This commit refactors the CacheControl parsing logic to handle multiple "Cache-Control" headers. The previous implementation treated each header independently, returning an array of CacheControl objects. This caused issues when headers had directives that should be combined into a single CacheControl object.
The updated implementation combines all directives from all headers into a single CacheControl object, ensuring accurate representation of the caching directives.
This commit enhances the handling of the "no-cache" directive when used with specified header fields. The changes include:
* Updated the caching module to correctly identify and handle "no-cache" directives with specific header fields. This was done by modifying the `responseContainsNoCacheDirective` method.
* Modified the `handleCacheHit` method to ensure that a cached entry is revalidated with the origin server when a "no-cache" directive with specific header fields is present in the response.
* Ensured that the rest of the response is still cacheable when the specified header fields are present, as long as the response complies with other caching requirements.
.
This commit adds the Last-Modified header to the 304 Not Modified response when the ETag header is not present in the cache entry. This aligns the behavior with the recommendations in RFC 7232 and helps clients that rely on the Last-Modified header for cache updates when
The stale-if-error Cache-Control directive is used to indicate that a cached response can be used to satisfy a request even when an error occurs, as long as the response is still fresh or within the specified staleness limit. However, in the current implementation, this directive is only applied to cache entries that are revalidatable, meaning they have an ETag or Last-Modified header and can be refreshed with a conditional request.
This commit extends the stale-if-error directive to apply to any stale cache entry, whether revalidatable or not. This ensures that clients will continue to receive a cached response even if the original request resulted in an error, and helps to reduce the load on origin servers.
This commit adds several new constant values to the HttpByteArrayCacheEntrySerializer class to manage cache entry headers. The HttpByteArrayCacheEntrySerializer class was also updated with a new constructor to set the buffer size and a new method to serialize HTTP cache storage entry objects. Additionally, the code was refactored to enhance performance and remove unnecessary variables.
Previously, the same Cache-Control header was being parsed twice, once by isExplicitlyNonCacheable and again by calculateFreshnessLifetime. The parsing code was extracted from calculateFreshnessLifetime and enhanced to include the main cache control directive that isExplicitlyNonCacheable could use to make its decision. This improves the efficiency and accuracy of the caching logic.
Update ResponseCachingPolicy to allow caching of responses to POST requests under certain circumstances, as specified in RFC 2616 and explained in more detail in draft-ietf-httpbis-p2-semantics-20#section-2.3.4. This change extends the cacheability of responses beyond GET and HEAD methods, improving the cache's efficiency and reducing network traffic.
Previously, the getCacheEntry method was not correctly selecting the matching variant for a given request, which led to incorrect behavior when serving cached responses.
This commit improves the method's logic to correctly identify the cache entry using the request's cache key, and then select the variant with the matching ETag value. If no matching variant is found, the cache entry is considered stale and a new response is fetched from the origin server. The fix includes a new test case to ensure the correct behavior of the method in this scenario
This commit enhances the ExponentialBackoffManager and TestLinearBackoffManager unit tests by replacing the use of Thread.sleep() with direct manipulation of internal state to simulate the cooldown period. This change improves test reliability and ensures consistent behavior in resource-constrained environments.
This commit improves the reliability of BackoffManager unit tests by replacing the use of Thread.sleep() with a more robust approach that manipulates lastRouteProbes to simulate the cooldown period. This enhancement ensures that the tests run successfully even in resource-constrained environments, making them more resilient and reliable.