LUCENE-5736 - added caching version of NB classifier

git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1619700 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Tommaso Teofili 2014-08-22 08:04:15 +00:00
parent 601c09bcd4
commit 11a24cfbb8
1 changed files with 278 additions and 0 deletions

View File

@ -0,0 +1,278 @@
package org.apache.lucene.classification;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.index.AtomicReader;
import org.apache.lucene.index.MultiFields;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TotalHitCountCollector;
import org.apache.lucene.util.BytesRef;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* A simplistic Lucene based NaiveBayes classifier, with caching feature, see
* <code>http://en.wikipedia.org/wiki/Naive_Bayes_classifier</code>
* <p/>
* This is NOT an online classifier.
*
* @lucene.experimental
*/
public class CachingNaiveBayesClassifier extends SimpleNaiveBayesClassifier {
//for caching classes this will be the classification class list
private ArrayList<BytesRef> cclasses = new ArrayList<>();
// its a term-inmap style map, where the inmap contains class-hit pairs to the
// upper term
private Map<String, Map<BytesRef, Integer>> termCClassHitCache = new HashMap<>();
// the term frequency in classes
private Map<BytesRef, Double> classTermFreq = new HashMap<>();
private boolean justCachedTerms;
private int docsWithClassSize;
/**
* Creates a new NaiveBayes classifier with inside caching. Note that you must
* call {@link #train(AtomicReader, String, String, Analyzer) train()} before
* you can classify any documents. If you want less memory usage you could
* call {@link #reInitCache(int, boolean) reInitCache()}.
*/
public CachingNaiveBayesClassifier() {
}
/**
* {@inheritDoc}
*/
@Override
public void train(AtomicReader atomicReader, String textFieldName, String classFieldName, Analyzer analyzer) throws IOException {
train(atomicReader, textFieldName, classFieldName, analyzer, null);
}
/**
* {@inheritDoc}
*/
@Override
public void train(AtomicReader atomicReader, String textFieldName, String classFieldName, Analyzer analyzer, Query query) throws IOException {
train(atomicReader, new String[]{textFieldName}, classFieldName, analyzer, query);
}
/**
* {@inheritDoc}
*/
@Override
public void train(AtomicReader atomicReader, String[] textFieldNames, String classFieldName, Analyzer analyzer, Query query) throws IOException {
super.train(atomicReader, textFieldNames, classFieldName, analyzer, query);
// building the cache
reInitCache(0, true);
}
private List<ClassificationResult<BytesRef>> assignClassNormalizedList(String inputDocument) throws IOException {
if (atomicReader == null) {
throw new IOException("You must first call Classifier#train");
}
String[] tokenizedDoc = tokenizeDoc(inputDocument);
List<ClassificationResult<BytesRef>> dataList = calculateLogLikelihood(tokenizedDoc);
// normalization
// The values transforms to a 0-1 range
ArrayList<ClassificationResult<BytesRef>> returnList = new ArrayList<>();
if (!dataList.isEmpty()) {
Collections.sort(dataList);
// this is a negative number closest to 0 = a
double smax = dataList.get(0).getScore();
double sumLog = 0;
// log(sum(exp(x_n-a)))
for (ClassificationResult<BytesRef> cr : dataList) {
// getScore-smax <=0 (both negative, smax is the smallest abs()
sumLog += Math.exp(cr.getScore() - smax);
}
// loga=a+log(sum(exp(x_n-a))) = log(sum(exp(x_n)))
double loga = smax;
loga += Math.log(sumLog);
// 1/sum*x = exp(log(x))*1/sum = exp(log(x)-log(sum))
for (ClassificationResult<BytesRef> cr : dataList) {
returnList.add(new ClassificationResult<>(cr.getAssignedClass(), Math.exp(cr.getScore() - loga)));
}
}
return returnList;
}
private List<ClassificationResult<BytesRef>> calculateLogLikelihood(String[] tokenizedDoc) throws IOException {
// initialize the return List
ArrayList<ClassificationResult<BytesRef>> ret = new ArrayList<>();
for (BytesRef cclass : cclasses) {
ClassificationResult<BytesRef> cr = new ClassificationResult<>(cclass, 0d);
ret.add(cr);
}
// for each word
for (String word : tokenizedDoc) {
// search with text:word for all class:c
Map<BytesRef, Integer> hitsInClasses = getWordFreqForClassess(word);
// for each class
for (BytesRef cclass : cclasses) {
Integer hitsI = hitsInClasses.get(cclass);
// if the word is out of scope hitsI could be null
int hits = 0;
if (hitsI != null) {
hits = hitsI;
}
// num : count the no of times the word appears in documents of class c(+1)
double num = hits + 1; // +1 is added because of add 1 smoothing
// den : for the whole dictionary, count the no of times a word appears in documents of class c (+|V|)
double den = classTermFreq.get(cclass) + docsWithClassSize;
// P(w|c) = num/den
double wordProbability = num / den;
// modify the value in the result list item
for (ClassificationResult<BytesRef> cr : ret) {
if (cr.getAssignedClass().equals(cclass)) {
cr.setScore(cr.getScore() + Math.log(wordProbability));
break;
}
}
}
}
// log(P(d|c)) = log(P(w1|c))+...+log(P(wn|c))
return ret;
}
private Map<BytesRef, Integer> getWordFreqForClassess(String word) throws IOException {
Map<BytesRef, Integer> insertPoint;
insertPoint = termCClassHitCache.get(word);
// if we get the answer from the cache
if (insertPoint != null) {
if (!insertPoint.isEmpty()) {
return insertPoint;
}
}
Map<BytesRef, Integer> searched = new ConcurrentHashMap<>();
// if we dont get the answer, but its relevant we must search it and insert to the cache
if (insertPoint != null || !justCachedTerms) {
for (BytesRef cclass : cclasses) {
BooleanQuery booleanQuery = new BooleanQuery();
BooleanQuery subQuery = new BooleanQuery();
for (String textFieldName : textFieldNames) {
subQuery.add(new BooleanClause(new TermQuery(new Term(textFieldName, word)), BooleanClause.Occur.SHOULD));
}
booleanQuery.add(new BooleanClause(subQuery, BooleanClause.Occur.MUST));
booleanQuery.add(new BooleanClause(new TermQuery(new Term(classFieldName, cclass)), BooleanClause.Occur.MUST));
if (query != null) {
booleanQuery.add(query, BooleanClause.Occur.MUST);
}
TotalHitCountCollector totalHitCountCollector = new TotalHitCountCollector();
indexSearcher.search(booleanQuery, totalHitCountCollector);
int ret = totalHitCountCollector.getTotalHits();
if (ret != 0) {
searched.put(cclass, ret);
}
}
if (insertPoint != null) {
// threadsafe and concurent write
termCClassHitCache.put(word, searched);
}
}
return searched;
}
/**
* This function is building the frame of the cache. The cache is storing the
* word occurrences to the memory after those searched once. This cache can
* made 2-100x speedup in proper use, but can eat lot of memory. There is an
* option to lower the memory consume, if a word have really low occurrence in
* the index you could filter it out. The other parameter is switching between
* the term searching, if it true, just the terms in the skeleton will be
* searched, but if it false the terms whoes not in the cache will be searched
* out too (but not cached).
*
* @param minTermOccurrenceInCache Lower cache size with higher value.
* @param justCachedTerms The switch for fully exclude low occurrence docs.
* @throws IOException If there is a low-level I/O error.
*/
public void reInitCache(int minTermOccurrenceInCache, boolean justCachedTerms) throws IOException {
this.justCachedTerms = justCachedTerms;
this.docsWithClassSize = countDocsWithClass();
termCClassHitCache.clear();
cclasses.clear();
classTermFreq.clear();
// build the cache for the word
Map<String, Long> frequencyMap = new HashMap<>();
for (String textFieldName : textFieldNames) {
TermsEnum termsEnum = atomicReader.terms(textFieldName).iterator(null);
while (termsEnum.next() != null) {
BytesRef term = termsEnum.term();
String termText = term.utf8ToString();
long frequency = termsEnum.docFreq();
Long lastfreq = frequencyMap.get(termText);
if (lastfreq != null) frequency += lastfreq;
frequencyMap.put(termText, frequency);
}
}
for (Map.Entry<String, Long> entry : frequencyMap.entrySet()) {
if (entry.getValue() > minTermOccurrenceInCache) {
termCClassHitCache.put(entry.getKey(), new ConcurrentHashMap<BytesRef, Integer>());
}
}
// fill the class list
Terms terms = MultiFields.getTerms(atomicReader, classFieldName);
TermsEnum termsEnum = terms.iterator(null);
while ((termsEnum.next()) != null) {
cclasses.add(BytesRef.deepCopyOf(termsEnum.term()));
}
// fill the classTermFreq map
for (BytesRef cclass : cclasses) {
double avgNumberOfUniqueTerms = 0;
for (String textFieldName : textFieldNames) {
terms = MultiFields.getTerms(atomicReader, textFieldName);
long numPostings = terms.getSumDocFreq(); // number of term/doc pairs
avgNumberOfUniqueTerms += numPostings / (double) terms.getDocCount();
}
int docsWithC = atomicReader.docFreq(new Term(classFieldName, cclass));
classTermFreq.put(cclass, avgNumberOfUniqueTerms * docsWithC);
}
}
}