mirror of https://github.com/apache/lucene.git
Parallelize knn query rewrite across slices rather than segments (#12325)
The concurrent query rewrite for knn vectory query introduced with #12160 requests one thread per segment to the executor. To align this with the IndexSearcher parallel behaviour, we should rather parallelize across slices. Also, we can reuse the same slice executor instance that the index searcher already holds, in that way we are using a QueueSizeBasedExecutor when a thread pool executor is provided.
This commit is contained in:
parent
c188d47a8b
commit
10bebde269
|
@ -19,12 +19,12 @@ package org.apache.lucene.search;
|
||||||
import static org.apache.lucene.search.DocIdSetIterator.NO_MORE_DOCS;
|
import static org.apache.lucene.search.DocIdSetIterator.NO_MORE_DOCS;
|
||||||
|
|
||||||
import java.io.IOException;
|
import java.io.IOException;
|
||||||
|
import java.util.ArrayList;
|
||||||
import java.util.Arrays;
|
import java.util.Arrays;
|
||||||
import java.util.Comparator;
|
import java.util.Comparator;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
import java.util.Objects;
|
import java.util.Objects;
|
||||||
import java.util.concurrent.ExecutionException;
|
import java.util.concurrent.ExecutionException;
|
||||||
import java.util.concurrent.Executor;
|
|
||||||
import java.util.concurrent.FutureTask;
|
import java.util.concurrent.FutureTask;
|
||||||
import org.apache.lucene.codecs.KnnVectorsReader;
|
import org.apache.lucene.codecs.KnnVectorsReader;
|
||||||
import org.apache.lucene.index.FieldInfo;
|
import org.apache.lucene.index.FieldInfo;
|
||||||
|
@ -81,11 +81,12 @@ abstract class AbstractKnnVectorQuery extends Query {
|
||||||
filterWeight = null;
|
filterWeight = null;
|
||||||
}
|
}
|
||||||
|
|
||||||
Executor executor = indexSearcher.getExecutor();
|
SliceExecutor sliceExecutor = indexSearcher.getSliceExecutor();
|
||||||
|
// in case of parallel execution, the leaf results are not ordered by leaf context's ordinal
|
||||||
TopDocs[] perLeafResults =
|
TopDocs[] perLeafResults =
|
||||||
(executor == null)
|
(sliceExecutor == null)
|
||||||
? sequentialSearch(reader.leaves(), filterWeight)
|
? sequentialSearch(reader.leaves(), filterWeight)
|
||||||
: parallelSearch(reader.leaves(), filterWeight, executor);
|
: parallelSearch(indexSearcher.getSlices(), filterWeight, sliceExecutor);
|
||||||
|
|
||||||
// Merge sort the results
|
// Merge sort the results
|
||||||
TopDocs topK = TopDocs.merge(k, perLeafResults);
|
TopDocs topK = TopDocs.merge(k, perLeafResults);
|
||||||
|
@ -109,27 +110,40 @@ abstract class AbstractKnnVectorQuery extends Query {
|
||||||
}
|
}
|
||||||
|
|
||||||
private TopDocs[] parallelSearch(
|
private TopDocs[] parallelSearch(
|
||||||
List<LeafReaderContext> leafReaderContexts, Weight filterWeight, Executor executor) {
|
IndexSearcher.LeafSlice[] slices, Weight filterWeight, SliceExecutor sliceExecutor) {
|
||||||
List<FutureTask<TopDocs>> tasks =
|
|
||||||
leafReaderContexts.stream()
|
List<FutureTask<TopDocs[]>> tasks = new ArrayList<>(slices.length);
|
||||||
.map(ctx -> new FutureTask<>(() -> searchLeaf(ctx, filterWeight)))
|
int segmentsCount = 0;
|
||||||
.toList();
|
for (IndexSearcher.LeafSlice slice : slices) {
|
||||||
|
segmentsCount += slice.leaves.length;
|
||||||
|
tasks.add(
|
||||||
|
new FutureTask<>(
|
||||||
|
() -> {
|
||||||
|
TopDocs[] results = new TopDocs[slice.leaves.length];
|
||||||
|
int i = 0;
|
||||||
|
for (LeafReaderContext context : slice.leaves) {
|
||||||
|
results[i++] = searchLeaf(context, filterWeight);
|
||||||
|
}
|
||||||
|
return results;
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
SliceExecutor sliceExecutor = new SliceExecutor(executor);
|
|
||||||
sliceExecutor.invokeAll(tasks);
|
sliceExecutor.invokeAll(tasks);
|
||||||
|
|
||||||
return tasks.stream()
|
TopDocs[] topDocs = new TopDocs[segmentsCount];
|
||||||
.map(
|
int i = 0;
|
||||||
task -> {
|
for (FutureTask<TopDocs[]> task : tasks) {
|
||||||
try {
|
try {
|
||||||
return task.get();
|
for (TopDocs docs : task.get()) {
|
||||||
|
topDocs[i++] = docs;
|
||||||
|
}
|
||||||
} catch (ExecutionException e) {
|
} catch (ExecutionException e) {
|
||||||
throw new RuntimeException(e.getCause());
|
throw new RuntimeException(e.getCause());
|
||||||
} catch (InterruptedException e) {
|
} catch (InterruptedException e) {
|
||||||
throw new ThreadInterruptedException(e);
|
throw new ThreadInterruptedException(e);
|
||||||
}
|
}
|
||||||
})
|
}
|
||||||
.toArray(TopDocs[]::new);
|
return topDocs;
|
||||||
}
|
}
|
||||||
|
|
||||||
private TopDocs searchLeaf(LeafReaderContext ctx, Weight filterWeight) throws IOException {
|
private TopDocs searchLeaf(LeafReaderContext ctx, Weight filterWeight) throws IOException {
|
||||||
|
|
|
@ -962,6 +962,10 @@ public class IndexSearcher {
|
||||||
return executor;
|
return executor;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
SliceExecutor getSliceExecutor() {
|
||||||
|
return sliceExecutor;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Thrown when an attempt is made to add more than {@link #getMaxClauseCount()} clauses. This
|
* Thrown when an attempt is made to add more than {@link #getMaxClauseCount()} clauses. This
|
||||||
* typically happens if a PrefixQuery, FuzzyQuery, WildcardQuery, or TermRangeQuery is expanded to
|
* typically happens if a PrefixQuery, FuzzyQuery, WildcardQuery, or TermRangeQuery is expanded to
|
||||||
|
|
Loading…
Reference in New Issue