mirror of https://github.com/apache/lucene.git
remove old benchmarks page from site
git-svn-id: https://svn.apache.org/repos/asf/lucene/java/trunk@808055 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
e639f45cff
commit
491a92a6e1
|
@ -1,525 +0,0 @@
|
|||
<?xml version="1.0"?>
|
||||
<document>
|
||||
<header>
|
||||
<title>Apache Lucene - Resources - Performance Benchmarks</title>
|
||||
</header>
|
||||
<properties>
|
||||
<author email="kelvint@apache.org">Kelvin Tan</author>
|
||||
|
||||
</properties>
|
||||
<body>
|
||||
|
||||
<section id="Performance Benchmarks"><title>Performance Benchmarks</title>
|
||||
<p>
|
||||
The purpose of these user-submitted performance figures is to
|
||||
give current and potential users of Lucene a sense
|
||||
of how well Lucene scales. If the requirements for an upcoming
|
||||
project is similar to an existing benchmark, you
|
||||
will also have something to work with when designing the system
|
||||
architecture for the application.
|
||||
</p>
|
||||
<p>
|
||||
If you've conducted performance tests with Lucene, we'd
|
||||
appreciate if you can submit these figures for display
|
||||
on this page. Post these figures to the lucene-user mailing list
|
||||
using this
|
||||
<a href="benchmarktemplate.xml">template</a>.
|
||||
</p>
|
||||
</section>
|
||||
|
||||
<section id="Benchmark Variables"><title>Benchmark Variables</title>
|
||||
<p>
|
||||
<ul>
|
||||
<p>
|
||||
<b>Hardware Environment</b><br/>
|
||||
<li><i>Dedicated machine for indexing</i>: Self-explanatory
|
||||
(yes/no)</li>
|
||||
<li><i>CPU</i>: Self-explanatory (Type, Speed and Quantity)</li>
|
||||
<li><i>RAM</i>: Self-explanatory</li>
|
||||
<li><i>Drive configuration</i>: Self-explanatory (IDE, SCSI,
|
||||
RAID-1, RAID-5)</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Software environment</b><br/>
|
||||
<li><i>Lucene Version</i>: Self-explanatory</li>
|
||||
<li><i>Java Version</i>: Version of Java SDK/JRE that is run
|
||||
</li>
|
||||
<li><i>Java VM</i>: Server/client VM, Sun VM/JRockIt</li>
|
||||
<li><i>OS Version</i>: Self-explanatory</li>
|
||||
<li><i>Location of index</i>: Is the index stored in filesystem
|
||||
or database? Is it on the same server(local) or
|
||||
over the network?</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Lucene indexing variables</b><br/>
|
||||
<li><i>Number of source documents</i>: Number of documents being
|
||||
indexed</li>
|
||||
<li><i>Total filesize of source documents</i>:
|
||||
Self-explanatory</li>
|
||||
<li><i>Average filesize of source documents</i>:
|
||||
Self-explanatory</li>
|
||||
<li><i>Source documents storage location</i>: Where are the
|
||||
documents being indexed located?
|
||||
Filesystem, DB, http, etc.</li>
|
||||
<li><i>File type of source documents</i>: Types of files being
|
||||
indexed, e.g. HTML files, XML files, PDF files, etc.</li>
|
||||
<li><i>Parser(s) used, if any</i>: Parsers used for parsing the
|
||||
various files for indexing,
|
||||
e.g. XML parser, HTML parser, etc.</li>
|
||||
<li><i>Analyzer(s) used</i>: Type of Lucene analyzer used</li>
|
||||
<li><i>Number of fields per document</i>: Number of Fields each
|
||||
Document contains</li>
|
||||
<li><i>Type of fields</i>: Type of each field</li>
|
||||
<li><i>Index persistence</i>: Where the index is stored, e.g.
|
||||
FSDirectory, SqlDirectory, etc.</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Figures</b><br/>
|
||||
<li><i>Time taken (in ms/s as an average of at least 3 indexing
|
||||
runs)</i>: Time taken to index all files</li>
|
||||
<li><i>Time taken / 1000 docs indexed</i>: Time taken to index
|
||||
1000 files</li>
|
||||
<li><i>Memory consumption</i>: Self-explanatory</li>
|
||||
<li><i>Query speed</i>: average time a query takes, type
|
||||
of queries (e.g. simple one-term query, phrase query),
|
||||
not measuring any overhead outside Lucene</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Notes</b><br/>
|
||||
<li><i>Notes</i>: Any comments which don't belong in the above,
|
||||
special tuning/strategies, etc.</li>
|
||||
</p>
|
||||
</ul>
|
||||
</p>
|
||||
</section>
|
||||
|
||||
<section id="User-submitted Benchmarks"><title>User-submitted Benchmarks</title>
|
||||
<p>
|
||||
These benchmarks have been kindly submitted by Lucene users for
|
||||
reference purposes.
|
||||
</p>
|
||||
<p><b>We make NO guarantees regarding their accuracy or
|
||||
validity.</b>
|
||||
</p>
|
||||
<p>We strongly recommend you conduct your own
|
||||
performance benchmarks before deciding on a particular
|
||||
hardware/software setup (and hopefully submit
|
||||
these figures to us).
|
||||
</p>
|
||||
|
||||
<section id="Hamish Carpenter's benchmarks"><title>Hamish Carpenter's benchmarks</title>
|
||||
<ul>
|
||||
<p>
|
||||
<b>Hardware Environment</b><br/>
|
||||
<li><i>Dedicated machine for indexing</i>: yes</li>
|
||||
<li><i>CPU</i>: Intel x86 P4 1.5Ghz</li>
|
||||
<li><i>RAM</i>: 512 DDR</li>
|
||||
<li><i>Drive configuration</i>: IDE 7200rpm Raid-1</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Software environment</b><br/>
|
||||
<li><i>Lucene Version</i>: 1.3</li>
|
||||
<li><i>Java Version</i>: 1.3.1 IBM JITC Enabled</li>
|
||||
<li><i>Java VM</i>: </li>
|
||||
<li><i>OS Version</i>: Debian Linux 2.4.18-686</li>
|
||||
<li><i>Location of index</i>: local</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Lucene indexing variables</b><br/>
|
||||
<li><i>Number of source documents</i>: Random generator. Set
|
||||
to make 1M documents
|
||||
in 2x500,000 batches.</li>
|
||||
<li><i>Total filesize of source documents</i>: > 1GB if
|
||||
stored</li>
|
||||
<li><i>Average filesize of source documents</i>: 1KB</li>
|
||||
<li><i>Source documents storage location</i>: Filesystem</li>
|
||||
<li><i>File type of source documents</i>: Generated</li>
|
||||
<li><i>Parser(s) used, if any</i>: </li>
|
||||
<li><i>Analyzer(s) used</i>: Default</li>
|
||||
<li><i>Number of fields per document</i>: 11</li>
|
||||
<li><i>Type of fields</i>: 1 date, 1 id, 9 text</li>
|
||||
<li><i>Index persistence</i>: FSDirectory</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Figures</b><br/>
|
||||
<li><i>Time taken (in ms/s as an average of at least 3
|
||||
indexing runs)</i>: </li>
|
||||
<li><i>Time taken / 1000 docs indexed</i>: 49 seconds</li>
|
||||
<li><i>Memory consumption</i>:</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Notes</b><br/>
|
||||
<p>
|
||||
A windows client ran a random document generator which
|
||||
created
|
||||
documents based on some arrays of values and an excerpt
|
||||
(approx 1kb)
|
||||
from a text file of the bible (King James version).<br/>
|
||||
These were submitted via a socket connection (open throughout
|
||||
indexing process).<br/>
|
||||
The index writer was not closed between index calls.<br/>
|
||||
This created a 400Mb index in 23 files (after
|
||||
optimization).<br/>
|
||||
</p>
|
||||
<p>
|
||||
<u>Query details</u>:<br/>
|
||||
</p>
|
||||
<p>
|
||||
Set up a threaded class to start x number of simultaneous
|
||||
threads to
|
||||
search the above created index.
|
||||
</p>
|
||||
<p>
|
||||
Query: +Domain:sos +(+((Name:goo*^2.0 Name:plan*^2.0)
|
||||
(Teaser:goo* Tea
|
||||
ser:plan*) (Details:goo* Details:plan*)) -Cancel:y)
|
||||
+DisplayStartDate:[mkwsw2jk0
|
||||
-mq3dj1uq0] +EndDate:[mq3dj1uq0-ntlxuggw0]
|
||||
</p>
|
||||
<p>
|
||||
This query counted 34000 documents and I limited the returned
|
||||
documents
|
||||
to 5.
|
||||
</p>
|
||||
<p>
|
||||
This is using Peter Halacsy's IndexSearcherCache slightly
|
||||
modified to
|
||||
be a singleton returned cached searchers for a given
|
||||
directory. This
|
||||
solved an initial problem with too many files open and
|
||||
running out of
|
||||
linux handles for them.
|
||||
</p>
|
||||
<pre>
|
||||
Threads|Avg Time per query (ms)
|
||||
1 1009ms
|
||||
2 2043ms
|
||||
3 3087ms
|
||||
4 4045ms
|
||||
.. .
|
||||
.. .
|
||||
10 10091ms
|
||||
</pre>
|
||||
<p>
|
||||
I removed the two date range terms from the query and it made
|
||||
a HUGE
|
||||
difference in performance. With 4 threads the avg time
|
||||
dropped to 900ms!
|
||||
</p>
|
||||
<p>Other query optimizations made little difference.</p>
|
||||
</p>
|
||||
</ul>
|
||||
<p>
|
||||
Hamish can be contacted at hamish at catalyst.net.nz.
|
||||
</p>
|
||||
</section>
|
||||
|
||||
<section id="Justin Greene's benchmarks"><title>Justin Greene's benchmarks</title>
|
||||
<ul>
|
||||
<p>
|
||||
<b>Hardware Environment</b><br/>
|
||||
<li><i>Dedicated machine for indexing</i>: No, but nominal
|
||||
usage at time of indexing.</li>
|
||||
<li><i>CPU</i>: Compaq Proliant 1850R/600 2 X pIII 600</li>
|
||||
<li><i>RAM</i>: 1GB, 256MB allocated to JVM.</li>
|
||||
<li><i>Drive configuration</i>: RAID 5 on Fibre Channel
|
||||
Array</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Software environment</b><br/>
|
||||
<li><i>Java Version</i>: 1.3.1_06</li>
|
||||
<li><i>Java VM</i>: </li>
|
||||
<li><i>OS Version</i>: Winnt 4/Sp6</li>
|
||||
<li><i>Location of index</i>: local</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Lucene indexing variables</b><br/>
|
||||
<li><i>Number of source documents</i>: about 60K</li>
|
||||
<li><i>Total filesize of source documents</i>: 6.5GB</li>
|
||||
<li><i>Average filesize of source documents</i>: 100K
|
||||
(6.5GB/60K documents)</li>
|
||||
<li><i>Source documents storage location</i>: filesystem on
|
||||
NTFS</li>
|
||||
<li><i>File type of source documents</i>: </li>
|
||||
<li><i>Parser(s) used, if any</i>: Currently the only parser
|
||||
used is the Quiotix html
|
||||
parser.</li>
|
||||
<li><i>Analyzer(s) used</i>: SimpleAnalyzer</li>
|
||||
<li><i>Number of fields per document</i>: 8</li>
|
||||
<li><i>Type of fields</i>: All strings, and all are stored
|
||||
and indexed.</li>
|
||||
<li><i>Index persistence</i>: FSDirectory</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Figures</b><br/>
|
||||
<li><i>Time taken (in ms/s as an average of at least 3
|
||||
indexing runs)</i>: 1 hour 12 minutes, 1 hour 14 minutes and 1 hour 17
|
||||
minutes. Note that the #
|
||||
and size of documents changes daily.</li>
|
||||
<li><i>Time taken / 1000 docs indexed</i>: </li>
|
||||
<li><i>Memory consumption</i>: JVM is given 256MB and uses it
|
||||
all.</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Notes</b><br/>
|
||||
<p>
|
||||
We have 10 threads reading files from the filesystem and
|
||||
parsing and
|
||||
analyzing them and the pushing them onto a queue and a single
|
||||
thread poping
|
||||
them from the queue and indexing. Note that we are indexing
|
||||
email messages
|
||||
and are storing the entire plaintext in of the message in the
|
||||
index. If the
|
||||
message contains attachment and we do not have a filter for
|
||||
the attachment
|
||||
(ie. we do not do PDFs yet), we discard the data.
|
||||
</p>
|
||||
</p>
|
||||
</ul>
|
||||
<p>
|
||||
Justin can be contacted at tvxh-lw4x at spamex.com.
|
||||
</p>
|
||||
</section>
|
||||
|
||||
|
||||
<section id="Daniel Armbrust's benchmarks"><title>Daniel Armbrust's benchmarks</title>
|
||||
<p>
|
||||
My disclaimer is that this is a very poor "Benchmark". It was not done for raw speed,
|
||||
nor was the total index built in one shot. The index was created on several different
|
||||
machines (all with these specs, or very similar), with each machine indexing batches of 500,000 to
|
||||
1 million documents per batch. Each of these small indexes was then moved to a
|
||||
much larger drive, where they were all merged together into a big index.
|
||||
This process was done manually, over the course of several months, as the sources became available.
|
||||
</p>
|
||||
<ul>
|
||||
<p>
|
||||
<b>Hardware Environment</b><br/>
|
||||
<li><i>Dedicated machine for indexing</i>: no - The machine had moderate to low load. However, the indexing process was built single
|
||||
threaded, so it only took advantage of 1 of the processors. It usually got 100% of this processor.</li>
|
||||
<li><i>CPU</i>: Sun Ultra 80 4 x 64 bit processors</li>
|
||||
<li><i>RAM</i>: 4 GB Memory</li>
|
||||
<li><i>Drive configuration</i>: Ultra-SCSI Wide 10000 RPM 36GB Drive</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Software environment</b><br/>
|
||||
<li><i>Lucene Version</i>: 1.2</li>
|
||||
<li><i>Java Version</i>: 1.3.1</li>
|
||||
<li><i>Java VM</i>: </li>
|
||||
<li><i>OS Version</i>: Sun 5.8 (64 bit)</li>
|
||||
<li><i>Location of index</i>: local</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Lucene indexing variables</b><br/>
|
||||
<li><i>Number of source documents</i>: 13,820,517</li>
|
||||
<li><i>Total filesize of source documents</i>: 87.3 GB</li>
|
||||
<li><i>Average filesize of source documents</i>: 6.3 KB</li>
|
||||
<li><i>Source documents storage location</i>: Filesystem</li>
|
||||
<li><i>File type of source documents</i>: XML</li>
|
||||
<li><i>Parser(s) used, if any</i>: </li>
|
||||
<li><i>Analyzer(s) used</i>: A home grown analyzer that simply removes stopwords.</li>
|
||||
<li><i>Number of fields per document</i>: 1 - 31</li>
|
||||
<li><i>Type of fields</i>: All text, though 2 of them are dates (20001205) that we filter on</li>
|
||||
<li><i>Index persistence</i>: FSDirectory</li>
|
||||
<li><i>Index size</i>: 12.5 GB</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Figures</b><br/>
|
||||
<li><i>Time taken (in ms/s as an average of at least 3
|
||||
indexing runs)</i>: For 617271 documents, 209698 seconds (or ~2.5 days)</li>
|
||||
<li><i>Time taken / 1000 docs indexed</i>: 340 Seconds</li>
|
||||
<li><i>Memory consumption</i>: (java executed with) java -Xmx1000m -Xss8192k so
|
||||
1 GB of memory was allotted to the indexer</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Notes</b><br/>
|
||||
<p>
|
||||
The source documents were XML. The "indexer" opened each document one at a time, ran an
|
||||
XSL transformation on them, and then proceeded to index the stream. The indexer optimized
|
||||
the index every 50,000 documents (on this run) though previously, we optimized every
|
||||
300,000 documents. The performance didn't change much either way. We did no other
|
||||
tuning (RAM Directories, separate process to pretransform the source material, etc.)
|
||||
to make it index faster. When all of these individual indexes were built, they were
|
||||
merged together into the main index. That process usually took ~ a day.
|
||||
</p>
|
||||
</p>
|
||||
</ul>
|
||||
<p>
|
||||
Daniel can be contacted at Armbrust.Daniel at mayo.edu.
|
||||
</p>
|
||||
</section>
|
||||
<section id="Geoffrey Peddle's benchmarks"><title>Geoffrey Peddle's benchmarks</title>
|
||||
<p>
|
||||
I'm doing a technical evaluation of search engines
|
||||
for Ariba, an enterprise application software company.
|
||||
I compared Lucene to a commercial C language based
|
||||
search engine which I'll refer to as vendor A.
|
||||
Overall Lucene's performance was similar to vendor A
|
||||
and met our application's requirements. I've
|
||||
summarized our results below.
|
||||
</p>
|
||||
<p>
|
||||
Search scalability:<br/>
|
||||
We ran a set of 16 queries in a single thread for 20
|
||||
iterations. We report below the times for the last 15
|
||||
iterations (ie after the system was warmed up). The
|
||||
4 sets of results below are for indexes with between
|
||||
50,000 documents to 600,000 documents. Although the
|
||||
times for Lucene grew faster with document count than
|
||||
vendor A they were comparable.
|
||||
</p>
|
||||
<pre>
|
||||
50K documents
|
||||
Lucene 5.2 seconds
|
||||
A 7.2
|
||||
200K
|
||||
Lucene 15.3
|
||||
A 15.2
|
||||
400K
|
||||
Lucene 28.2
|
||||
A 25.5
|
||||
600K
|
||||
Lucene 41
|
||||
A 33
|
||||
</pre>
|
||||
<p>
|
||||
Individual Query times:<br/>
|
||||
Total query times are very similar between the 2
|
||||
systems but there were larger differences when you
|
||||
looked at individual queries.
|
||||
</p>
|
||||
<p>
|
||||
For simple queries with small result sets Vendor A was
|
||||
consistently faster than Lucene. For example a
|
||||
single query might take vendor A 32 thousands of a
|
||||
second and Lucene 64 thousands of a second. Both
|
||||
times are however well within acceptable response
|
||||
times for our application.
|
||||
</p>
|
||||
<p>
|
||||
For simple queries with large result sets Vendor A was
|
||||
consistently slower than Lucene. For example a
|
||||
single query might take vendor A 300 thousands of a
|
||||
second and Lucene 200 thousands of a second.
|
||||
For more complex queries of the form (term1 or term2
|
||||
or term3) AND (term4 or term5 or term6) AND (term7 or
|
||||
term8) the results were more divergent. For
|
||||
queries with small result sets Vendor A generally had
|
||||
very short response times and sometimes Lucene had
|
||||
significantly larger response times. For example
|
||||
Vendor A might take 16 thousands of a second and
|
||||
Lucene might take 156. I do not consider it to be
|
||||
the case that Lucene's response time grew unexpectedly
|
||||
but rather that Vendor A appeared to be taking
|
||||
advantage of an optimization which Lucene didn't have.
|
||||
(I believe there's been discussions on the dev
|
||||
mailing list on complex queries of this sort.)
|
||||
</p>
|
||||
<p>
|
||||
Index Size:<br/>
|
||||
For our test data the size of both indexes grew
|
||||
linearly with the number of documents. Note that
|
||||
these sizes are compact sizes, not maximum size during
|
||||
index loading. The numbers below are from running du
|
||||
-k in the directory containing the index data. The
|
||||
larger number's below for Vendor A may be because it
|
||||
supports additional functionality not available in
|
||||
Lucene. I think it's the constant rate of growth
|
||||
rather than the absolute amount which is more
|
||||
important.
|
||||
</p>
|
||||
<pre>
|
||||
50K documents
|
||||
Lucene 45516 K
|
||||
A 63921
|
||||
200K
|
||||
Lucene 171565
|
||||
A 228370
|
||||
400K
|
||||
Lucene 345717
|
||||
A 457843
|
||||
600K
|
||||
Lucene 511338
|
||||
A 684913
|
||||
</pre>
|
||||
<p>
|
||||
Indexing Times:<br/>
|
||||
These times are for reading the documents from our
|
||||
database, processing them, inserting them into the
|
||||
document search product and index compacting. Our
|
||||
data has a large number of fields/attributes. For
|
||||
this test I restricted Lucene to 24 attributes to
|
||||
reduce the number of files created. Doing this I was
|
||||
able to specify a merge width for Lucene of 60. I
|
||||
found in general that Lucene indexing performance to
|
||||
be very sensitive to changes in the merge width.
|
||||
Note also that our application does a full compaction
|
||||
after inserting every 20,000 documents. These times
|
||||
are just within our acceptable limits but we are
|
||||
interested in alternatives to increase Lucene's
|
||||
performance in this area.
|
||||
</p>
|
||||
<p>
|
||||
<pre>
|
||||
600K documents
|
||||
Lucene 81 minutes
|
||||
A 34 minutes
|
||||
</pre>
|
||||
</p>
|
||||
<p>
|
||||
(I don't have accurate results for all sizes on this
|
||||
measure but believe that the indexing time for both
|
||||
solutions grew essentially linearly with size. The
|
||||
time to compact the index generally grew with index
|
||||
size but it's a small percent of overall time at these
|
||||
sizes.)
|
||||
</p>
|
||||
<ul>
|
||||
<p>
|
||||
<b>Hardware Environment</b><br/>
|
||||
<li><i>Dedicated machine for indexing</i>: yes</li>
|
||||
<li><i>CPU</i>: Dell Pentium 4 CPU 2.00Ghz, 1cpu</li>
|
||||
<li><i>RAM</i>: 1 GB Memory</li>
|
||||
<li><i>Drive configuration</i>: Fujitsu MAM3367MP SCSI </li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Software environment</b><br/>
|
||||
<li><i>Java Version</i>: 1.4.2_02</li>
|
||||
<li><i>Java VM</i>: JDK</li>
|
||||
<li><i>OS Version</i>: Windows XP </li>
|
||||
<li><i>Location of index</i>: local</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Lucene indexing variables</b><br/>
|
||||
<li><i>Number of source documents</i>: 600,000</li>
|
||||
<li><i>Total filesize of source documents</i>: from database</li>
|
||||
<li><i>Average filesize of source documents</i>: from database</li>
|
||||
<li><i>Source documents storage location</i>: from database</li>
|
||||
<li><i>File type of source documents</i>: XML</li>
|
||||
<li><i>Parser(s) used, if any</i>: </li>
|
||||
<li><i>Analyzer(s) used</i>: small variation on WhitespaceAnalyzer</li>
|
||||
<li><i>Number of fields per document</i>: 24</li>
|
||||
<li><i>Type of fields</i>: A1 keyword, 1 big unindexed, rest are unstored and a mix of tokenized/untokenized</li>
|
||||
<li><i>Index persistence</i>: FSDirectory</li>
|
||||
<li><i>Index size</i>: 12.5 GB</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Figures</b><br/>
|
||||
<li><i>Time taken (in ms/s as an average of at least 3
|
||||
indexing runs)</i>: 600,000 documents in 81 minutes (du -k = 511338)</li>
|
||||
<li><i>Time taken / 1000 docs indexed</i>: 123 documents/second</li>
|
||||
<li><i>Memory consumption</i>: -ms256m -mx512m -Xss4m -XX:MaxPermSize=512M</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Notes</b><br/>
|
||||
<p>
|
||||
<li>merge width of 60</li>
|
||||
<li>did a compact every 20,000 documents</li>
|
||||
</p>
|
||||
</p>
|
||||
</ul>
|
||||
</section>
|
||||
</section>
|
||||
|
||||
</body>
|
||||
</document>
|
|
@ -1,61 +0,0 @@
|
|||
<benchmark>
|
||||
<ul>
|
||||
<p>
|
||||
<b>Hardware Environment</b><br/>
|
||||
<li><i>Dedicated machine for indexing</i>: Self-explanatory
|
||||
(yes/no)</li>
|
||||
<li><i>CPU</i>: Self-explanatory (Type, Speed and Quantity)</li>
|
||||
<li><i>RAM</i>: Self-explanatory</li>
|
||||
<li><i>Drive configuration</i>: Self-explanatory (IDE, SCSI, RAID-1,
|
||||
RAID-5)</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Software environment</b><br/>
|
||||
<li><i>Lucene Version</i>: Self-explanatory</li>
|
||||
<li><i>Java Version</i>: Version of Java SDK/JRE that is run </li>
|
||||
<li><i>Java VM</i>: Server/client VM, Sun VM/JRockIt</li>
|
||||
<li><i>OS Version</i>: Self-explanatory</li>
|
||||
<li><i>Location of index</i>: Is the index stored in filesystem or
|
||||
database? Is it on the same server (local) or
|
||||
over the network?</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Lucene indexing variables</b><br/>
|
||||
<li><i>Number of source documents</i>: Number of documents being
|
||||
indexed</li>
|
||||
<li><i>Total filesize of source documents</i>: Self-explanatory</li>
|
||||
<li><i>Average filesize of source documents</i>:
|
||||
Self-explanatory</li>
|
||||
<li><i>Source documents storage location</i>: Where are the documents
|
||||
being indexed located?
|
||||
Filesystem, DB, http,etc</li>
|
||||
<li><i>File type of source documents</i>: Types of files being
|
||||
indexed, e.g. HTML files, XML files, PDF files, etc.</li>
|
||||
<li><i>Parser(s) used, if any</i>: Parsers used for parsing the
|
||||
various files for indexing,
|
||||
e.g. XML parser, HTML parser, etc.</li>
|
||||
<li><i>Analyzer(s) used</i>: Type of Lucene analyzer used</li>
|
||||
<li><i>Number of fields per document</i>: Number of Fields each
|
||||
Document contains</li>
|
||||
<li><i>Type of fields</i>: Type of each field</li>
|
||||
<li><i>Index persistence</i>: Where the index is stored, e.g.
|
||||
FSDirectory, SqlDirectory, etc</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Figures</b><br/>
|
||||
<li><i>Time taken (in ms/s as an average of at least 3 indexing
|
||||
runs)</i>: Time taken to index to index all files</li>
|
||||
<li><i>Time taken / 1000 docs indexed</i>: Time taken to index 1000
|
||||
files</li>
|
||||
<li><i>Memory consumption</i>: Self-explanatory</li>
|
||||
<li><i>Query speed</i>: average time a query takes, type
|
||||
of queries (e.g. simple one-term query, phrase query),
|
||||
not measuring any overhead outside Lucene</li>
|
||||
</p>
|
||||
<p>
|
||||
<b>Notes</b><br/>
|
||||
<li><i>Notes</i>: Any comments which don't belong in the above,
|
||||
special tuning/strategies, etc</li>
|
||||
</p>
|
||||
</ul>
|
||||
</benchmark>
|
|
@ -78,7 +78,6 @@ See http://forrest.apache.org/docs/linking.html for more info
|
|||
<javadoc-contrib-xml-query-parser label="XML Query Parser" href="ext:javadocs-contrib-xml-query-parser"/>
|
||||
</javadoc-contrib>
|
||||
</javadoc>
|
||||
<benchmarks label="Benchmarks" href="benchmarks.html"/>
|
||||
<contributions label="Contributions" href="contributions.html"/>
|
||||
<faq label="FAQ" href="ext:faq" />
|
||||
<file-formats label="File Formats" href="fileformats.html"/>
|
||||
|
|
Loading…
Reference in New Issue