SOLR-475:multi-valued faceting via un-inverted field

git-svn-id: https://svn.apache.org/repos/asf/lucene/solr/trunk@720403 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Yonik Seeley 2008-11-25 04:02:09 +00:00
parent b3a2445d6b
commit 156491848a
7 changed files with 1198 additions and 10 deletions

View File

@ -96,6 +96,11 @@ Optimizations
2. SOLR-808: Write string keys in Maps as extern strings in the javabin format. (Noble Paul via shalin) 2. SOLR-808: Write string keys in Maps as extern strings in the javabin format. (Noble Paul via shalin)
3. SOLR-475: New faceting method with better performance and smaller memory usage for
multi-valued fields with many unique values but relatively few values per document.
Controllable via the facet.method parameter - "fc" is the new default method and "enum"
is the original method. (yonik)
Bug Fixes Bug Fixes
---------------------- ----------------------

View File

@ -29,6 +29,20 @@ public interface FacetParams {
* Should facet counts be calculated? * Should facet counts be calculated?
*/ */
public static final String FACET = "facet"; public static final String FACET = "facet";
/** What method should be used to do the faceting */
public static final String FACET_METHOD = FACET + ".method";
/** Value for FACET_METHOD param to indicate that Solr should enumerate over terms
* in a field to calculate the facet counts.
*/
public static final String FACET_METHOD_enum = "enum";
/** Value for FACET_METHOD param to indicate that Solr should enumerate over documents
* and count up terms by consulting an uninverted representation of the field values
* (such as the FieldCache used for sorting).
*/
public static final String FACET_METHOD_fc = "fc";
/** /**
* Any lucene formated queries the user would like to use for * Any lucene formated queries the user would like to use for

View File

@ -148,16 +148,32 @@ public class SimpleFacets {
boolean sort = params.getFieldBool(field, FacetParams.FACET_SORT, limit>0); boolean sort = params.getFieldBool(field, FacetParams.FACET_SORT, limit>0);
String prefix = params.getFieldParam(field,FacetParams.FACET_PREFIX); String prefix = params.getFieldParam(field,FacetParams.FACET_PREFIX);
NamedList counts; NamedList counts;
SchemaField sf = searcher.getSchema().getField(field); SchemaField sf = searcher.getSchema().getField(field);
FieldType ft = sf.getType(); FieldType ft = sf.getType();
if (sf.multiValued() || ft.isTokenized() || ft instanceof BoolField) {
// determine what type of faceting method to use
String method = params.getFieldParam(field, FacetParams.FACET_METHOD);
boolean enumMethod = FacetParams.FACET_METHOD_enum.equals(method);
if (method == null && ft instanceof BoolField) {
// Always use filters for booleans... we know the number of values is very small. // Always use filters for booleans... we know the number of values is very small.
enumMethod = true;
}
boolean multiToken = sf.multiValued() || ft.isTokenized();
// unless the enum method is explicitly specified, use a counting method.
if (enumMethod) {
counts = getFacetTermEnumCounts(searcher, docs, field, offset, limit, mincount,missing,sort,prefix); counts = getFacetTermEnumCounts(searcher, docs, field, offset, limit, mincount,missing,sort,prefix);
} else { } else {
// TODO: future logic could use filters instead of the fieldcache if if (multiToken) {
// the number of terms in the field is small enough. UnInvertedField uif = UnInvertedField.getUnInvertedField(field, searcher);
counts = getFieldCacheCounts(searcher, docs, field, offset,limit, mincount, missing, sort, prefix); counts = uif.getCounts(searcher, docs, offset, limit, mincount,missing,sort,prefix);
} else {
// TODO: future logic could use filters instead of the fieldcache if
// the number of terms in the field is small enough.
counts = getFieldCacheCounts(searcher, docs, field, offset,limit, mincount, missing, sort, prefix);
}
} }
return counts; return counts;

View File

@ -0,0 +1,908 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.solr.request;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermDocs;
import org.apache.lucene.index.TermEnum;
import org.apache.lucene.search.TermQuery;
import org.apache.solr.common.util.NamedList;
import org.apache.solr.common.SolrException;
import org.apache.solr.core.SolrCore;
import org.apache.solr.request.SimpleFacets;
import org.apache.solr.schema.FieldType;
import org.apache.solr.search.BitDocSet;
import org.apache.solr.search.DocIterator;
import org.apache.solr.search.DocSet;
import org.apache.solr.search.SolrIndexSearcher;
import org.apache.solr.util.BoundedTreeSet;
import org.apache.solr.util.OpenBitSet;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.WeakHashMap;
/**
*
* Final form of the un-inverted field:
* Each document points to a list of term numbers that are contained in that document.
*
* Term numbers are in sorted order, and are encoded as variable-length deltas from the
* previous term number. Real term numbers start at 2 since 0 and 1 are reserved. A
* term number of 0 signals the end of the termNumber list.
*
* There is a singe int[maxDoc()] which either contains a pointer into a byte[] for
* the termNumber lists, or directly contains the termNumber list if it fits in the 4
* bytes of an integer. If the first byte in the integer is 1, the next 3 bytes
* are a pointer into a byte[] where the termNumber list starts.
*
* There are actually 256 byte arrays, to compensate for the fact that the pointers
* into the byte arrays are only 3 bytes long. The correct byte array for a document
* is a function of it's id.
*
* To save space and speed up faceting, any term that matches enough documents will
* not be un-inverted... it will be skipped while building the un-inverted field structure,
* and will use a set intersection method during faceting.
*
* To further save memory, the terms (the actual string values) are not all stored in
* memory, but a TermIndex is used to convert term numbers to term values only
* for the terms needed after faceting has completed. Only every 128th term value
* is stored, along with it's corresponding term number, and this is used as an
* index to find the closest term and iterate until the desired number is hit (very
* much like Lucene's own internal term index).
*
*/
class UnInvertedField {
private static int TNUM_OFFSET=2;
static class TopTerm {
Term term;
int termNum;
long memSize() {
return 8 + // obj header
8 + 8 +(term.text().length()<<1) + //term
4; // int
}
}
String field;
int numTermsInField;
int termsInverted; // number of unique terms that were un-inverted
long termInstances; // total number of references to term numbers
final TermIndex ti;
int[] index;
byte[][] tnums = new byte[256][];
int[] maxTermCounts;
final Map<Integer,TopTerm> bigTerms = new LinkedHashMap<Integer,TopTerm>();
public long memSize() {
long sz = 6*8 + 12; // local fields
sz += bigTerms.size() * 64;
for (TopTerm tt : bigTerms.values()) {
sz += tt.memSize();
}
if (index != null) sz += index.length * 4;
if (tnums!=null) {
for (byte[] arr : tnums)
if (arr != null) sz += arr.length;
}
if (maxTermCounts != null)
sz += maxTermCounts.length * 4;
sz += ti.memSize();
return sz;
}
/** Number of bytes to represent an unsigned int as a vint. */
static int vIntSize(int x) {
if ((x & (0xffffffff << (7*1))) == 0 ) {
return 1;
}
if ((x & (0xffffffff << (7*2))) == 0 ) {
return 2;
}
if ((x & (0xffffffff << (7*3))) == 0 ) {
return 3;
}
if ((x & (0xffffffff << (7*4))) == 0 ) {
return 4;
}
return 5;
}
// todo: if we know the size of the vInt already, we could do
// a single switch on the size
static int writeInt(int x, byte[] arr, int pos) {
int a;
a = (x >>> (7*4));
if (a != 0) {
arr[pos++] = (byte)(a | 0x80);
}
a = (x >>> (7*3));
if (a != 0) {
arr[pos++] = (byte)(a | 0x80);
}
a = (x >>> (7*2));
if (a != 0) {
arr[pos++] = (byte)(a | 0x80);
}
a = (x >>> (7*1));
if (a != 0) {
arr[pos++] = (byte)(a | 0x80);
}
arr[pos++] = (byte)(x & 0x7f);
return pos;
}
public UnInvertedField(String field, SolrIndexSearcher searcher) throws IOException {
this.field = field;
this.ti = new TermIndex(field);
uninvert(searcher);
}
private void uninvert(SolrIndexSearcher searcher) throws IOException {
long startTime = System.currentTimeMillis();
IndexReader reader = searcher.getReader();
int maxDoc = reader.maxDoc();
int[] index = new int[maxDoc]; // immediate term numbers, or the index into the byte[] representing the last number
this.index = index;
final int[] lastTerm = new int[maxDoc]; // last term we saw for this document
final byte[][] bytes = new byte[maxDoc][]; // list of term numbers for the doc (delta encoded vInts)
maxTermCounts = new int[1024];
NumberedTermEnum te = ti.getEnumerator(reader);
// threshold, over which we use set intersections instead of counting
// to (1) save memory, and (2) speed up faceting.
// Add 2 for testing purposes so that there will always be some terms under
// the threshold even when the index is very small.
int threshold = maxDoc / 20 + 2;
// threshold = 2000000000; //////////////////////////////// USE FOR TESTING
int[] docs = new int[1000];
int[] freqs = new int[1000];
// we need a minimum of 9 bytes, but round up to 12 since the space would
// be wasted with most allocators anyway.
byte[] tempArr = new byte[12];
//
// enumerate all terms, and build an intermediate form of the un-inverted field.
//
// During this intermediate form, every document has a (potential) byte[]
// and the int[maxDoc()] array either contains the termNumber list directly
// or the *end* offset of the termNumber list in it's byte array (for faster
// appending and faster creation of the final form).
//
// idea... if things are too large while building, we could do a range of docs
// at a time (but it would be a fair amount slower to build)
// could also do ranges in parallel to take advantage of multiple CPUs
// OPTIONAL: remap the largest df terms to the lowest 128 (single byte)
// values. This requires going over the field first to find the most
// frequent terms ahead of time.
for (;;) {
Term t = te.term();
if (t==null) break;
int termNum = te.getTermNumber();
if (termNum >= maxTermCounts.length) {
// resize, but conserve memory by not doubling
// resize at end??? we waste a maximum of 16K (average of 8K)
int[] newMaxTermCounts = new int[maxTermCounts.length+4096];
System.arraycopy(maxTermCounts, 0, newMaxTermCounts, 0, termNum);
maxTermCounts = newMaxTermCounts;
}
int df = te.docFreq();
if (df >= threshold) {
TopTerm topTerm = new TopTerm();
topTerm.term = t;
topTerm.termNum = termNum;
bigTerms.put(topTerm.termNum, topTerm);
DocSet set = searcher.getDocSet(new TermQuery(topTerm.term));
maxTermCounts[termNum] = set.size();
te.next();
continue;
}
termsInverted++;
TermDocs td = te.getTermDocs();
td.seek(te);
for(;;) {
int n = td.read(docs,freqs);
if (n <= 0) break;
maxTermCounts[termNum] += n;
for (int i=0; i<n; i++) {
termInstances++;
int doc = docs[i];
// add 2 to the term number to make room for special reserved values:
// 0 (end term) and 1 (index into byte array follows)
int delta = termNum - lastTerm[doc] + TNUM_OFFSET;
lastTerm[doc] = termNum;
int val = index[doc];
if ((val & 0xff)==1) {
// index into byte array (actually the end of
// the doc-specific byte[] when building)
int pos = val >>> 8;
int ilen = vIntSize(delta);
byte[] arr = bytes[doc];
int newend = pos+ilen;
if (newend > arr.length) {
// We avoid a doubling strategy to lower memory usage.
// this faceting method isn't for docs with many terms.
// In hotspot, objects have 2 words of overhead, then fields, rounded up to a 64-bit boundary.
// TODO: figure out what array lengths we can round up to w/o actually using more memory
// (how much space does a byte[] take up? Is data preceded by a 32 bit length only?
// It should be safe to round up to the nearest 32 bits in any case.
int newLen = (newend + 3) & 0xfffffffc; // 4 byte alignment
byte[] newarr = new byte[newLen];
System.arraycopy(arr, 0, newarr, 0, pos);
arr = newarr;
bytes[doc] = newarr;
}
pos = writeInt(delta, arr, pos);
index[doc] = (pos<<8) | 1; // update pointer to end index in byte[]
} else {
// OK, this int has data in it... find the end (a zero starting byte - not
// part of another number, hence not following a byte with the high bit set).
int ipos;
if (val==0) {
ipos=0;
} else if ((val & 0x0000ff80)==0) {
ipos=1;
} else if ((val & 0x00ff8000)==0) {
ipos=2;
} else if ((val & 0xff800000)==0) {
ipos=3;
} else {
ipos=4;
}
int endPos = writeInt(delta, tempArr, ipos);
if (endPos <= 4) {
// value will fit in the integer... move bytes back
for (int j=ipos; j<endPos; j++) {
val |= (tempArr[j] & 0xff) << (j<<3);
}
index[doc] = val;
} else {
// value won't fit... move integer into byte[]
for (int j=0; j<ipos; j++) {
tempArr[j] = (byte)val;
val >>>=8;
}
// point at the end index in the byte[]
index[doc] = (endPos<<8) | 1;
bytes[doc] = tempArr;
tempArr = new byte[12];
}
}
}
}
te.next();
}
numTermsInField = te.getTermNumber();
te.close();
long midPoint = System.currentTimeMillis();
if (termInstances == 0) {
// we didn't invert anything
// lower memory consumption.
index = this.index = null;
tnums = null;
} else {
//
// transform intermediate form into the final form, building a single byte[]
// at a time, and releasing the intermediate byte[]s as we go to avoid
// increasing the memory footprint.
//
for (int pass = 0; pass<256; pass++) {
byte[] target = tnums[pass];
int pos=0; // end in target;
if (target != null) {
pos = target.length;
} else {
target = new byte[4096];
}
// loop over documents, 0x00ppxxxx, 0x01ppxxxx, 0x02ppxxxx
// where pp is the pass (which array we are building), and xx is all values.
// each pass shares the same byte[] for termNumber lists.
for (int docbase = pass<<16; docbase<maxDoc; docbase+=(1<<24)) {
int lim = Math.min(docbase + (1<<16), maxDoc);
for (int doc=docbase; doc<lim; doc++) {
int val = index[doc];
if ((val&0xff) == 1) {
int len = val >>> 8;
index[doc] = (pos<<8)|1; // change index to point to start of array
if ((pos & 0xff000000) != 0) {
// we only have 24 bits for the array index
throw new SolrException(SolrException.ErrorCode.BAD_REQUEST, "Too many values for UnInvertedField faceting on field "+field);
}
byte[] arr = bytes[doc];
bytes[doc] = null; // IMPORTANT: allow GC to avoid OOM
if (target.length <= pos + len) {
int newlen = target.length;
/*** we don't have to worry about the array getting too large
* since the "pos" param will overflow first (only 24 bits available)
if ((newlen<<1) <= 0) {
// overflow...
newlen = Integer.MAX_VALUE;
if (newlen <= pos + len) {
throw new SolrException(400,"Too many terms to uninvert field!");
}
} else {
while (newlen <= pos + len) newlen<<=1; // doubling strategy
}
****/
while (newlen <= pos + len) newlen<<=1; // doubling strategy
byte[] newtarget = new byte[newlen];
System.arraycopy(target, 0, newtarget, 0, pos);
target = newtarget;
}
System.arraycopy(arr, 0, target, pos, len);
pos += len + 1; // skip single byte at end and leave it 0 for terminator
}
}
}
// shrink array
if (pos < target.length) {
byte[] newtarget = new byte[pos];
System.arraycopy(target, 0, newtarget, 0, pos);
target = newtarget;
}
tnums[pass] = target;
if ((pass << 16) > maxDoc)
break;
}
}
long endTime = System.currentTimeMillis();
SolrCore.log.info("UnInverted multi-valued field " + field + ", memSize=" + memSize()
+ ", time="+(endTime-startTime)+", phase1="+(midPoint-startTime)
+ ", nTerms=" + numTermsInField + ", bigTerms=" + bigTerms.size()
+ ", termInstances=" + termInstances
);
}
public NamedList getCounts(SolrIndexSearcher searcher, DocSet baseDocs, int offset, int limit, int mincount, boolean missing, boolean sort, String prefix) throws IOException {
FieldType ft = searcher.getSchema().getFieldType(field);
NamedList res = new NamedList(); // order is important
DocSet docs = baseDocs;
int baseSize = docs.size();
int maxDoc = searcher.maxDoc();
if (baseSize >= mincount) {
final int[] index = this.index;
final int[] counts = new int[numTermsInField];
//
// If there is prefix, find it's start and end term numbers
//
int startTerm = 0;
int endTerm = numTermsInField; // one past the end
NumberedTermEnum te = ti.getEnumerator(searcher.getReader());
if (prefix != null && prefix.length() > 0) {
te.skipTo(prefix);
startTerm = te.getTermNumber();
te.skipTo(prefix + "\uffff\uffff\uffff\uffff");
endTerm = te.getTermNumber();
}
/***********
// Alternative 2: get the docSet of the prefix (could take a while) and
// then do the intersection with the baseDocSet first.
if (prefix != null && prefix.length() > 0) {
docs = searcher.getDocSet(new ConstantScorePrefixQuery(new Term(field, ft.toInternal(prefix))), docs);
// The issue with this method are problems of returning 0 counts for terms w/o
// the prefix. We can't just filter out those terms later because it may
// mean that we didn't collect enough terms in the queue (in the sorted case).
}
***********/
boolean doNegative = baseSize > maxDoc >> 1 && termInstances > 0
&& startTerm==0 && endTerm==numTermsInField
&& docs instanceof BitDocSet;
if (doNegative) {
OpenBitSet bs = (OpenBitSet)((BitDocSet)docs).getBits().clone();
bs.flip(0, maxDoc);
// TODO: when iterator across negative elements is available, use that
// instead of creating a new bitset and inverting.
docs = new BitDocSet(bs, maxDoc - baseSize);
// simply negating will mean that we have deleted docs in the set.
// that should be OK, as their entries in our table should be empty.
}
// For the biggest terms, do straight set intersections
for (TopTerm tt : bigTerms.values()) {
// TODO: counts could be deferred if sorted==false
if (tt.termNum >= startTerm && tt.termNum < endTerm) {
counts[tt.termNum] = searcher.numDocs(new TermQuery(tt.term), docs);
}
}
// TODO: we could short-circuit counting altogether for sorted faceting
// where we already have enough terms from the bigTerms
// TODO: we could shrink the size of the collection array, and
// additionally break when the termNumber got above endTerm, but
// it would require two extra conditionals in the inner loop (although
// they would be predictable for the non-prefix case).
// Perhaps a different copy of the code would be warranted.
if (termInstances > 0) {
DocIterator iter = docs.iterator();
while (iter.hasNext()) {
int doc = iter.nextDoc();
int code = index[doc];
if ((code & 0xff)==1) {
int pos = code>>>8;
int whichArray = (doc >>> 16) & 0xff;
byte[] arr = tnums[whichArray];
int tnum = 0;
for(;;) {
int delta = 0;
for(;;) {
byte b = arr[pos++];
delta = (delta << 7) | (b & 0x7f);
if ((b & 0x80) == 0) break;
}
if (delta == 0) break;
tnum += delta - TNUM_OFFSET;
counts[tnum]++;
}
} else {
int tnum = 0;
int delta = 0;
for (;;) {
delta = (delta << 7) | (code & 0x7f);
if ((code & 0x80)==0) {
if (delta==0) break;
tnum += delta - TNUM_OFFSET;
counts[tnum]++;
delta = 0;
}
code >>>= 8;
}
}
}
}
int off=offset;
int lim=limit>=0 ? limit : Integer.MAX_VALUE;
if (sort) {
int maxsize = limit>0 ? offset+limit : Integer.MAX_VALUE-1;
maxsize = Math.min(maxsize, numTermsInField);
final BoundedTreeSet<Long> queue = new BoundedTreeSet<Long>(maxsize);
int min=mincount-1; // the smallest value in the top 'N' values
for (int i=startTerm; i<endTerm; i++) {
int c = doNegative ? maxTermCounts[i] - counts[i] : counts[i];
if (c>min) {
// NOTE: we use c>min rather than c>=min as an optimization because we are going in
// index order, so we already know that the keys are ordered. This can be very
// important if a lot of the counts are repeated (like zero counts would be).
// minimize object creation and speed comparison by creating a long that
// encompases both count and term number.
// Since smaller values are kept in the TreeSet, make higher counts smaller.
//
// for equal counts, lower term numbers
// should come first and hence be "greater"
//long pair = (((long)c)<<32) | (0x7fffffff-i) ; // use if priority queue
long pair = (((long)-c)<<32) | i;
queue.add(new Long(pair));
if (queue.size()>=maxsize) min=-(int)(queue.last().longValue() >>> 32);
}
}
// now select the right page from the results
for (Long p : queue) {
if (--off>=0) continue;
if (--lim<0) break;
int c = -(int)(p.longValue() >>> 32);
//int tnum = 0x7fffffff - (int)p.longValue(); // use if priority queue
int tnum = (int)p.longValue();
String label = ft.indexedToReadable(getTermText(te, tnum));
res.add(label, c);
}
} else {
// add results in index order
int i=startTerm;
if (mincount<=0) {
// if mincount<=0, then we won't discard any terms and we know exactly
// where to start.
i=startTerm+off;
off=0;
}
for (; i<endTerm; i++) {
int c = doNegative ? maxTermCounts[i] - counts[i] : counts[i];
if (c==0) {
}
if (c<mincount || --off>=0) continue;
if (--lim<0) break;
String label = ft.indexedToReadable(getTermText(te, i));
res.add(label, c);
}
}
te.close();
}
if (missing) {
// TODO: a faster solution for this?
res.add(null, SimpleFacets.getFieldMissingCount(searcher, baseDocs, field));
}
return res;
}
String getTermText(NumberedTermEnum te, int termNum) throws IOException {
if (bigTerms.size() > 0) {
// see if the term is one of our big terms.
TopTerm tt = bigTerms.get(termNum);
if (tt != null) {
return tt.term.text();
}
}
te.skipTo(termNum);
return te.term().text();
}
//////////////////////////////////////////////////////////////////
//////////////////////////// caching /////////////////////////////
//////////////////////////////////////////////////////////////////
static final class CreationPlaceholder {
Object value;
}
public static UnInvertedField getUnInvertedField(String field, SolrIndexSearcher searcher) throws IOException {
return (UnInvertedField)multiValuedFieldCache.get(searcher, field);
}
static Cache multiValuedFieldCache = new Cache() {
protected Object createValue(SolrIndexSearcher searcher, Object key) throws IOException {
return new UnInvertedField((String)key, searcher);
}
};
/** Internal cache. (from lucene FieldCache) */
abstract static class Cache {
private final Map readerCache = new WeakHashMap();
protected abstract Object createValue(SolrIndexSearcher searcher, Object key) throws IOException;
public Object get(SolrIndexSearcher searcher, Object key) throws IOException {
Map innerCache;
Object value;
synchronized (readerCache) {
innerCache = (Map) readerCache.get(searcher);
if (innerCache == null) {
innerCache = new HashMap();
readerCache.put(searcher, innerCache);
value = null;
} else {
value = innerCache.get(key);
}
if (value == null) {
value = new CreationPlaceholder();
innerCache.put(key, value);
}
}
if (value instanceof CreationPlaceholder) {
synchronized (value) {
CreationPlaceholder progress = (CreationPlaceholder) value;
if (progress.value == null) {
progress.value = createValue(searcher, key);
synchronized (readerCache) {
innerCache.put(key, progress.value);
}
}
return progress.value;
}
}
return value;
}
}
}
// How to share TermDocs (int[] score[])???
// Hot to share TermPositions?
/***
class TermEnumListener {
void doTerm(Term t) {
}
void done() {
}
}
***/
class NumberedTermEnum extends TermEnum {
protected final IndexReader reader;
protected final TermIndex tindex;
protected TermEnum tenum;
protected int pos=-1;
protected Term t;
protected TermDocs termDocs;
NumberedTermEnum(IndexReader reader, TermIndex tindex) throws IOException {
this.reader = reader;
this.tindex = tindex;
}
NumberedTermEnum(IndexReader reader, TermIndex tindex, String termValue, int pos) throws IOException {
this.reader = reader;
this.tindex = tindex;
this.pos = pos;
tenum = reader.terms(tindex.createTerm(termValue));
setTerm();
}
public TermDocs getTermDocs() throws IOException {
if (termDocs==null) termDocs = reader.termDocs(t);
else termDocs.seek(t);
return termDocs;
}
protected boolean setTerm() {
t = tenum.term();
if (t==null || t.field() != tindex.fterm.field()) { // intern'd compare
t = null;
return false;
}
return true;
}
public boolean next() throws IOException {
pos++;
boolean b = tenum.next();
if (!b) {
t = null;
return false;
}
return setTerm(); // this is extra work if we know we are in bounds...
}
public Term term() {
return t;
}
public int docFreq() {
return tenum.docFreq();
}
public void close() throws IOException {
tenum.close();
}
public boolean skipTo(String target) throws IOException {
return skipTo(tindex.fterm.createTerm(target));
}
public boolean skipTo(Term target) throws IOException {
// already here
if (t != null && t.equals(target)) return true;
int startIdx = Arrays.binarySearch(tindex.index,target.text());
if (startIdx >= 0) {
// we hit the term exactly... lucky us!
tenum = reader.terms(target);
pos = startIdx << tindex.intervalBits;
return setTerm();
}
// we didn't hit the term exactly
startIdx=-startIdx-1;
if (startIdx == 0) {
// our target occurs *before* the first term
tenum = reader.terms(target);
pos = 0;
return setTerm();
}
// back up to the start of the block
startIdx--;
if ((pos >> tindex.intervalBits) == startIdx && t != null && t.text().compareTo(target.text())<=0) {
// we are already in the right block and the current term is before the term we want,
// so we don't need to seek.
} else {
// seek to the right block
tenum = reader.terms(target.createTerm(tindex.index[startIdx]));
pos = startIdx << tindex.intervalBits;
setTerm(); // should be true since it's in the index
}
while (t != null && t.text().compareTo(target.text()) < 0) {
next();
}
return t != null;
}
public boolean skipTo(int termNumber) throws IOException {
int delta = termNumber - pos;
if (delta < 0 || delta > tindex.interval || tenum==null) {
int idx = termNumber >>> tindex.intervalBits;
String base = tindex.index[idx];
pos = idx << tindex.intervalBits;
delta = termNumber - pos;
tenum = reader.terms(tindex.createTerm(base));
}
while (--delta >= 0) {
boolean b = tenum.next();
if (b==false) {
t = null;
return false;
}
++pos;
}
return setTerm();
}
/** The current term number, starting at 0.
* Only valid if the previous call to next() or skipTo() returned true.
*/
public int getTermNumber() {
return pos;
}
}
/**
* Class to save memory by only storing every nth term (for random access), while
* numbering the terms, allowing them to be retrieved later by number.
* This is only valid when used with the IndexReader it was created with.
* The IndexReader is not actually stored to facilitate caching by using it as a key in
* a weak hash map.
*/
class TermIndex {
final static int intervalBits = 7; // decrease to a low number like 2 for testing
final static int intervalMask = 0xffffffff >>> (32-intervalBits);
final static int interval = 1 << intervalBits;
final Term fterm; // prototype to be used in term construction w/o String.intern overhead
String[] index;
int nTerms;
long sizeOfStrings;
TermIndex(String field) {
this.fterm = new Term(field, "");
}
Term createTerm(String termVal) {
return fterm.createTerm(termVal);
}
NumberedTermEnum getEnumerator(IndexReader reader, int termNumber) throws IOException {
NumberedTermEnum te = new NumberedTermEnum(reader, this);
te.skipTo(termNumber);
return te;
}
/* The first time an enumerator is requested, it should be used
with next() to fully traverse all of the terms so the index
will be built.
*/
NumberedTermEnum getEnumerator(IndexReader reader) throws IOException {
if (index==null) return new NumberedTermEnum(reader,this,"",0) {
ArrayList<String> lst;
protected boolean setTerm() {
boolean b = super.setTerm();
if (b && (pos & intervalMask)==0) {
String text = term().text();
sizeOfStrings += text.length() << 1;
if (lst==null) {
lst = new ArrayList<String>();
}
lst.add(text);
}
return b;
}
public boolean skipTo(Term target) throws IOException {
throw new UnsupportedOperationException();
}
public boolean skipTo(int termNumber) throws IOException {
throw new UnsupportedOperationException();
}
public void close() throws IOException {
nTerms=pos;
super.close();
index = lst!=null ? lst.toArray(new String[lst.size()]) : new String[0];
}
};
else return new NumberedTermEnum(reader,this,"",0);
}
/**
* Returns the approximate amount of memory taken by this DocSet.
* This is only an approximation and doesn't take into account java object overhead.
*
* @return
* the approximate memory consumption in bytes
*/
public long memSize() {
// assume 8 byte references?
return 8+8+8+8+(index.length<<3)+sizeOfStrings;
}
}

View File

@ -303,9 +303,10 @@ public class SimpleFacetsTest extends AbstractSolrTestCase {
} }
public void testFacetMultiValued() { public void testFacetMultiValued() {
doFacets("t_s"); doFacetPrefix("t_s", "facet.method","enum");
doFacets("t_s", "facet.enum.cache.minDf", "2"); doFacetPrefix("t_s", "facet.method", "enum", "facet.enum.cache.minDf", "2");
doFacets("t_s", "facet.enum.cache.minDf", "100"); doFacetPrefix("t_s", "facet.method", "enum", "facet.enum.cache.minDf", "100");
doFacetPrefix("t_s", "facet.method", "fc");
} }
public void testFacetSingleValued() { public void testFacetSingleValued() {
@ -476,9 +477,10 @@ public class SimpleFacetsTest extends AbstractSolrTestCase {
public void testFacetPrefixMultiValued() { public void testFacetPrefixMultiValued() {
doFacetPrefix("t_s"); doFacetPrefix("t_s", "facet.method","enum");
doFacetPrefix("t_s", "facet.enum.cache.minDf", "3"); doFacetPrefix("t_s", "facet.method", "enum", "facet.enum.cache.minDf", "3");
doFacetPrefix("t_s", "facet.enum.cache.minDf", "100"); doFacetPrefix("t_s", "facet.method", "enum", "facet.enum.cache.minDf", "100");
doFacetPrefix("t_s", "facet.method", "fc");
} }
public void testFacetPrefixSingleValued() { public void testFacetPrefixSingleValued() {

View File

@ -0,0 +1,242 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.solr.request;
import org.apache.lucene.index.Term;
import org.apache.solr.util.AbstractSolrTestCase;
import java.util.Random;
/**
* @version $Id$
*/
public class TestFaceting extends AbstractSolrTestCase {
public String getSchemaFile() { return "schema11.xml"; }
public String getSolrConfigFile() { return "solrconfig.xml"; }
public void setUp() throws Exception {
super.setUp();
}
public void tearDown() throws Exception {
close();
super.tearDown();
}
String t(int tnum) {
return String.format("%08d", tnum);
}
void createIndex(int nTerms) {
assertU(delQ("*:*"));
for (int i=0; i<nTerms; i++) {
assertU(adoc("id", Float.toString(i), proto.field(), t(i) ));
}
assertU(optimize()); // squeeze out any possible deleted docs
}
Term proto = new Term("field_s","");
SolrQueryRequest req; // used to get a searcher
void close() {
if (req!=null) req.close();
req = null;
}
void doTermEnum(int size) throws Exception {
close();
createIndex(size);
req = lrf.makeRequest("q","*:*");
TermIndex ti = new TermIndex(proto.field());
NumberedTermEnum te = ti.getEnumerator(req.getSearcher().getReader());
// iterate through first
while(te.term() != null) te.next();
assertEquals(size, te.getTermNumber());
te.close();
te = ti.getEnumerator(req.getSearcher().getReader());
Random r = new Random(size);
// test seeking by term string
for (int i=0; i<size*2+10; i++) {
int rnum = r.nextInt(size+2);
String s = t(rnum);
boolean b = te.skipTo(proto.createTerm(s));
assertEquals(b, rnum < size);
if (rnum < size) {
assertEquals(rnum, te.pos);
assertEquals(s, te.term().text());
} else {
assertEquals(null, te.term());
assertEquals(size, te.getTermNumber());
}
}
// test seeking before term
assertEquals(size>0, te.skipTo(proto.createTerm("000")));
assertEquals(0, te.getTermNumber());
if (size>0) {
assertEquals(t(0), te.term().text());
} else {
assertEquals(null, te.term());
}
if (size>0) {
// test seeking by term number
for (int i=0; i<size*2+10; i++) {
int rnum = r.nextInt(size);
String s = t(rnum);
boolean b = te.skipTo(rnum);
assertEquals(true, b);
assertEquals(rnum, te.pos);
assertEquals(s, te.term().text());
}
}
}
public void testTermEnum() throws Exception {
doTermEnum(0);
doTermEnum(1);
doTermEnum(TermIndex.interval - 1); // test boundaries around the block size
doTermEnum(TermIndex.interval);
doTermEnum(TermIndex.interval + 1);
doTermEnum(TermIndex.interval * 2 + 2);
// doTermEnum(TermIndex.interval * 3 + 3);
}
public void testFacets() throws Exception {
StringBuilder sb = new StringBuilder();
// go over 4096 to test some of the buffer resizing
for (int i=0; i<5000; i++) {
sb.append(t(i));
sb.append(' ');
}
assertU(adoc("id", "1", "many_ws", sb.toString()));
assertU(commit());
assertQ("check many tokens",
req("q", "id:1","indent","true"
,"facet", "true", "facet.method","fc"
,"facet.field", "many_ws"
,"facet.limit", "-1"
)
,"*[count(//lst[@name='many_ws']/int)=5000]"
,"//lst[@name='many_ws']/int[@name='" + t(0) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(1) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(2) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(3) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(5) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4092) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4093) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4094) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4095) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4096) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4097) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4098) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4090) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4999) + "'][.='1']"
);
// test gaps that take more than one byte
sb = new StringBuilder();
sb.append(t(0)).append(' ');
sb.append(t(150)).append(' ');
sb.append(t(301)).append(' ');
sb.append(t(453)).append(' ');
sb.append(t(606)).append(' ');
sb.append(t(1000)).append(' ');
sb.append(t(2010)).append(' ');
sb.append(t(3050)).append(' ');
sb.append(t(4999)).append(' ');
assertU(adoc("id", "2", "many_ws", sb.toString()));
assertQ("check many tokens",
req("q", "id:1","indent","true"
,"facet", "true", "facet.method","fc"
,"facet.field", "many_ws"
,"facet.limit", "-1"
)
,"*[count(//lst[@name='many_ws']/int)=5000]"
,"//lst[@name='many_ws']/int[@name='" + t(0) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(150) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(301) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(453) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(606) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(1000) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(2010) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(3050) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(4999) + "'][.='1']"
);
}
public void testRegularBig() throws Exception {
StringBuilder sb = new StringBuilder();
// go over 4096 to test some of the buffer resizing
int nTerms=7;
for (int i=0; i<nTerms; i++) {
sb.append(t(i));
sb.append(' ');
}
String many_ws = sb.toString();
int i1=1000000;
// int iter=65536+10;
int iter=1000;
for (int i=0; i<iter; i++) {
// assertU(adoc("id", t(i), "many_ws", many_ws + t(i1+i) + " " + t(i1*2+i)));
assertU(adoc("id", t(i), "many_ws", t(i1+i) + " " + t(i1*2+i)));
}
assertU(commit());
for (int i=0; i<iter; i+=iter/10) {
assertQ("check many tokens",
req("q", "id:"+t(i),"indent","true"
,"facet", "true", "facet.method","fc"
,"facet.field", "many_ws"
,"facet.limit", "-1"
,"facet.mincount", "1"
)
,"*[count(//lst[@name='many_ws']/int)=" + 2 + "]"
,"//lst[@name='many_ws']/int[@name='" + t(i1+i) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(i1*2+i) + "'][.='1']"
);
}
int i=iter-1;
assertQ("check many tokens",
req("q", "id:"+t(i),"indent","true"
,"facet", "true", "facet.method","fc"
,"facet.field", "many_ws"
,"facet.limit", "-1"
,"facet.mincount", "1"
)
,"*[count(//lst[@name='many_ws']/int)=" + 2 + "]"
,"//lst[@name='many_ws']/int[@name='" + t(i1+i) + "'][.='1']"
,"//lst[@name='many_ws']/int[@name='" + t(i1*2+i) + "'][.='1']"
);
}
}

View File

@ -285,6 +285,7 @@
<dynamicField name="*_t" type="text" indexed="true" stored="true"/> <dynamicField name="*_t" type="text" indexed="true" stored="true"/>
<dynamicField name="*_b" type="boolean" indexed="true" stored="true"/> <dynamicField name="*_b" type="boolean" indexed="true" stored="true"/>
<dynamicField name="*_dt" type="date" indexed="true" stored="true"/> <dynamicField name="*_dt" type="date" indexed="true" stored="true"/>
<dynamicField name="*_ws" type="text_ws" indexed="true" stored="true"/>
<dynamicField name="*_extf" type="file"/> <dynamicField name="*_extf" type="file"/>