indent the same everywhere, no functional change

git-svn-id: https://svn.apache.org/repos/asf/lucene/java/trunk@150630 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Daniel Naber 2004-11-07 23:41:50 +00:00
parent 6f3bf4837d
commit 2c1dc30639
1 changed files with 179 additions and 182 deletions

View File

@ -29,127 +29,127 @@ import java.io.IOException;
*/ */
public final class FuzzyTermEnum extends FilteredTermEnum { public final class FuzzyTermEnum extends FilteredTermEnum {
/* This should be somewhere around the average long word. /* This should be somewhere around the average long word.
* If it is longer, we waste time and space. If it is shorter, we waste a * If it is longer, we waste time and space. If it is shorter, we waste a
* little bit of time growing the array as we encounter longer words. * little bit of time growing the array as we encounter longer words.
*/ */
private static final int TYPICAL_LONGEST_WORD_IN_INDEX = 19; private static final int TYPICAL_LONGEST_WORD_IN_INDEX = 19;
/* Allows us save time required to create a new array /* Allows us save time required to create a new array
* everytime similarity is called. * everytime similarity is called.
*/ */
private int[][] d; private int[][] d;
private float similarity; private float similarity;
private boolean endEnum = false; private boolean endEnum = false;
private Term searchTerm = null; private Term searchTerm = null;
private final String field; private final String field;
private final String text; private final String text;
private final String prefix; private final String prefix;
private final float minimumSimilarity; private final float minimumSimilarity;
private final float scale_factor; private final float scale_factor;
private final int[] maxDistances = new int[TYPICAL_LONGEST_WORD_IN_INDEX]; private final int[] maxDistances = new int[TYPICAL_LONGEST_WORD_IN_INDEX];
/** /**
* Creates a FuzzyTermEnum with an empty prefix and a minSimilarity of 0.5f. * Creates a FuzzyTermEnum with an empty prefix and a minSimilarity of 0.5f.
* *
* @param reader * @param reader
* @param term * @param term
* @throws IOException * @throws IOException
* @see #FuzzyTermEnum(IndexReader, Term, float, int) * @see #FuzzyTermEnum(IndexReader, Term, float, int)
*/ */
public FuzzyTermEnum(IndexReader reader, Term term) throws IOException { public FuzzyTermEnum(IndexReader reader, Term term) throws IOException {
this(reader, term, FuzzyQuery.defaultMinSimilarity, FuzzyQuery.defaultPrefixLength); this(reader, term, FuzzyQuery.defaultMinSimilarity, FuzzyQuery.defaultPrefixLength);
} }
/** /**
* Creates a FuzzyTermEnum with an empty prefix. * Creates a FuzzyTermEnum with an empty prefix.
* *
* @param reader * @param reader
* @param term * @param term
* @param minSimilarity * @param minSimilarity
* @throws IOException * @throws IOException
* @see #FuzzyTermEnum(IndexReader, Term, float, int) * @see #FuzzyTermEnum(IndexReader, Term, float, int)
*/ */
public FuzzyTermEnum(IndexReader reader, Term term, float minSimilarity) throws IOException { public FuzzyTermEnum(IndexReader reader, Term term, float minSimilarity) throws IOException {
this(reader, term, minSimilarity, FuzzyQuery.defaultPrefixLength); this(reader, term, minSimilarity, FuzzyQuery.defaultPrefixLength);
} }
/** /**
* Constructor for enumeration of all terms from specified <code>reader</code> which share a prefix of * Constructor for enumeration of all terms from specified <code>reader</code> which share a prefix of
* length <code>prefixLength</code> with <code>term</code> and which have a fuzzy similarity &gt; * length <code>prefixLength</code> with <code>term</code> and which have a fuzzy similarity &gt;
* <code>minSimilarity</code>. * <code>minSimilarity</code>.
* *
* @param reader Delivers terms. * @param reader Delivers terms.
* @param term Pattern term. * @param term Pattern term.
* @param minSimilarity Minimum required similarity for terms from the reader. Default value is 0.5f. * @param minSimilarity Minimum required similarity for terms from the reader. Default value is 0.5f.
* @param prefixLength Length of required common prefix. Default value is 0. * @param prefixLength Length of required common prefix. Default value is 0.
* @throws IOException * @throws IOException
*/ */
public FuzzyTermEnum(IndexReader reader, Term term, final float minSimilarity, final int prefixLength) throws IOException { public FuzzyTermEnum(IndexReader reader, Term term, final float minSimilarity, final int prefixLength) throws IOException {
super(); super();
if (minSimilarity >= 1.0f)
throw new IllegalArgumentException("minimumSimilarity cannot be greater than or equal to 1");
else if (minSimilarity < 0.0f)
throw new IllegalArgumentException("minimumSimilarity cannot be less than 0");
if(prefixLength < 0)
throw new IllegalArgumentException("prefixLength cannot be less than 0");
this.minimumSimilarity = minSimilarity;
this.scale_factor = 1.0f / (1.0f - minimumSimilarity);
this.searchTerm = term;
this.field = searchTerm.field();
//The prefix could be longer than the word.
//It's kind of silly though. It means we must match the entire word.
final int fullSearchTermLength = searchTerm.text().length();
final int realPrefixLength = prefixLength > fullSearchTermLength ? fullSearchTermLength : prefixLength;
this.text = searchTerm.text().substring(realPrefixLength);
this.prefix = searchTerm.text().substring(0, realPrefixLength);
initializeMaxDistances();
this.d = initDistanceArray();
setEnum(reader.terms(new Term(searchTerm.field(), prefix)));
}
/**
* The termCompare method in FuzzyTermEnum uses Levenshtein distance to
* calculate the distance between the given term and the comparing term.
*/
protected final boolean termCompare(Term term) {
if (field == term.field() && term.text().startsWith(prefix)) {
final String target = term.text().substring(prefix.length());
this.similarity = similarity(target);
return (similarity > minimumSimilarity);
}
endEnum = true;
return false;
}
public final float difference() { if (minSimilarity >= 1.0f)
return (float)((similarity - minimumSimilarity) * scale_factor); throw new IllegalArgumentException("minimumSimilarity cannot be greater than or equal to 1");
} else if (minSimilarity < 0.0f)
throw new IllegalArgumentException("minimumSimilarity cannot be less than 0");
public final boolean endEnum() { if(prefixLength < 0)
return endEnum; throw new IllegalArgumentException("prefixLength cannot be less than 0");
}
this.minimumSimilarity = minSimilarity;
/****************************** this.scale_factor = 1.0f / (1.0f - minimumSimilarity);
* Compute Levenshtein distance this.searchTerm = term;
******************************/ this.field = searchTerm.field();
/** //The prefix could be longer than the word.
* Finds and returns the smallest of three integers //It's kind of silly though. It means we must match the entire word.
*/ final int fullSearchTermLength = searchTerm.text().length();
private static final int min(int a, int b, int c) { final int realPrefixLength = prefixLength > fullSearchTermLength ? fullSearchTermLength : prefixLength;
final int t = (a < b) ? a : b;
return (t < c) ? t : c; this.text = searchTerm.text().substring(realPrefixLength);
this.prefix = searchTerm.text().substring(0, realPrefixLength);
initializeMaxDistances();
this.d = initDistanceArray();
setEnum(reader.terms(new Term(searchTerm.field(), prefix)));
}
/**
* The termCompare method in FuzzyTermEnum uses Levenshtein distance to
* calculate the distance between the given term and the comparing term.
*/
protected final boolean termCompare(Term term) {
if (field == term.field() && term.text().startsWith(prefix)) {
final String target = term.text().substring(prefix.length());
this.similarity = similarity(target);
return (similarity > minimumSimilarity);
} }
endEnum = true;
return false;
}
public final float difference() {
return (float)((similarity - minimumSimilarity) * scale_factor);
}
public final boolean endEnum() {
return endEnum;
}
/******************************
* Compute Levenshtein distance
******************************/
/**
* Finds and returns the smallest of three integers
*/
private static final int min(int a, int b, int c) {
final int t = (a < b) ? a : b;
return (t < c) ? t : c;
}
private final int[][] initDistanceArray(){ private final int[][] initDistanceArray(){
return new int[this.text.length() + 1][TYPICAL_LONGEST_WORD_IN_INDEX]; return new int[this.text.length() + 1][TYPICAL_LONGEST_WORD_IN_INDEX];
@ -192,81 +192,79 @@ public final class FuzzyTermEnum extends FilteredTermEnum {
* @return the similarity, 0.0 or less indicates that it matches less than the required * @return the similarity, 0.0 or less indicates that it matches less than the required
* threshold and 1.0 indicates that the text and target are identical * threshold and 1.0 indicates that the text and target are identical
*/ */
private synchronized final float similarity(final String target) { private synchronized final float similarity(final String target) {
final int m = target.length(); final int m = target.length();
final int n = text.length(); final int n = text.length();
if (n == 0) { if (n == 0) {
//we don't have antyhing to compare. That means if we just add //we don't have antyhing to compare. That means if we just add
//the letters for m we get the new word //the letters for m we get the new word
return prefix.length() == 0 ? 0.0f : 1.0f - ((float) m / prefix.length()); return prefix.length() == 0 ? 0.0f : 1.0f - ((float) m / prefix.length());
}
if (m == 0) {
return prefix.length() == 0 ? 0.0f : 1.0f - ((float) n / prefix.length());
}
final int maxDistance = getMaxDistance(m);
if (maxDistance < Math.abs(m-n)) {
//just adding the characters of m to n or vice-versa results in
//too many edits
//for example "pre" length is 3 and "prefixes" length is 8. We can see that
//given this optimal circumstance, the edit distance cannot be less than 5.
//which is 8-3 or more precisesly Math.abs(3-8).
//if our maximum edit distance is 4, than we can discard this word
//without looking at it.
return 0.0f;
}
//let's make sure we have enough room in our array to do the distance calculations.
if (d[0].length <= m) {
growDistanceArray(m);
}
// init matrix d
for (int i = 0; i <= n; i++) d[i][0] = i;
for (int j = 0; j <= m; j++) d[0][j] = j;
// start computing edit distance
for (int i = 1; i <= n; i++) {
int bestPossibleEditDistance = m;
final char s_i = text.charAt(i - 1);
for (int j = 1; j <= m; j++) {
if (s_i != target.charAt(j-1)) {
d[i][j] = min(d[i-1][j], d[i][j-1], d[i-1][j-1])+1;
}
else {
d[i][j] = min(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]);
}
bestPossibleEditDistance = Math.min(bestPossibleEditDistance, d[i][j]);
}
//After calculating row i, the best possible edit distance
//can be found by found by finding the smallest value in a given column.
//If the bestPossibleEditDistance is greater than the max distance, abort.
if (i > maxDistance && bestPossibleEditDistance > maxDistance) { //equal is okay, but not greater
//the closest the target can be to the text is just too far away.
//this target is leaving the party early.
return 0.0f;
}
}
// this will return less than 0.0 when the edit distance is
// greater than the number of characters in the shorter word.
// but this was the formula that was previously used in FuzzyTermEnum,
// so it has not been changed (even though minimumSimilarity must be
// greater than 0.0)
return 1.0f - ((float)d[n][m] / (float) (prefix.length() + Math.min(n, m)));
} }
if (m == 0) {
return prefix.length() == 0 ? 0.0f : 1.0f - ((float) n / prefix.length());
}
final int maxDistance = getMaxDistance(m);
if (maxDistance < Math.abs(m-n)) {
//just adding the characters of m to n or vice-versa results in
//too many edits
//for example "pre" length is 3 and "prefixes" length is 8. We can see that
//given this optimal circumstance, the edit distance cannot be less than 5.
//which is 8-3 or more precisesly Math.abs(3-8).
//if our maximum edit distance is 4, than we can discard this word
//without looking at it.
return 0.0f;
}
//let's make sure we have enough room in our array to do the distance calculations.
if (d[0].length <= m) {
growDistanceArray(m);
}
// init matrix d
for (int i = 0; i <= n; i++) d[i][0] = i;
for (int j = 0; j <= m; j++) d[0][j] = j;
// start computing edit distance
for (int i = 1; i <= n; i++) {
int bestPossibleEditDistance = m;
final char s_i = text.charAt(i - 1);
for (int j = 1; j <= m; j++) {
if (s_i != target.charAt(j-1)) {
d[i][j] = min(d[i-1][j], d[i][j-1], d[i-1][j-1])+1;
}
else {
d[i][j] = min(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]);
}
bestPossibleEditDistance = Math.min(bestPossibleEditDistance, d[i][j]);
}
//After calculating row i, the best possible edit distance
//can be found by found by finding the smallest value in a given column.
//If the bestPossibleEditDistance is greater than the max distance, abort.
if (i > maxDistance && bestPossibleEditDistance > maxDistance) { //equal is okay, but not greater
//the closest the target can be to the text is just too far away.
//this target is leaving the party early.
return 0.0f;
}
}
// this will return less than 0.0 when the edit distance is
// greater than the number of characters in the shorter word.
// but this was the formula that was previously used in FuzzyTermEnum,
// so it has not been changed (even though minimumSimilarity must be
// greater than 0.0)
return 1.0f - ((float)d[n][m] / (float) (prefix.length() + Math.min(n, m)));
}
/** /**
* Grow the second dimension of the array, so that we can calculate the * Grow the second dimension of the array, so that we can calculate the
* Levenshtein difference. * Levenshtein difference.
*/ */
private void growDistanceArray(int m) { private void growDistanceArray(int m) {
for (int i = 0; i < d.length; i++) for (int i = 0; i < d.length; i++) {
{
d[i] = new int[m+1]; d[i] = new int[m+1];
} }
} }
@ -283,8 +281,7 @@ public final class FuzzyTermEnum extends FilteredTermEnum {
} }
private void initializeMaxDistances() { private void initializeMaxDistances() {
for (int i = 0; i < maxDistances.length; i++) for (int i = 0; i < maxDistances.length; i++) {
{
maxDistances[i] = calculateMaxDistance(i); maxDistances[i] = calculateMaxDistance(i);
} }
} }