LUCENE-1908: Scoring documentation imrovements in Similarity javadocs.

git-svn-id: https://svn.apache.org/repos/asf/lucene/java/trunk@815414 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Doron Cohen 2009-09-15 17:44:35 +00:00
parent 95d3f4bd52
commit 203925ad70
2 changed files with 291 additions and 50 deletions

View File

@ -829,6 +829,9 @@ Optimizations
Documentation
* LUCENE-1908: Scoring documentation imrovements in Similarity javadocs.
(Mark Miller, Shai Erera, Ted Dunning, Jiri Kuhn, Marvin Humphrey, Doron Cohen)
* LUCENE-1872: NumericField javadoc improvements
(Michael McCandless, Uwe Schindler)

View File

@ -29,36 +29,252 @@ import java.util.Collection;
import java.util.IdentityHashMap;
import java.util.Iterator;
/** Expert: Scoring API.
* <p>Subclasses implement search scoring.
/**
* Expert: Scoring API.
*
* <p>The score of query <code>q</code> for document <code>d</code> correlates to the
* cosine-distance or dot-product between document and query vectors in a
* <p>Similarity defines the components of Lucene scoring.
* Overriding computation of these components is a convenient
* way to alter Lucene scoring.
*
* <p>Suggested reading:
* <a href="http://nlp.stanford.edu/IR-book/html/htmledition/queries-as-vectors-1.html">
* Introduction To Information Retrieval, Chapter 6</a>.
*
* <p>The following describes how Lucene scoring evolves from
* underlying information retrieval models to (efficient) implementation.
* We first brief on <i>VSM Score</i>,
* then derive from it <i>Lucene's Conceptual Scoring Formula</i>,
* from which, finally, evolves <i>Lucene's Practical Scoring Function</i>
* (the latter is connected directly with Lucene classes and methods).
*
* <p>Lucene combines
* <a href="http://en.wikipedia.org/wiki/Standard_Boolean_model">
* Boolean model (BM) of Information Retrieval</a>
* with
* <a href="http://en.wikipedia.org/wiki/Vector_Space_Model">
* Vector Space Model (VSM) of Information Retrieval</a>.
* A document whose vector is closer to the query vector in that model is scored higher.
* Vector Space Model (VSM) of Information Retrieval</a> -
* documents "approved" by BM are scored by VSM.
*
* The score is computed as follows:
* <p>In VSM, documents and queries are represented as
* weighted vectors in a multi-dimensional space,
* where each distinct index term is a dimension,
* and weights are
* <a href="http://en.wikipedia.org/wiki/Tfidf">Tf-idf</a> values.
*
* <P>
* <p>VSM does not require weights to be <i>Tf-idf</i> values,
* but <i>Tf-idf</i> values are believed to produce search results of high quality,
* and so Lucene is using <i>Tf-idf</i>.
* <i>Tf</i> and <i>Idf</i> are described in more detail below,
* but for now, for completion, let's just say that
* for given term <i>t</i> and document (or query) <i>x</i>,
* <i>Tf(t,x)</i> varies with the number of occurrences of term <i>t</i> in <i>x</i>
* (when one increases so does the other) and
* <i>idf(t)</i> similarly varies with the inverse of the
* number of index documents containing term <i>t</i>.
*
* <p><i>VSM score</i> of document <i>d</i> for query <i>q</i> is the
* <a href="http://en.wikipedia.org/wiki/Cosine_similarity">
* Cosine Similarity</a>
* of the weighted query vectors <i>V(q)</i> and <i>V(d)</i>:
*
* <br>&nbsp;<br>
* <table cellpadding="2" cellspacing="2" border="0" align="center">
* <tr><td>
* <table cellpadding="1" cellspacing="0" border="1" align="center">
* <tr><td>
* <table cellpadding="1" cellspacing="0" border="0" align="center">
* <table cellpadding="2" cellspacing="2" border="0" align="center">
* <tr>
* <td valign="middle" align="right" rowspan="1">
* cosine-similarity(q,d) &nbsp; = &nbsp;
* </td>
* <td valign="middle" align="center">
* <table>
* <tr><td align="center"><small>V(q)&nbsp;&middot;&nbsp;V(d)</small></td></tr>
* <tr><td align="center">&ndash;&ndash;&ndash;&ndash;&ndash;&ndash;&ndash;&ndash;&ndash;</td></tr>
* <tr><td align="center"><small>|V(q)|&nbsp;|V(d)|</small></td></tr>
* </table>
* </td>
* </tr>
* </table>
* </td></tr>
* </table>
* </td></tr>
* <tr><td>
* <center><font=-1><u>VSM Score</u></font></center>
* </td></tr>
* </table>
* <br>&nbsp;<br>
*
*
* Where <i>V(q)</i> &middot; <i>V(d)</i> is the
* <a href="http://en.wikipedia.org/wiki/Dot_product">dot product</a>
* of the weighted vectors,
* and <i>|V(q)|</i> and <i>|V(d)|</i> are their
* <a href="http://en.wikipedia.org/wiki/Euclidean_norm#Euclidean_norm">Euclidean norms</a>.
*
* <p>Note: the above equation can be viewed as the dot product of
* the normalized weighted vectors, in the sense that dividing
* <i>V(q)</i> by its euclidean norm is normalizing it to a unit vector.
*
* <p>Lucene refines <i>VSM score</i> for both search quality and usability:
* <ul>
* <li>Normalizing <i>V(d)</i> to the unit vector is known to be problematic in that
* it removes all document length information.
* For some documents removing this info is probably ok,
* e.g. a document made by duplicating a certain paragraph <i>10</i> times,
* especially if that paragraph is made of distinct terms.
* But for a document which contains no duplicated paragraphs,
* this might be wrong.
* To avoid this problem, a different document length normalization
* factor is used, which normalizes to a vector equal to or larger
* than the unit vector: <i>doc-len-norm(d)</i>.
* </li>
*
* <li>At indexing, users can specify that certain documents are more
* important than others, by assigning a document boost.
* For this, the score of each document is also multiplied by its boost value
* <i>doc-boost(d)</i>.
* </li>
*
* <li>Lucene is field based, hence each query term applies to a single
* field, document length normalization is by the length of the certain field,
* and in addition to document boost there are also document fields boosts.
* </li>
*
* <li>The same field can be added to a document during indexing several times,
* and so the boost of that field is the multiplication of the boosts of
* the separate additions (or parts) of that field within the document.
* </li>
*
* <li>At search time users can specify boosts to each query, sub-query, and
* each query term, hence the contribution of a query term to the score of
* a document is multiplied by the boost of that query term <i>query-boost(q)</i>.
* </li>
*
* <li>A document may match a multi term query without containing all
* the terms of that query (this is correct for some of the queries),
* and users can further reward documents matching more query terms
* through a coordination factor, which is usually larger when
* more terms are matched: <i>coord-factor(q,d)</i>.
* </li>
* </ul>
*
* <p>Under the simplifying assumption of a single field in the index,
* we get <i>Lucene's Conceptual scoring formula</i>:
*
* <br>&nbsp;<br>
* <table cellpadding="2" cellspacing="2" border="0" align="center">
* <tr><td>
* <table cellpadding="1" cellspacing="0" border="1" align="center">
* <tr><td>
* <table cellpadding="2" cellspacing="2" border="0" align="center">
* <tr>
* <td valign="middle" align="right" rowspan="1">
* score(q,d) &nbsp; = &nbsp;
* <A HREF="#formula_coord">coord(q,d)</A> &nbsp;&middot;&nbsp;
* <A HREF="#formula_queryNorm">queryNorm(q)</A> &nbsp;&middot;&nbsp;
* <font color="#FF9933">coord-factor(q,d)</font> &middot; &nbsp;
* <font color="#CCCC00">query-boost(q)</font> &middot; &nbsp;
* </td>
* <td valign="middle" align="center">
* <table>
* <tr><td align="center"><small><font color="#993399">V(q)&nbsp;&middot;&nbsp;V(d)</font></small></td></tr>
* <tr><td align="center">&ndash;&ndash;&ndash;&ndash;&ndash;&ndash;&ndash;&ndash;&ndash;</td></tr>
* <tr><td align="center"><small><font color="#FF33CC">|V(q)|</font></small></td></tr>
* </table>
* </td>
* <td valign="middle" align="right" rowspan="1">
* &nbsp; &middot; &nbsp; <font color="#3399FF">doc-len-norm(d)</font>
* &nbsp; &middot; &nbsp; <font color="#3399FF">doc-boost(d)</font>
* </td>
* </tr>
* </table>
* </td></tr>
* </table>
* </td></tr>
* <tr><td>
* <center><font=-1><u>Lucene Conceptual Scoring Formula</u></font></center>
* </td></tr>
* </table>
* <br>&nbsp;<br>
*
* <p>The conceptual formula is a simplification in the sense that (1) terms and documents
* are fielded and (2) boosts are usually per query term rather than per query.
*
* <p>We now describe how Lucene implements this conceptual scoring formula, and
* derive from it <i>Lucene's Practical Scoring Function</i>.
*
* <p>For efficient score computation some scoring components
* are computed and aggregated in advance:
*
* <ul>
* <li><i>Query-boost</i> for the query (actually for each query term)
* is known when search starts.
* </li>
*
* <li>Query Euclidean norm <i>|V(q)|</i> can be computed when search starts,
* as it is independent of the document being scored.
* From search optimization perspective, it is a valid question
* why bother to normalize the query at all, because all
* scored documents will be multiplied by the same <i>|V(q)|</i>,
* and hence documents ranks (their order by score) will not
* be affected by this normalization.
* There are two good reasons to keep this normalization:
* <ul>
* <li>Recall that
* <a href="http://en.wikipedia.org/wiki/Cosine_similarity">
* Cosine Similarity</a> can be used find how similar
* two documents are. One can use Lucene for e.g.
* clustering, and use a document as a query to compute
* its similarity to other documents.
* In this use case it is important that the score of document <i>d3</i>
* for query <i>d1</i> is comparable to the score of document <i>d3</i>
* for query <i>d2</i>. In other words, scores of a document for two
* distinct queries should be comparable.
* There are other applications that may require this.
* And this is exactly what normalizing the query vector <i>V(q)</i>
* provides: comparability (to a certain extent) of two or more queries.
* </li>
*
* <li>Applying query normalization on the scores helps to keep the
* scores around the unit vector, hence preventing loss of score data
* because of floating point precision limitations.
* </li>
* </ul>
* </li>
*
* <li>Document length norm <i>doc-len-norm(d)</i> and document
* boost <i>doc-boost(d)</i> are known at indexing time.
* They are computed in advance and their multiplication
* is saved as a single value in the index: <i>norm(d)</i>.
* (In the equations below, <i>norm(t in d)</i> means <i>norm(field(t) in doc d)</i>
* where <i>field(t)</i> is the field associated with term <i>t</i>.)
* </li>
* </ul>
*
* <p><i>Lucene's Practical Scoring Function</i> is derived from the above.
* The color codes demonstrate how it relates
* to those of the <i>conceptual</i> formula:
*
* <P>
* <table cellpadding="2" cellspacing="2" border="0" align="center">
* <tr><td>
* <table cellpadding="" cellspacing="2" border="2" align="center">
* <tr><td>
* <table cellpadding="2" cellspacing="2" border="0" align="center">
* <tr>
* <td valign="middle" align="right" rowspan="1">
* score(q,d) &nbsp; = &nbsp;
* <A HREF="#formula_coord"><font color="#FF9933">coord(q,d)</font></A> &nbsp;&middot;&nbsp;
* <A HREF="#formula_queryNorm"><font color="#FF33CC">queryNorm(q)</font></A> &nbsp;&middot;&nbsp;
* </td>
* <td valign="bottom" align="center" rowspan="1">
* <big><big><big>&sum;</big></big></big>
* </td>
* <td valign="middle" align="right" rowspan="1">
* <big><big>(</big></big>
* <A HREF="#formula_tf">tf(t in d)</A> &nbsp;&middot;&nbsp;
* <A HREF="#formula_idf">idf(t)</A><sup>2</sup> &nbsp;&middot;&nbsp;
* <A HREF="#formula_termBoost">t.getBoost()</A>&nbsp;&middot;&nbsp;
* <A HREF="#formula_norm">norm(t,d)</A>
* <A HREF="#formula_tf"><font color="#993399">tf(t in d)</font></A> &nbsp;&middot;&nbsp;
* <A HREF="#formula_idf"><font color="#993399">idf(t)</font></A><sup>2</sup> &nbsp;&middot;&nbsp;
* <A HREF="#formula_termBoost"><font color="#CCCC00">t.getBoost()</font></A>&nbsp;&middot;&nbsp;
* <A HREF="#formula_norm"><font color="#3399FF">norm(t,d)</font></A>
* <big><big>)</big></big>
* </td>
* </tr>
@ -70,15 +286,24 @@ import java.util.Iterator;
* </table>
* </td></tr>
* </table>
* </td></tr>
* <tr><td>
* <center><font=-1><u>Lucene Practical Scoring Function</u></font></center>
* </td></tr>
* </table>
*
* <p> where
* <ol>
* <li>
* <A NAME="formula_tf"></A>
* <b>tf(t in d)</b>
* <b><i>tf(t in d)</i></b>
* correlates to the term's <i>frequency</i>,
* defined as the number of times term <i>t</i> appears in the currently scored document <i>d</i>.
* Documents that have more occurrences of a given term receive a higher score.
* Note that <i>tf(t in q)</i> is assumed to be <i>1</i> and therefore it does not appear in this equation,
* However if a query contains twice the same term, there will be
* two term-queries with that same term and hence the computation would still be correct (although
* not very efficient).
* The default computation for <i>tf(t in d)</i> in
* {@link org.apache.lucene.search.DefaultSimilarity#tf(float) DefaultSimilarity} is:
*
@ -98,10 +323,12 @@ import java.util.Iterator;
*
* <li>
* <A NAME="formula_idf"></A>
* <b>idf(t)</b> stands for Inverse Document Frequency. This value
* <b><i>idf(t)</i></b> stands for Inverse Document Frequency. This value
* correlates to the inverse of <i>docFreq</i>
* (the number of documents in which the term <i>t</i> appears).
* This means rarer terms give higher contribution to the total score.
* <i>idf(t)</i> appears for <i>t</i> in both the query and the document,
* hence it is squared in the equation.
* The default computation for <i>idf(t)</i> in
* {@link org.apache.lucene.search.DefaultSimilarity#idf(int, int) DefaultSimilarity} is:
*
@ -131,7 +358,7 @@ import java.util.Iterator;
*
* <li>
* <A NAME="formula_coord"></A>
* <b>coord(q,d)</b>
* <b><i>coord(q,d)</i></b>
* is a score factor based on how many of the query terms are found in the specified document.
* Typically, a document that contains more of the query's terms will receive a higher score
* than another document with fewer query terms.
@ -143,7 +370,7 @@ import java.util.Iterator;
*
* <li><b>
* <A NAME="formula_queryNorm"></A>
* queryNorm(q)
* <i>queryNorm(q)</i>
* </b>
* is a normalizing factor used to make scores between queries comparable.
* This factor does not affect document ranking (since all ranked documents are multiplied by the same factor),
@ -152,7 +379,7 @@ import java.util.Iterator;
*
* The default computation in
* {@link org.apache.lucene.search.DefaultSimilarity#queryNorm(float) DefaultSimilarity}
* is:
* produces a <a href="http://en.wikipedia.org/wiki/Euclidean_norm#Euclidean_norm">Euclidean norm</a>:
* <br>&nbsp;<br>
* <table cellpadding="1" cellspacing="0" border="0" align="center">
* <tr>
@ -209,7 +436,7 @@ import java.util.Iterator;
*
* <li>
* <A NAME="formula_termBoost"></A>
* <b>t.getBoost()</b>
* <b><i>t.getBoost()</i></b>
* is a search time boost of term <i>t</i> in the query <i>q</i> as
* specified in the query text
* (see <A HREF="../../../../../../queryparsersyntax.html#Boosting a Term">query syntax</A>),
@ -225,7 +452,7 @@ import java.util.Iterator;
*
* <li>
* <A NAME="formula_norm"></A>
* <b>norm(t,d)</b> encapsulates a few (indexing time) boost and length factors:
* <b><i>norm(t,d)</i></b> encapsulates a few (indexing time) boost and length factors:
*
* <ul>
* <li><b>Document boost</b> - set by calling
@ -277,9 +504,18 @@ import java.util.Iterator;
* {@link org.apache.lucene.store.Directory directory} and
* {@link #decodeNorm(byte) decoded} back to a float <i>norm</i> value.
* This encoding/decoding, while reducing index size, comes with the price of
* precision loss - it is not guaranteed that decode(encode(x)) = x.
* For instance, decode(encode(0.89)) = 0.75.
* Also notice that search time is too late to modify this <i>norm</i> part of scoring, e.g. by
* precision loss - it is not guaranteed that <i>decode(encode(x)) = x</i>.
* For instance, <i>decode(encode(0.89)) = 0.75</i>.
* <br>&nbsp;<br>
* Compression of norm values to a single byte saves memory at search time,
* because once a field is referenced at search time, its norms - for
* all documents - are maintained in memory.
* <br>&nbsp;<br>
* The rationale supporting such lossy compression of norm values is that
* given the difficulty (and inaccuracy) of users to express their true information
* need by a query, only big differences matter.
* <br>&nbsp;<br>
* Last, note that search time is too late to modify this <i>norm</i> part of scoring, e.g. by
* using a different {@link Similarity} for search.
* <br>&nbsp;<br>
* </li>
@ -475,9 +711,10 @@ public abstract class Similarity implements Serializable {
* </pre>
*
* Note that {@link Searcher#maxDoc()} is used instead of
* {@link org.apache.lucene.index.IndexReader#numDocs()} because it is proportional to
* {@link Searcher#docFreq(Term)} , i.e., when one is inaccurate,
* so is the other, and in the same direction.
* {@link org.apache.lucene.index.IndexReader#numDocs() IndexReader#numDocs()} because also
* {@link Searcher#docFreq(Term)} is used, and when the latter
* is inaccurate, so is {@link Searcher#maxDoc()}, and in the same direction.
* In addition, {@link Searcher#maxDoc()} is more efficient to compute
*
* @param term the term in question
* @param searcher the document collection being searched
@ -500,9 +737,10 @@ public abstract class Similarity implements Serializable {
* </pre>
*
* Note that {@link Searcher#maxDoc()} is used instead of
* {@link org.apache.lucene.index.IndexReader#numDocs()} because it is
* proportional to {@link Searcher#docFreq(Term)} , i.e., when one is
* inaccurate, so is the other, and in the same direction.
* {@link org.apache.lucene.index.IndexReader#numDocs() IndexReader#numDocs()} because also
* {@link Searcher#docFreq(Term)} is used, and when the latter
* is inaccurate, so is {@link Searcher#maxDoc()}, and in the same direction.
* In addition, {@link Searcher#maxDoc()} is more efficient to compute
*
* @param term the term in question
* @param searcher the document collection being searched