SOLR-11947: Remove place holders for documentation that will not be complete for 7.3

This commit is contained in:
Joel Bernstein 2018-03-11 18:35:08 -04:00
parent 8f1350af20
commit 13d1c4b466
1 changed files with 0 additions and 40 deletions

View File

@ -92,8 +92,6 @@ add(fieldA,div(fieldA,fieldB)) // value of fieldA + (value of fieldA / value of
add(fieldA,if(gt(fieldA,fieldB),fieldA,fieldB)) // if fieldA > fieldB then fieldA + fieldA, else fieldA + fieldB add(fieldA,if(gt(fieldA,fieldB),fieldA,fieldB)) // if fieldA > fieldB then fieldA + fieldA, else fieldA + fieldB
---- ----
== akima (TODO)
== analyze == analyze
The `analyze` function analyzes text using a Lucene/Solr analyzer and returns a list of tokens The `analyze` function analyzes text using a Lucene/Solr analyzer and returns a list of tokens
@ -294,9 +292,6 @@ ceil(fieldA) // returns the next highest whole number for fieldA.
if(gt(fieldA,fieldB),ceil(fieldA),ceil(fieldB)) // if fieldA > fieldB then return the ceil of fieldA, else return the ceil of fieldB. if(gt(fieldA,fieldB),ceil(fieldA),ceil(fieldB)) // if fieldA > fieldB then return the ceil of fieldA, else return the ceil of fieldB.
---- ----
== chiSquareDataSet (TODO)
== col == col
The `col` function returns a numeric array from a list of Tuples. The `col` The `col` function returns a numeric array from a list of Tuples. The `col`
@ -524,10 +519,6 @@ A double: the cumulative probability.
[source,text] [source,text]
cumulativeProbability(normalDistribution(500, 25), 502) // Returns the cumulative probability of the random sample 502 in a normal distribution with a mean of 500 and standard deviation of 25. cumulativeProbability(normalDistribution(500, 25), 502) // Returns the cumulative probability of the random sample 502 in a normal distribution with a mean of 500 and standard deviation of 25.
== density (TODO)
== derivative == derivative
The `derivative` function returns the https://en.wikipedia.org/wiki/Derivative[derivative] of a function. The derivative function The `derivative` function returns the https://en.wikipedia.org/wiki/Derivative[derivative] of a function. The derivative function
@ -860,9 +851,6 @@ A double.
factorial(100) //Computes the factorial of 100 factorial(100) //Computes the factorial of 100
---- ----
== featureSelect (TODO)
== finddelay == finddelay
The `finddelay` function performs a cross-correlation between two numeric arrays and returns the delay. The `finddelay` function performs a cross-correlation between two numeric arrays and returns the delay.
@ -918,8 +906,6 @@ A list of tuples containing the frequency information for each discrete value.
freqTable(integerArray) freqTable(integerArray)
---- ----
== fuzzyKmeans (TODO)
== gammaDistribution == gammaDistribution
The `gammaDistribution` function returns a https://en.wikipedia.org/wiki/Gamma_distribution[gamma probability distribution] based on its parameters. This function is part of the The `gammaDistribution` function returns a https://en.wikipedia.org/wiki/Gamma_distribution[gamma probability distribution] based on its parameters. This function is part of the
@ -998,10 +984,6 @@ getAttributes(matrix)
map: The map of attributes. map: The map of attributes.
== getCentroids (TODO)
== getClusters (TODO)
== getColumnLabels == getColumnLabels
The `getColumnLabels` function returns the columns labels of a matrix. The column labels can be optionally The `getColumnLabels` function returns the columns labels of a matrix. The column labels can be optionally
@ -1019,8 +1001,6 @@ getColumnLabels(matrix)
string array: The labels for each column in the matrix string array: The labels for each column in the matrix
== getMembershipMatrix (TODO)
== getRowLabels == getRowLabels
The `getRowLabels` function returns the row labels of a matrix. The row labels can be optionally The `getRowLabels` function returns the row labels of a matrix. The row labels can be optionally
@ -1270,10 +1250,6 @@ A probability distribution function.
[source,text] [source,text]
logNormalDistribution(.3, .0) logNormalDistribution(.3, .0)
== kmeans (TODO)
== knn (TODO)
== kolmogorovSmirnov == kolmogorovSmirnov
The `kolmogorovSmirnov` function performs a https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test[Kolmogorov Smirnov test], The `kolmogorovSmirnov` function performs a https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test[Kolmogorov Smirnov test],
@ -1337,9 +1313,6 @@ lteq(fieldA,val(foo)) fieldA <= "foo"
lteq(add(fieldA,fieldB),6) // fieldA + fieldB <= 6 lteq(add(fieldA,fieldB),6) // fieldA + fieldB <= 6
---- ----
== mannWhitney (TODO)
== markovChain == markovChain
The `markovChain` function can be used to perform https://en.wikipedia.org/wiki/Markov_chain[Markov Chain] simulations. The `markovChain` function can be used to perform https://en.wikipedia.org/wiki/Markov_chain[Markov Chain] simulations.
@ -1534,11 +1507,6 @@ mult(fieldA,div(fieldA,fieldB)) // value of fieldA * (value of fieldA / value of
mult(fieldA,if(gt(fieldA,fieldB),fieldA,fieldB)) // if fieldA > fieldB then fieldA * fieldA, else fieldA * fieldB mult(fieldA,if(gt(fieldA,fieldB),fieldA,fieldB)) // if fieldA > fieldB then fieldA * fieldA, else fieldA * fieldB
---- ----
== multiKmeans (TODO)
== multiVariateNormalDistribution (TODO)
== normalDistribution == normalDistribution
The `normalDistribution` function returns a https://en.wikipedia.org/wiki/Normal_distribution[normal probability distribution] The `normalDistribution` function returns a https://en.wikipedia.org/wiki/Normal_distribution[normal probability distribution]
@ -1645,8 +1613,6 @@ or(and(fieldA,fieldB),fieldC) // (fieldA && fieldB) || fieldC
or(fieldA,fieldB,fieldC,and(fieldD,fieldE),fieldF) or(fieldA,fieldB,fieldC,and(fieldD,fieldE),fieldF)
---- ----
== pairedTtest (TODO)
== poissonDistribution == poissonDistribution
The `poissonDistribution` function returns a https://en.wikipedia.org/wiki/Poisson_distribution[poisson probability distribution] The `poissonDistribution` function returns a https://en.wikipedia.org/wiki/Poisson_distribution[poisson probability distribution]
@ -2268,10 +2234,6 @@ sumSq(numericArray)
numeric: result of the sumSq calculation numeric: result of the sumSq calculation
== termVectors (TODO)
== topFeatures (TODO)
== transpose == transpose
The `transpose` function https://en.wikipedia.org/wiki/Transpose[transposes] a matrix . The `transpose` function https://en.wikipedia.org/wiki/Transpose[transposes] a matrix .
@ -2310,8 +2272,6 @@ triangularDistribution(10, 15, 20) // A triangular distribution with a low value
Probability distribution function Probability distribution function
== ttest (TODO)
== uniformDistribution == uniformDistribution
The `uniformDistribution` function returns a https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)[continuous uniform probability distribution] The `uniformDistribution` function returns a https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)[continuous uniform probability distribution]