mirror of https://github.com/apache/lucene.git
Remove custom TermInSetQuery implementation in favor of extending MultiTermQuery (#12156)
This commit is contained in:
parent
001acaf882
commit
3809106602
|
@ -125,6 +125,10 @@ Improvements
|
|||
for multi-term queries with a FILTER rewrite (PrefixQuery, WildcardQuery, TermRangeQuery). This introduces better
|
||||
skipping support for common use-cases. (Adrien Grand, Greg Miller)
|
||||
|
||||
* GITHUB#12156: TermInSetQuery now extends MultiTermQuery instead of providing its own custom implementation (which
|
||||
was essentially a clone of MultiTermQuery#CONSTANT_SCORE_REWRITE). It uses the new CONSTANT_SCORE_BLENDED_REWRITE
|
||||
by default, but can be overridden through the constructor. (Greg Miller)
|
||||
|
||||
Optimizations
|
||||
---------------------
|
||||
|
||||
|
|
|
@ -40,7 +40,7 @@ import org.apache.lucene.util.RamUsageEstimator;
|
|||
abstract class AbstractMultiTermQueryConstantScoreWrapper<Q extends MultiTermQuery> extends Query
|
||||
implements Accountable {
|
||||
// mtq that matches 16 terms or less will be executed as a regular disjunction
|
||||
private static final int BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD = 16;
|
||||
static final int BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD = 16;
|
||||
|
||||
protected final Q query;
|
||||
|
||||
|
@ -153,12 +153,9 @@ abstract class AbstractMultiTermQueryConstantScoreWrapper<Q extends MultiTermQue
|
|||
List<TermAndState> collectedTerms)
|
||||
throws IOException;
|
||||
|
||||
private WeightOrDocIdSetIterator rewrite(LeafReaderContext context) throws IOException {
|
||||
final Terms terms = context.reader().terms(q.field);
|
||||
if (terms == null) {
|
||||
// field does not exist
|
||||
return null;
|
||||
}
|
||||
private WeightOrDocIdSetIterator rewrite(LeafReaderContext context, Terms terms)
|
||||
throws IOException {
|
||||
assert terms != null;
|
||||
|
||||
final int fieldDocCount = terms.getDocCount();
|
||||
final TermsEnum termsEnum = q.getTermsEnum(terms);
|
||||
|
@ -216,7 +213,11 @@ abstract class AbstractMultiTermQueryConstantScoreWrapper<Q extends MultiTermQue
|
|||
|
||||
@Override
|
||||
public BulkScorer bulkScorer(LeafReaderContext context) throws IOException {
|
||||
final WeightOrDocIdSetIterator weightOrIterator = rewrite(context);
|
||||
final Terms terms = context.reader().terms(q.getField());
|
||||
if (terms == null) {
|
||||
return null;
|
||||
}
|
||||
final WeightOrDocIdSetIterator weightOrIterator = rewrite(context, terms);
|
||||
if (weightOrIterator == null) {
|
||||
return null;
|
||||
} else if (weightOrIterator.weight != null) {
|
||||
|
@ -232,14 +233,11 @@ abstract class AbstractMultiTermQueryConstantScoreWrapper<Q extends MultiTermQue
|
|||
|
||||
@Override
|
||||
public Scorer scorer(LeafReaderContext context) throws IOException {
|
||||
final WeightOrDocIdSetIterator weightOrIterator = rewrite(context);
|
||||
if (weightOrIterator == null) {
|
||||
final ScorerSupplier scorerSupplier = scorerSupplier(context);
|
||||
if (scorerSupplier == null) {
|
||||
return null;
|
||||
} else if (weightOrIterator.weight != null) {
|
||||
return weightOrIterator.weight.scorer(context);
|
||||
} else {
|
||||
return scorerForIterator(weightOrIterator.iterator);
|
||||
}
|
||||
return scorerSupplier.get(Long.MAX_VALUE);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -255,6 +253,72 @@ abstract class AbstractMultiTermQueryConstantScoreWrapper<Q extends MultiTermQue
|
|||
context, doc, q, q.field, q.getTermsEnum(terms)));
|
||||
}
|
||||
|
||||
@Override
|
||||
public ScorerSupplier scorerSupplier(LeafReaderContext context) throws IOException {
|
||||
final Terms terms = context.reader().terms(q.getField());
|
||||
if (terms == null) {
|
||||
return null;
|
||||
}
|
||||
|
||||
final long cost = estimateCost(terms, q.getTermsCount());
|
||||
|
||||
final Weight weight = this;
|
||||
return new ScorerSupplier() {
|
||||
@Override
|
||||
public Scorer get(long leadCost) throws IOException {
|
||||
WeightOrDocIdSetIterator weightOrIterator = rewrite(context, terms);
|
||||
final Scorer scorer;
|
||||
if (weightOrIterator == null) {
|
||||
scorer = null;
|
||||
} else if (weightOrIterator.weight != null) {
|
||||
scorer = weightOrIterator.weight.scorer(context);
|
||||
} else {
|
||||
scorer = scorerForIterator(weightOrIterator.iterator);
|
||||
}
|
||||
|
||||
// It's against the API contract to return a null scorer from a non-null ScoreSupplier.
|
||||
// So if our ScoreSupplier was non-null (i.e., thought there might be hits) but we now
|
||||
// find that there are actually no hits, we need to return an empty Scorer as opposed
|
||||
// to null:
|
||||
return Objects.requireNonNullElseGet(
|
||||
scorer,
|
||||
() -> new ConstantScoreScorer(weight, score(), scoreMode, DocIdSetIterator.empty()));
|
||||
}
|
||||
|
||||
@Override
|
||||
public long cost() {
|
||||
return cost;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
private static long estimateCost(Terms terms, long queryTermsCount) throws IOException {
|
||||
// Estimate the cost. If the MTQ can provide its term count, we can do a better job
|
||||
// estimating.
|
||||
// Cost estimation reasoning is:
|
||||
// 1. If we don't know how many query terms there are, we assume that every term could be
|
||||
// in the MTQ and estimate the work as the total docs across all terms.
|
||||
// 2. If we know how many query terms there are...
|
||||
// 2a. Assume every query term matches at least one document (queryTermsCount).
|
||||
// 2b. Determine the total number of docs beyond the first one for each term.
|
||||
// That count provides a ceiling on the number of extra docs that could match beyond
|
||||
// that first one. (We omit the first since it's already been counted in 2a).
|
||||
// See: LUCENE-10207
|
||||
long cost;
|
||||
if (queryTermsCount == -1) {
|
||||
cost = terms.getSumDocFreq();
|
||||
} else {
|
||||
long potentialExtraCost = terms.getSumDocFreq();
|
||||
final long indexedTermCount = terms.size();
|
||||
if (indexedTermCount != -1) {
|
||||
potentialExtraCost -= indexedTermCount;
|
||||
}
|
||||
cost = queryTermsCount + potentialExtraCost;
|
||||
}
|
||||
|
||||
return cost;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean isCacheable(LeafReaderContext ctx) {
|
||||
return true;
|
||||
|
|
|
@ -513,7 +513,8 @@ final class BooleanWeight extends Weight {
|
|||
|
||||
@Override
|
||||
public boolean isCacheable(LeafReaderContext ctx) {
|
||||
if (query.clauses().size() > TermInSetQuery.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD) {
|
||||
if (query.clauses().size()
|
||||
> AbstractMultiTermQueryConstantScoreWrapper.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD) {
|
||||
// Disallow caching large boolean queries to not encourage users
|
||||
// to build large boolean queries as a workaround to the fact that
|
||||
// we disallow caching large TermInSetQueries.
|
||||
|
|
|
@ -151,7 +151,8 @@ public final class DisjunctionMaxQuery extends Query implements Iterable<Query>
|
|||
|
||||
@Override
|
||||
public boolean isCacheable(LeafReaderContext ctx) {
|
||||
if (weights.size() > TermInSetQuery.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD) {
|
||||
if (weights.size()
|
||||
> AbstractMultiTermQueryConstantScoreWrapper.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD) {
|
||||
// Disallow caching large dismax queries to not encourage users
|
||||
// to build large dismax queries as a workaround to the fact that
|
||||
// we disallow caching large TermInSetQueries.
|
||||
|
|
|
@ -295,6 +295,14 @@ public abstract class MultiTermQuery extends Query {
|
|||
return getTermsEnum(terms, new AttributeSource());
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the number of unique terms contained in this query, if known up-front. If not known, -1
|
||||
* will be returned.
|
||||
*/
|
||||
public long getTermsCount() throws IOException {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* To rewrite to a simpler form, instead return a simpler enum from {@link #getTermsEnum(Terms,
|
||||
* AttributeSource)}. For example, to rewrite to a single term, return a {@link SingleTermsEnum}
|
||||
|
|
|
@ -22,24 +22,18 @@ import java.util.Arrays;
|
|||
import java.util.Collection;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
import java.util.SortedSet;
|
||||
import org.apache.lucene.index.LeafReader;
|
||||
import org.apache.lucene.index.LeafReaderContext;
|
||||
import org.apache.lucene.index.PostingsEnum;
|
||||
import org.apache.lucene.index.FilteredTermsEnum;
|
||||
import org.apache.lucene.index.PrefixCodedTerms;
|
||||
import org.apache.lucene.index.PrefixCodedTerms.TermIterator;
|
||||
import org.apache.lucene.index.Term;
|
||||
import org.apache.lucene.index.TermState;
|
||||
import org.apache.lucene.index.TermStates;
|
||||
import org.apache.lucene.index.Terms;
|
||||
import org.apache.lucene.index.TermsEnum;
|
||||
import org.apache.lucene.search.BooleanClause.Occur;
|
||||
import org.apache.lucene.util.Accountable;
|
||||
import org.apache.lucene.util.ArrayUtil;
|
||||
import org.apache.lucene.util.AttributeSource;
|
||||
import org.apache.lucene.util.BytesRef;
|
||||
import org.apache.lucene.util.BytesRefBuilder;
|
||||
import org.apache.lucene.util.DocIdSetBuilder;
|
||||
import org.apache.lucene.util.RamUsageEstimator;
|
||||
import org.apache.lucene.util.automaton.Automata;
|
||||
import org.apache.lucene.util.automaton.Automaton;
|
||||
|
@ -48,8 +42,8 @@ import org.apache.lucene.util.automaton.CompiledAutomaton;
|
|||
import org.apache.lucene.util.automaton.Operations;
|
||||
|
||||
/**
|
||||
* Specialization for a disjunction over many terms that behaves like a {@link ConstantScoreQuery}
|
||||
* over a {@link BooleanQuery} containing only {@link
|
||||
* Specialization for a disjunction over many terms that, by default, behaves like a {@link
|
||||
* ConstantScoreQuery} over a {@link BooleanQuery} containing only {@link
|
||||
* org.apache.lucene.search.BooleanClause.Occur#SHOULD} clauses.
|
||||
*
|
||||
* <p>For instance in the following example, both {@code q1} and {@code q2} would yield the same
|
||||
|
@ -64,30 +58,62 @@ import org.apache.lucene.util.automaton.Operations;
|
|||
* Query q2 = new ConstantScoreQuery(bq);
|
||||
* </pre>
|
||||
*
|
||||
* <p>When there are few terms, this query executes like a regular disjunction. However, when there
|
||||
* are many terms, instead of merging iterators on the fly, it will populate a bit set with matching
|
||||
* docs and return a {@link Scorer} over this bit set.
|
||||
* <p>Unless a custom {@link MultiTermQuery.RewriteMethod} is provided, this query executes like a
|
||||
* regular disjunction where there are few terms. However, when there are many terms, instead of
|
||||
* merging iterators on the fly, it will populate a bit set with matching docs for the least-costly
|
||||
* terms and maintain a size-limited set of more costly iterators that are merged on the fly. For
|
||||
* more details, see {@link MultiTermQuery#CONSTANT_SCORE_BLENDED_REWRITE}.
|
||||
*
|
||||
* <p>Users may also provide a custom {@link MultiTermQuery.RewriteMethod} to define different
|
||||
* execution behavior, such as relying on doc values (see: {@link DocValuesRewriteMethod}), or if
|
||||
* scores are required (see: {@link MultiTermQuery#SCORING_BOOLEAN_REWRITE}). See {@link
|
||||
* MultiTermQuery} documentation for more rewrite options.
|
||||
*
|
||||
* <p>NOTE: This query produces scores that are equal to its boost
|
||||
*/
|
||||
public class TermInSetQuery extends Query implements Accountable {
|
||||
public class TermInSetQuery extends MultiTermQuery implements Accountable {
|
||||
|
||||
private static final long BASE_RAM_BYTES_USED =
|
||||
RamUsageEstimator.shallowSizeOfInstance(TermInSetQuery.class);
|
||||
// Same threshold as MultiTermQueryConstantScoreWrapper
|
||||
static final int BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD = 16;
|
||||
|
||||
private final String field;
|
||||
private final PrefixCodedTerms termData;
|
||||
private final int termDataHashCode; // cached hashcode of termData
|
||||
|
||||
/** Creates a new {@link TermInSetQuery} from the given collection of terms. */
|
||||
public TermInSetQuery(String field, Collection<BytesRef> terms) {
|
||||
this(field, packTerms(field, terms));
|
||||
}
|
||||
|
||||
public TermInSetQuery(String field, BytesRef... terms) {
|
||||
this(field, packTerms(field, Arrays.asList(terms)));
|
||||
}
|
||||
|
||||
/** Creates a new {@link TermInSetQuery} from the given collection of terms. */
|
||||
public TermInSetQuery(RewriteMethod rewriteMethod, String field, Collection<BytesRef> terms) {
|
||||
super(field, rewriteMethod);
|
||||
this.field = field;
|
||||
this.termData = packTerms(field, terms);
|
||||
termDataHashCode = termData.hashCode();
|
||||
}
|
||||
|
||||
/** Creates a new {@link TermInSetQuery} from the given array of terms. */
|
||||
public TermInSetQuery(RewriteMethod rewriteMethod, String field, BytesRef... terms) {
|
||||
this(rewriteMethod, field, Arrays.asList(terms));
|
||||
}
|
||||
|
||||
private TermInSetQuery(String field, PrefixCodedTerms termData) {
|
||||
super(field, MultiTermQuery.CONSTANT_SCORE_BLENDED_REWRITE);
|
||||
this.field = field;
|
||||
this.termData = termData;
|
||||
termDataHashCode = termData.hashCode();
|
||||
}
|
||||
|
||||
private static PrefixCodedTerms packTerms(String field, Collection<BytesRef> terms) {
|
||||
BytesRef[] sortedTerms = terms.toArray(new BytesRef[0]);
|
||||
// already sorted if we are a SortedSet with natural order
|
||||
boolean sorted =
|
||||
terms instanceof SortedSet && ((SortedSet<BytesRef>) terms).comparator() == null;
|
||||
if (!sorted) {
|
||||
if (sorted == false) {
|
||||
ArrayUtil.timSort(sortedTerms);
|
||||
}
|
||||
PrefixCodedTerms.Builder builder = new PrefixCodedTerms.Builder();
|
||||
|
@ -101,29 +127,13 @@ public class TermInSetQuery extends Query implements Accountable {
|
|||
builder.add(field, term);
|
||||
previous.copyBytes(term);
|
||||
}
|
||||
this.field = field;
|
||||
termData = builder.finish();
|
||||
termDataHashCode = termData.hashCode();
|
||||
}
|
||||
|
||||
/** Creates a new {@link TermInSetQuery} from the given array of terms. */
|
||||
public TermInSetQuery(String field, BytesRef... terms) {
|
||||
this(field, Arrays.asList(terms));
|
||||
return builder.finish();
|
||||
}
|
||||
|
||||
@Override
|
||||
public Query rewrite(IndexSearcher indexSearcher) throws IOException {
|
||||
final int threshold =
|
||||
Math.min(BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD, IndexSearcher.getMaxClauseCount());
|
||||
if (termData.size() <= threshold) {
|
||||
BooleanQuery.Builder bq = new BooleanQuery.Builder();
|
||||
TermIterator iterator = termData.iterator();
|
||||
for (BytesRef term = iterator.next(); term != null; term = iterator.next()) {
|
||||
bq.add(new TermQuery(new Term(iterator.field(), BytesRef.deepCopyOf(term))), Occur.SHOULD);
|
||||
}
|
||||
return new ConstantScoreQuery(bq.build());
|
||||
}
|
||||
return super.rewrite(indexSearcher);
|
||||
public long getTermsCount() throws IOException {
|
||||
return termData.size();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -203,233 +213,52 @@ public class TermInSetQuery extends Query implements Accountable {
|
|||
return Collections.emptyList();
|
||||
}
|
||||
|
||||
private static class TermAndState {
|
||||
final String field;
|
||||
final TermsEnum termsEnum;
|
||||
final BytesRef term;
|
||||
final TermState state;
|
||||
final int docFreq;
|
||||
final long totalTermFreq;
|
||||
|
||||
TermAndState(String field, TermsEnum termsEnum) throws IOException {
|
||||
this.field = field;
|
||||
this.termsEnum = termsEnum;
|
||||
this.term = BytesRef.deepCopyOf(termsEnum.term());
|
||||
this.state = termsEnum.termState();
|
||||
this.docFreq = termsEnum.docFreq();
|
||||
this.totalTermFreq = termsEnum.totalTermFreq();
|
||||
}
|
||||
}
|
||||
|
||||
private static class WeightOrDocIdSet {
|
||||
final Weight weight;
|
||||
final DocIdSet set;
|
||||
|
||||
WeightOrDocIdSet(Weight weight) {
|
||||
this.weight = Objects.requireNonNull(weight);
|
||||
this.set = null;
|
||||
}
|
||||
|
||||
WeightOrDocIdSet(DocIdSet bitset) {
|
||||
this.set = bitset;
|
||||
this.weight = null;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public Weight createWeight(IndexSearcher searcher, ScoreMode scoreMode, float boost)
|
||||
throws IOException {
|
||||
return new ConstantScoreWeight(this, boost) {
|
||||
|
||||
@Override
|
||||
public Matches matches(LeafReaderContext context, int doc) throws IOException {
|
||||
Terms terms = Terms.getTerms(context.reader(), field);
|
||||
if (terms.hasPositions() == false) {
|
||||
return super.matches(context, doc);
|
||||
}
|
||||
return MatchesUtils.forField(
|
||||
field,
|
||||
() ->
|
||||
DisjunctionMatchesIterator.fromTermsEnum(
|
||||
context, doc, getQuery(), field, termData.iterator()));
|
||||
protected TermsEnum getTermsEnum(Terms terms, AttributeSource atts) throws IOException {
|
||||
return new SetEnum(terms.iterator());
|
||||
}
|
||||
|
||||
/**
|
||||
* On the given leaf context, try to either rewrite to a disjunction if there are few matching
|
||||
* terms, or build a bitset containing matching docs.
|
||||
* Like a baby {@link org.apache.lucene.index.AutomatonTermsEnum}, ping-pong intersects the terms
|
||||
* dict against our encoded query terms.
|
||||
*/
|
||||
private WeightOrDocIdSet rewrite(LeafReaderContext context) throws IOException {
|
||||
final LeafReader reader = context.reader();
|
||||
private class SetEnum extends FilteredTermsEnum {
|
||||
private final TermIterator iterator;
|
||||
private BytesRef seekTerm;
|
||||
|
||||
Terms terms = reader.terms(field);
|
||||
if (terms == null) {
|
||||
return null;
|
||||
}
|
||||
final int fieldDocCount = terms.getDocCount();
|
||||
TermsEnum termsEnum = terms.iterator();
|
||||
PostingsEnum docs = null;
|
||||
TermIterator iterator = termData.iterator();
|
||||
|
||||
// We will first try to collect up to 'threshold' terms into 'matchingTerms'
|
||||
// if there are too many terms, we will fall back to building the 'builder'
|
||||
final int threshold =
|
||||
Math.min(BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD, IndexSearcher.getMaxClauseCount());
|
||||
assert termData.size() > threshold : "Query should have been rewritten";
|
||||
List<TermAndState> matchingTerms = new ArrayList<>(threshold);
|
||||
DocIdSetBuilder builder = null;
|
||||
|
||||
for (BytesRef term = iterator.next(); term != null; term = iterator.next()) {
|
||||
assert field.equals(iterator.field());
|
||||
if (termsEnum.seekExact(term)) {
|
||||
// If a term contains all docs with a value for the specified field (likely rare),
|
||||
// we can discard the other terms and just use the dense term's postings:
|
||||
int docFreq = termsEnum.docFreq();
|
||||
if (fieldDocCount == docFreq) {
|
||||
TermStates termStates = new TermStates(searcher.getTopReaderContext());
|
||||
termStates.register(
|
||||
termsEnum.termState(), context.ord, docFreq, termsEnum.totalTermFreq());
|
||||
Query q =
|
||||
new ConstantScoreQuery(
|
||||
new TermQuery(new Term(field, termsEnum.term()), termStates));
|
||||
Weight weight = searcher.rewrite(q).createWeight(searcher, scoreMode, score());
|
||||
return new WeightOrDocIdSet(weight);
|
||||
SetEnum(TermsEnum termsEnum) {
|
||||
super(termsEnum);
|
||||
iterator = termData.iterator();
|
||||
seekTerm = iterator.next();
|
||||
}
|
||||
|
||||
if (matchingTerms == null) {
|
||||
docs = termsEnum.postings(docs, PostingsEnum.NONE);
|
||||
builder.add(docs);
|
||||
} else if (matchingTerms.size() < threshold) {
|
||||
matchingTerms.add(new TermAndState(field, termsEnum));
|
||||
@Override
|
||||
protected AcceptStatus accept(BytesRef term) throws IOException {
|
||||
// next() our iterator until it is >= the incoming term
|
||||
// if it matches exactly, it's a hit, otherwise it's a miss
|
||||
int cmp = 0;
|
||||
while (seekTerm != null && (cmp = seekTerm.compareTo(term)) < 0) {
|
||||
seekTerm = iterator.next();
|
||||
}
|
||||
if (seekTerm == null) {
|
||||
return AcceptStatus.END;
|
||||
} else if (cmp == 0) {
|
||||
return AcceptStatus.YES_AND_SEEK;
|
||||
} else {
|
||||
assert matchingTerms.size() == threshold;
|
||||
builder = new DocIdSetBuilder(reader.maxDoc(), terms);
|
||||
docs = termsEnum.postings(docs, PostingsEnum.NONE);
|
||||
builder.add(docs);
|
||||
for (TermAndState t : matchingTerms) {
|
||||
t.termsEnum.seekExact(t.term, t.state);
|
||||
docs = t.termsEnum.postings(docs, PostingsEnum.NONE);
|
||||
builder.add(docs);
|
||||
}
|
||||
matchingTerms = null;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (matchingTerms != null) {
|
||||
assert builder == null;
|
||||
BooleanQuery.Builder bq = new BooleanQuery.Builder();
|
||||
for (TermAndState t : matchingTerms) {
|
||||
final TermStates termStates = new TermStates(searcher.getTopReaderContext());
|
||||
termStates.register(t.state, context.ord, t.docFreq, t.totalTermFreq);
|
||||
bq.add(new TermQuery(new Term(t.field, t.term), termStates), Occur.SHOULD);
|
||||
}
|
||||
Query q = new ConstantScoreQuery(bq.build());
|
||||
final Weight weight = searcher.rewrite(q).createWeight(searcher, scoreMode, score());
|
||||
return new WeightOrDocIdSet(weight);
|
||||
} else {
|
||||
assert builder != null;
|
||||
return new WeightOrDocIdSet(builder.build());
|
||||
}
|
||||
}
|
||||
|
||||
private Scorer scorer(DocIdSet set) throws IOException {
|
||||
if (set == null) {
|
||||
return null;
|
||||
}
|
||||
final DocIdSetIterator disi = set.iterator();
|
||||
if (disi == null) {
|
||||
return null;
|
||||
}
|
||||
return new ConstantScoreScorer(this, score(), scoreMode, disi);
|
||||
}
|
||||
|
||||
@Override
|
||||
public BulkScorer bulkScorer(LeafReaderContext context) throws IOException {
|
||||
final WeightOrDocIdSet weightOrBitSet = rewrite(context);
|
||||
if (weightOrBitSet == null) {
|
||||
return null;
|
||||
} else if (weightOrBitSet.weight != null) {
|
||||
return weightOrBitSet.weight.bulkScorer(context);
|
||||
} else {
|
||||
final Scorer scorer = scorer(weightOrBitSet.set);
|
||||
if (scorer == null) {
|
||||
return null;
|
||||
}
|
||||
return new DefaultBulkScorer(scorer);
|
||||
return AcceptStatus.NO_AND_SEEK;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public ScorerSupplier scorerSupplier(LeafReaderContext context) throws IOException {
|
||||
Terms indexTerms = context.reader().terms(field);
|
||||
if (indexTerms == null) {
|
||||
return null;
|
||||
protected BytesRef nextSeekTerm(BytesRef currentTerm) throws IOException {
|
||||
// next() our iterator until it is > the currentTerm, must always make progress.
|
||||
if (currentTerm == null) {
|
||||
return seekTerm;
|
||||
}
|
||||
|
||||
// Cost estimation reasoning is:
|
||||
// 1. Assume every query term matches at least one document (queryTermsCount).
|
||||
// 2. Determine the total number of docs beyond the first one for each term.
|
||||
// That count provides a ceiling on the number of extra docs that could match beyond
|
||||
// that first one. (We omit the first since it's already been counted in #1).
|
||||
// This approach still provides correct worst-case cost in general, but provides tighter
|
||||
// estimates for primary-key-like fields. See: LUCENE-10207
|
||||
|
||||
// TODO: This cost estimation may grossly overestimate since we have no index statistics
|
||||
// for the specific query terms. While it's nice to avoid the cost of intersecting the
|
||||
// query terms with the index, it could be beneficial to do that work and get better
|
||||
// cost estimates.
|
||||
final long cost;
|
||||
final long queryTermsCount = termData.size();
|
||||
long potentialExtraCost = indexTerms.getSumDocFreq();
|
||||
final long indexedTermCount = indexTerms.size();
|
||||
if (indexedTermCount != -1) {
|
||||
potentialExtraCost -= indexedTermCount;
|
||||
while (seekTerm != null && seekTerm.compareTo(currentTerm) <= 0) {
|
||||
seekTerm = iterator.next();
|
||||
}
|
||||
return seekTerm;
|
||||
}
|
||||
cost = queryTermsCount + potentialExtraCost;
|
||||
|
||||
final Weight weight = this;
|
||||
return new ScorerSupplier() {
|
||||
@Override
|
||||
public Scorer get(long leadCost) throws IOException {
|
||||
WeightOrDocIdSet weightOrDocIdSet = rewrite(context);
|
||||
final Scorer scorer;
|
||||
if (weightOrDocIdSet == null) {
|
||||
scorer = null;
|
||||
} else if (weightOrDocIdSet.weight != null) {
|
||||
scorer = weightOrDocIdSet.weight.scorer(context);
|
||||
} else {
|
||||
scorer = scorer(weightOrDocIdSet.set);
|
||||
}
|
||||
|
||||
return Objects.requireNonNullElseGet(
|
||||
scorer,
|
||||
() ->
|
||||
new ConstantScoreScorer(weight, score(), scoreMode, DocIdSetIterator.empty()));
|
||||
}
|
||||
|
||||
@Override
|
||||
public long cost() {
|
||||
return cost;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
@Override
|
||||
public Scorer scorer(LeafReaderContext context) throws IOException {
|
||||
final ScorerSupplier supplier = scorerSupplier(context);
|
||||
if (supplier == null) {
|
||||
return null;
|
||||
}
|
||||
return supplier.get(Long.MAX_VALUE);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean isCacheable(LeafReaderContext ctx) {
|
||||
// Only cache instances that have a reasonable size. Otherwise it might cause memory issues
|
||||
// with the query cache if most memory ends up being spent on queries rather than doc id
|
||||
// sets.
|
||||
return ramBytesUsed() <= RamUsageEstimator.QUERY_DEFAULT_RAM_BYTES_USED;
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
|
|
@ -59,10 +59,12 @@ public class TestTermInSetQuery extends LuceneTestCase {
|
|||
BytesRef denseTerm = new BytesRef(TestUtil.randomAnalysisString(random(), 10, true));
|
||||
|
||||
Set<BytesRef> randomTerms = new HashSet<>();
|
||||
while (randomTerms.size() < TermInSetQuery.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD) {
|
||||
while (randomTerms.size()
|
||||
< AbstractMultiTermQueryConstantScoreWrapper.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD) {
|
||||
randomTerms.add(new BytesRef(TestUtil.randomAnalysisString(random(), 10, true)));
|
||||
}
|
||||
assert randomTerms.size() == TermInSetQuery.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD;
|
||||
assert randomTerms.size()
|
||||
== AbstractMultiTermQueryConstantScoreWrapper.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD;
|
||||
BytesRef[] otherTerms = new BytesRef[randomTerms.size()];
|
||||
int idx = 0;
|
||||
for (BytesRef term : randomTerms) {
|
||||
|
@ -325,7 +327,10 @@ public class TestTermInSetQuery extends LuceneTestCase {
|
|||
final List<BytesRef> terms = new ArrayList<>();
|
||||
// enough terms to avoid the rewrite
|
||||
final int numTerms =
|
||||
TestUtil.nextInt(random(), TermInSetQuery.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD + 1, 100);
|
||||
TestUtil.nextInt(
|
||||
random(),
|
||||
AbstractMultiTermQueryConstantScoreWrapper.BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD + 1,
|
||||
100);
|
||||
for (int i = 0; i < numTerms; ++i) {
|
||||
final BytesRef term = newBytesRef(RandomStrings.randomUnicodeOfCodepointLength(random(), 10));
|
||||
terms.add(term);
|
||||
|
|
|
@ -94,6 +94,11 @@ class TermsQuery extends MultiTermQuery implements Accountable {
|
|||
return new SeekingTermSetTermsEnum(terms.iterator(), this.terms, ords);
|
||||
}
|
||||
|
||||
@Override
|
||||
public long getTermsCount() throws IOException {
|
||||
return terms.size();
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString(String string) {
|
||||
return "TermsQuery{" + "field=" + field + "fromQuery=" + fromQuery.toString(field) + '}';
|
||||
|
|
|
@ -46,8 +46,8 @@ public class TestPresearcherMatchCollector extends MonitorTestBase {
|
|||
|
||||
assertNotNull(matches.match("2", 0));
|
||||
String pm = matches.match("2", 0).presearcherMatches;
|
||||
assertThat(pm, containsString("field:foo"));
|
||||
assertThat(pm, containsString("f2:quuz"));
|
||||
assertThat(pm, containsString("field:(foo test)"));
|
||||
assertThat(pm, containsString("f2:(quuz)"));
|
||||
|
||||
assertNotNull(matches.match("3", 0));
|
||||
assertEquals(" field:foo", matches.match("3", 0).presearcherMatches);
|
||||
|
|
Loading…
Reference in New Issue