
HBase MOB 2.0 
 
 
MOB 2.0 design goals 3 

MOB 2.0 non-goals 3 

Unified compactor 3 

MOB compaction 4 
Introduction 4 
Regular MOB compaction algorithm 5 
I/O optimized MOB compaction algorithm 5 

Algorithm analysis 5 
Maximum I/O amplification 5 
Calculating maximum MOB file size 6 

Scalable MOB compactions 6 
Batch mode 6 

Code simplification and reduction 6 

Important code and algorithm changes 7 
DefaultMobStoreFlusher changes 7 
New MOB File Cleaner Chore 7 

Upgrade plan 8 
Requirements 8 

Performance considerations 8 
Current MOB 2.0 8 
MOB 2.0 compaction for small  MOB (below 50KB) 9 

MOB 2.0 metrics 9 

MOB 2.0 testing 9 
Stress tool with fault injections 9 
Developer qualification 10 
QA qualification 10 
Upgrade testing 10 

Documentation 10 

Conclusion 10 



Appendix A. What is wrong with MOB 1.0 or chronology of unfortunate events 12 

References 13 
 
  



 
Revision history 
 

Version Editor Description Date 

1.0 vrodionov@cloudera.com Initial draft 7/26/2019 

2.0 vrodionov@cloudera.com Added partial MMC   
section, potential  
optimization for small   
MOB (10K-50K).  

7/29/2019 

2.1 vrodionov@cloudera.com Added clarification on   
CompactType.MOB 
support 

7/29/2019 

2.2 vrodionov@cloudera.com New MOB  
compaction algorithm 

9/4/2019 

2.3 vrodionov@cloudera.com I/O optimized  
compaction algorithm 

11/13/19 

3.0 vrodionov@cloudera.com Minor changes,  
bumped version to   
3.0 

11/14/19 

  



MOB 2.0 design goals 
 
There are several drawbacks in the original MOB 1.0 (Moderate Object Storage) implementation,              
which can limit the adoption of the MOB feature:  
 

1. MOB compactions are executed in a Master as a chore, which limits scalability because all               
I/O goes through a single HBase Master server.  

2. Yarn/Mapreduce framework is required to run MOB compactions in a scalable way, but this              
won’t work in a stand-alone HBase cluster. 

3. Two separate compactors for MOB and for regular store files and their interactions can result               
in a data loss (see Appendix A. for details) 

 
The design goals for MOB 2.0 were to provide 100% MOB 1.0 - compatible implementation, which is                 
free of the above drawbacks and can be used as a drop in replacement in existing MOB                 
deployments. So, these are the design goals of a MOB 2.0: 
 

1. Make MOB compactions scalable without relying on Yarn/Mapreduce framework 
2. Provide unified compactor for both MOB and regular store files 
3. Make it more robust especially w.r.t. to data losses.  
4. Simplify and reduce the overall MOB code. 
5. Provide 100% compatible implementation with MOB 1.0. 
6. No migration of data should be required between MOB 1.0 and MOB 2.0 - just software                

upgrade. 

MOB 2.0 non-goals 
Matching or exceeding the performance of the MOB 1.0 mapreduce MOB compaction            
implementation is not a goal. We are not going to compare MOB 2.0 compaction performance vs.                
older mapreduce implementation.  
Another non-goal, at least for initial MOB 2.0 release is the optimization for small MOB values (below                 
50K). This optimization is possible, but we will leave it for the next MOB 2.0 release and only if there                    
will be requests for such optimization. 

Unified compactor  
Our new MOB unified compaction design approach is the following: 
 

1. Both MOB files and regular store compactions are executed by          
DefaultMobStoreCompactor now. There is no more special compactor for MOB files.  

https://issues.apache.org/jira/browse/HBASE-11339


2. MOB compactions are triggered only by user’s request, either from hbase shell or via Admin               
API. All system-originated compactions do not touch MOB data at all (they do not compact               
MOB files but can create a new one).  

3. To run MOB compaction, User must submit major_compact with type=CompactType.MOB          
request on a table or table’s region. 

4. DefaultMobStoreCompactor does not archive MOB files and leave this duty to a new             
MobFileCleanerChore implementation (see below).  

5. During any compaction (User or system, minor or major), DefaultMobStoreCompactor          
collects list of MOB files, which store file, being created, has references to and writes this list                 
into the metadata section (MOB_FILE_REFS) of a newly compacted store file. As a result, every               
store file has a list of MOB files it will require to resolve all MOB references. This data will be                    
used by MOB File Cleaner Chore to decide which MOB file can be safely archived. 

6. CompactType.MOB support. Both: CompactType.MOB and CompactType.NORMAL are       
supported. User-originated, major compact request with type CompactType.MOB will         
compact both: MOB and regular store files. To compact only regular store files, user must set                
type to CompactType.NORMAL. 

 

 

MOB compaction 

Introduction 
The MOB compaction is needed mostly for two reasons : 
 

1. To decrease storage space amplification due to frequent deletes and updates of MOB cells. 
2. To keep the total number of MOB files under control, which can be very important for some                 

distributed file systems, such as HDFS. 
 
The reason #3 - improving scan performance is not applicable (again, in the majority of use cases)                 
for MOB data, because it is usually accessed by Get and not by a Scan operation. 
In most use cases, reason #1 is not that important as well due to the static nature of a MOB (large)                     
values. Usually, MOB data is inserted once and will never be updated or deleted until it is expired.                  
These observations are the foundations of the I/O optimized MOB compaction algorithm. 
 
 

Regular MOB compaction algorithm 
This is the default MOB compaction mode. It is designed to be suitable for use cases with frequent                  
updates or/and deletes of a MOB data. During regular MOB compaction of a table’s region all the                 



MOB files, belonging to this region, are rewritten into a single MOB file. The result of regular major                  
MOB compaction request for a region are two files: one MOB and one regular store file. During                 
regular compaction all deleted MOB data get purged and all updates are coalesced into a single one                 
value for a MOB key.  

I/O optimized MOB compaction algorithm 
For use cases with infrequent or no updates or deletes of a MOB data, the I/O optimized algorithm is                   
proposed. This algorithm allows to minimize the overall read and write I/O amplification during MOB               
compaction by limiting the maximum size of a MOB file, created during compaction. The maximum               
MOB file size is defined by configuration parameter hbase.mob.compactions.max.file.size,  
Which is, by default - 1GB. The value must be set in bytes. The algorithm works as follows: 
 

1. No single MOB file, produced during MOB compaction, can significantly exceed the            
maximum size limit. If system, during MOB compaction, detects that current MOB file, being              
produced, exceeds the maximum size limit, the system closes current MOB file, open a new               
one and continues compaction. 

2. During MOB compaction, only MOB files, whose size is below the maximum limit will be               
compacted. It means, that all MOB files with sizes above the limit will stay untouched and all                 
MOB files with sizes below the limit will be compacted into one or (potentially) more MOB                
files. 

3. If overall size of all small MOB files for a region exceeds the maximum size limit - more than                   
one MOB file will be produced during compaction (see 1.) 

  

Algorithm analysis 

Maximum I/O amplification 

The algorithm provides an upper bound for a write amplification, which can be approximately              
estimated as: 

 
WA = logK (M/S) 

  
where K - average selection size - number of files in compaction selection, M - threshold defined by                  
hbase.mob.compactions.max.file.size and S - average size of a MOB file after memstore flush.             
The read amplification has approximately the same upper bound.  
 
 
Example: 
 
K = 5, M = 1GB, S=10MB, write amplification is (1GB/10MB)= og (100) .86log5 l 5 = 2  



Calculating maximum MOB file size 

 As overall data size grows, the majority of MOB files will be at max limit. So we can propose a 
simple formula to select maximum file size: 

M = P/N - 
(where M - maximum MOB file size, P - maximum data size expected and N - recommended                  

maximum number of MOB files in a system). WIth P = 1PB and N = 1M - we have default maximum                     
size - 1GB. 

Scalable MOB compactions 
 
Periodic MOB file compaction Chore will be added to run MOB compactions periodically without              
user’s interventions. This Chore will scan all tables, find those with MOB-enabled column families              
and will issue major_compact request with type= CompactType.MOB on those column families,            
using the standard HBase Admin API. That chore is present in the original MOB (although it does                 
only cleaning of a TTL-expired MOB files), but now MOB compactions can run in parallel and are                 
not limited by a single Master only.  

Batch mode 
 
To avoid possible compaction storms, the new configuration parameter has been added -             
hbase.mob.compaction.batch.size - the maximum number of regions, which can be compacted in            
parallel. Default value is 0 - means no limit. If this parameter is set to a non-default value N, the                    
MobFileCompactionChore will group regions in batches of size N and will compact batches serially.              
The batch mode is implemented in MobFileCompactionChore, therefore it can be run only in              
automatic mode as a chore in HBase master. The batching is happening on a HBase Master.                
MobFileCompactionChore collects all regions for a table, shuffles them, then issues compaction            
requests in batches, then waits until the batch is complete, then issues next batch requests, etc.                
When user requests MOB compaction either via HBase shell (major_compact command) or in an              
application - the batch mode is not available, all regions of a table will be compacted simultaneously.  

Code simplification and reduction 
The overall code size will be reduced quite significantly: 
 

1. The mob.compactions and mob.mapreduce packages and corresponding test packages         
will be gone completely.  

2. Both: MOB and regular compactions will be unified in a single place. 
3. No more special treatment for Delete MOB cell operations, no more separate _del files and               

all the code to support Delete MOB functionality will be gone too, because now all deletes are                 
handled by a default store compactor. 



 

Important code and algorithm changes 

DefaultMobStoreFlusher changes 
MOB store flusher creates two files during memstore flush: MOB file and corresponding store file.               
The new implementation adds metadata (MOB_FILE_REFS) to a store file to keep the MOB file name                
(see above compaction section). This is the difference between original DeafultMobStoreFlusher           
and redesigned DeafultMobStoreFlusher 2.0. 

New MOB File Cleaner Chore 
 
Original MOB cleaner chore in MOB 1.0 does only one task: it checks for TTL-expired MOB files and                  
archives them if finds such a files. Our new MOB cleaner must take care of obsolete (after                 
compactions) MOB files. These files must be archived as well. This is what the new MOB cleaner                 
chore does: 
 

1. It still does TTL expiration check, but after that: 
2. It collects all live MOB file names from metadata of a MOB table’s column family store files in                  

a single run. 
3. If a store file does not have metadata with the key (MOB_FILE_REFS) and has metadata with                

the key (MOB_CELLS_COUNT) - it means that a store file has been created by older version of                 
MOB, the chore logs the message that it can not proceed because old store file still exists                 
and the chore aborts the overall operation. This is done to support seamless migration from               
original MOB 1.0 to a new MOB 2.0. The overall cleaning is postponed until all the regions of                  
a table are MOB-compacted and hence have corresponding metadata key (MOB_FILE_REFS). 

4. If a store file does not have both: MOB_FILE_REFS and MOB_CELLS_COUNT - it is either store                
file after compaction with no MOB cell references, a bulkoaded file or a MOB file, which was                 
just flushed and has not gone through a single compaction cycle yet. To distinguish between               
bulkloaded file and freshly flushed MOB file we check BULKLOAD_TASK_KEY. The Chore            
aborts if it finds freshly flushed MOB file (no bulkload key, no mob reference key, no mob cell                  
count key).   

5. After compiling a list of all live MOB files for a MOB column family, the chore scans MOB files                   
in MOB directory and archive those not in the list. 

Upgrade plan 
The migration of data is not required after upgrading system to a MOB 2.0. The new compaction and                  
cleaner chore in MOB 2.0 are smart enough to support both: old and new data. MOB 2.0 will never                   



archive old MOB file until all table regions are gone through the new MOB compactions and hence                 
no data loss will be possible.  

Requirements 
During post-upgrade process, before all MOB tables will be major compacted, an additional storage              
space, of at least of the size of the largest MOB table, will be required. So the upgrade process                   
should be planned accordingly. 

Performance considerations 

Current MOB 2.0 
 
We will measure the impact of the implementation of MOB compactions in both: general              
performance (how long will it take to fully compact MOB table) and I/O overhead (how many bytes                 
were read and written during compaction). We will compare these numbers with MOB 1.0 version.  
From a preliminary estimate, we can predict that the new compactor in MOB 2.0 will vastly                
outperform, in general performance, MOB 1.0 compactor, orchestrated by Master, it will have less              
I/O overhead in a partial major MOB compaction mode, than old MOB 1.0 compactor and the new                 
compactor will have comparable I/O overhead in default (non-optimized) mode.  
 
One major difference between MOB compactors in 2.0 and 1.0 is the former compactor reads MOB                
cells issuing random I/O requests, when the latter one reads MOB data sequentially. This should not                
hurt the performance of MOB 2.0 compactor because of the following factors: 
 

1. The read request size is at least 100KB (this is default MOB threshold and lower size bound                 
for MOB value in original MOB design). Even a single HDD can serve 150 random requests                
per sec, which translates to 15MB/sec compaction throughput for a single compaction thread. 

2. Increasing number of compaction threads will improve performance linearly (in a multi-HDD            
storage setup) in a single Region Server. As an example, with 4 HHDs per Data Node a                 
compaction thread pool with 4 threads will increase throughput to 60MB/sec (with 100KB             
average MOB value size), which is very good throughput by any measure.  

3. When SSDs are used as a storage media -  this is not the issue at all. 
4. MOB 2.0 compactor will outperform 1.0 anyway because it scales linearly with cluster size              

and MOB 1.0 does not (when Master-orchestrated)  
5. The preliminary analysis of a data access pattern in MOB files in MOB 2.0 compactor shows                

that I/O may not be that 100% random and OS can take advantage of prefetching data, which                 
should improve read performance as well.  

 
We are pretty confident that the current MOB 2.0 compaction algorithm will be more than adequate                
for MOB deployments with MOB threshold equals to or above the default MOB threshold of 100KB,                
but to support lower values of a MOB thresholds 10 - 50KB (although it is against the original MOB                   



design approach, where MOB value starts with 100KB) additional optimization may be required -              
converting random MOB read requests into sequential ones. 

MOB 2.0 compaction for small  MOB (below 50KB)  
 
This is not the goal for the first release of MOB 2.0, but we can improve MOB compaction                  
performance for small MOB values, reading MOB cells during MOB compactions using the same              
StoreScanner machinery, which HBase provides to read key-values orderly from a multiple store             
files. We will leave the details of this optimization for the next MOB 2.0 release and only if there will                    
be requests for such an optimization.  

MOB 2.0 metrics 
No special to MOB 2.0 metrics are required. The existing MOB compaction metrics will suffice. 

MOB 2.0 testing 

Stress tool with fault injections 
Stress tool, which can be run from a command-line, will be used in both: developer and QA                 
qualification to test the new MOB 2.0. The tool will execute the following tasks: 
 

● Loading  MOB and not MOB data, using write thread pool. 
● Running, in parallel with data loaders, MOB compaction chore (default interval is 2 min). 
● Running, in parallel with data loaders, MOB file cleaner chore (default interval 2min). 
● Running HBase archive cleaner  in aggressive mode (with intervals 60-120 sec) 

 
After data loading is complete, the dedicated Read thread pool will scan all the MOB table and                 
compare MOB values, read from a table, against expected values. 
 
The new FaultyMobStoreCompactor will be used by the tool to introduce random IOExceptions             
during MOB compactions.  

Developer qualification 
Includes running stress tool in dev environment with number of rows inserted up to 30M. The test                 
with 30M rows run takes up to 8 hours to complete (single threaded, w/o write and read thread                  
pools). Adding write and read thread pools must improve testing performance significantly. 

QA qualification 
Includes running stress tool in a cluster environment with up to 100M rows. QA will also test upgrade                  
from MOB 1.0 to MOB 2.0. 



Upgrade testing 
Upgrade testing procedure steps: 

1. Load data using existing MOB 1.0 (pre-upgrade step) 
2. Shutdown the cluster. 
3. Dump the content of MOB table’s mob directory (list of MOB files). 
4. Upgrade cluster to MOB 2.0  
5. Set MOB file cleaner chore interval to a low value , say X min (X is low minutes) 
6. Start up cluster 
7. Run MOB compaction on a MOB table from hbase shell, wait until it completes. 
8. Wait X min 
9. Verify all data are in place 
10. Verify that MOB Cleaner Chore started working (old data must be moved to archive) and no old                                 

files from a list compiled in step 3 are present in a mob directory. 

Documentation 
The HBase documentation will be updated with the design approach, upgrade procedure and             
configuration changes (new configuration parameters). The obsolete MOB 1.0 configuration          
parameters will be removed from the documentation.  

Conclusion 
The new MOB has the following advantages over the current implementation: 
 

1. MOB compactions are now scalable, because they run in parallel across a cluster and not               
through a single Master server. 

2. Mapreduce/YARN is not required anymore to achieve comparable to MOB 1.0 in mapreduce             
mode  scalability. 

3. The code size is reduced - two subpackages have been removed, some other utility classes -                
MobUtils has been reduced as well. 

4. Both MOB and regular compactions are now unified and are executed by a single              
DefaultMobStoreCompactor. 

5. The code itself is more self-contained and does not rely on some low level details or                
peculiarities of other HBase subsystems, such as correct bulk loading handling including            
error handling (see Appendix A for details). 

6. And it is free of a race condition, which we describe in the next section of this document. 
  



Appendix A. What is wrong with MOB 1.0 or chronology of           
unfortunate events 
 
 
Our investigation of a MOB and MOB - related data losses started some time ago, more than a                  
month before the corresponding ticket has been opened in Apache HBase (HBASE-22075). The             
customer of ours has complained about unexpected data loss in a MOB - enabled tables. This                
always happened after MOB compaction, which they run periodically, once a week. The HBase              
version they use is based on 1.1.2 (HDP 2.6.5). The MOB (medium size objects) itself was                
introduced in HBase v2.0 and has been backported to our HDP 2.5 release line by a colleague of                  
ours at HW.  
 
So, the initial hypothesis was - something was wrong with backporting. We did some (quite               
extensive) investigation, it took time to get to the “root cause” (as we thought at that time) and it                   
turned out that the issue is present in all HBase 2.x and in the master branch as well. This resulted                    
in HBASE-22075 (Potential data loss when MOB compaction fails). Here: HBASE-22075.  
 
The issue #1  
 
The first case of improper error handling occurs at the end of a compaction of the backing files that                                     
hold MOB values. The final step of compacting these files is a bulk load of updated reference cells                                   
for the regions that have values over the MOB threshold. In certain edge cases the bulk load can fail                                     
in such a way that some regions have successfully been updated to reference the newly compacted                               
files while some still refer to the original files. The existing MOB compaction code does not                               
distinguish this partial failure from a total failure where none of the regions were updated. Thus it                                 
acts as though none of the newly created files are needed and removes them, assuming any existing                                 
references must be to the original backing files. Those regions that successfully applied the bulk                             
load will subsequently report a failure to find the removed files when attempting to read reference                               
cells. 

 
The patch was small, we were able to reproduce the issue (data loss with FileNotFound exceptions)                
without patch and were not able to reproduce it with the patch and the patch, along with the updated                   
jar files, were sent over to our customer for internal testing. But, unfortunately, a couple weeks later,                 
our customer returned back with the same complaint - the same issue again and again - after MOB                  
compaction runs. The same data loss, the same FileNotFound exceptions for some missing MOB              
files. So there was something else, what caused data loss. 
 
We have spent a lot of time, trying to reproduce the issue in our own lab and, long story short, finally,                     
came to the following conclusion: there is a race condition between MOB and regular compactions,               

https://issues.apache.org/jira/browse/HBASE-11339
https://issues.apache.org/jira/browse/HBASE-22075


in some rare cases. This was a plausible explanation, but, unfortunately, we were not able to catch                 
and fix this race condition.  
 
The issue #2  
 
The data loss issue occurs due to a race condition between Major Compactions of normal regions                               
and a MOB compaction that runs concurrently. In this case, a given Region Server creates a newly                                 
compacted HFile with reference cells that point at the MOB files from prior to the MOB compaction.                                 
In parallel, a MOB compaction running on the Master replaces these backing MOB files. If the race                                 
results in the MOB compaction finishing its reference update followed by the Major Compaction                           
completing then the end state will be reference cells that point to files that are no longer tracked as                                     
needed by the MOB system. Once the regular process of cleaning out old files completes impacted                               
regions will report a failure to find the removed files when attempting to read reference cells. 

 
Having spent an enormous amount of time on debugging MOB, we were about to give up: we have                  
almost lost our confidence in finding the root cause in the existing MOB code. Something was                
definitely wrong in a MOB compaction code, this was for sure, so we decided to rewrite MOB                 
compaction code completely. The idea was - if two compactions, MOB and regular, can produce               
unexpected results, such as a data loss, let us get rid off MOB compactions completely and compact                 
MOB files during regular major compactions. This is how the unified compactions and MOB 2.0               
were born.  

References 
1. HBASE-22075 Potential data loss when MOB compaction fails  
2. HBase MOB Design 

https://issues.apache.org/jira/browse/HBASE-22075
https://issues.apache.org/jira/secure/attachment/12724468/HBase%20MOB%20Design-v5.pdf

