation has only one
wal file and the corresponding offset. But we can follow the old way, to find out all the
wal files need to be replicated and print them out.We can get the list of wal files through
the wal directory.

It is recommended that the output of the wal file and offset info be consistent with the old
version, to avoid the situation where users fail to upgrade the HBase version due to their
dependence on the output info of the DumpReplicationQueues tool.

About data migration and rolling upgrading

The idea is simple and straightforward. Let’s disable all the replication peers while
rolling upgrading, and start a background migration chore on master to migrate the
data from zookeeper to the new hbase:replication table. Once the migration is done,
we can enable all the replication peers.
One of the problems is that, during migration, the region server can not claim the
replication queues too. But during rolling upgrading, we need to restart region
servers, and claim replication queues is the last stage of SCP. The idea here is, in
the claim replication queue stage of SCP, we

1. Check whether we have finished the data migration, if not, just suspend the
SCP for a while and retry.

2. Once the migration is done, we can start to claim the replication queue, but
we will only send claim queue procedures to the region server with the new
version. This could be done in several ways, for example, we know the
version of a region server, when selecting region servers we could do a filter,
or we just introduce a new remote procedure callable(since the queue
definition is changed), so when the region server with old version receives the
request, it will fail to deserialize the data and fail immediately.

3. To avoid moving most of the replication queues to only a small set of region
servers(the region servers which are upgraded first), we should set a
threshold of the percentage of upgraded region servers among the whole

region server, for example, only after at least 30% region servers have been
upgraded, we can start to execute the claim replication queue operations.

