mirror of https://github.com/apache/lucene.git
SOLR-11862: Add fuzzyKmeans Stream Evaluatory
This commit is contained in:
parent
4a6110ce01
commit
50a6cb1b05
|
@ -310,6 +310,8 @@ public class StreamHandler extends RequestHandlerBase implements SolrCoreAware,
|
||||||
.withFunctionName("indexOf", IndexOfEvaluator.class)
|
.withFunctionName("indexOf", IndexOfEvaluator.class)
|
||||||
.withFunctionName("columnCount", ColumnCountEvaluator.class)
|
.withFunctionName("columnCount", ColumnCountEvaluator.class)
|
||||||
.withFunctionName("rowCount", RowCountEvaluator.class)
|
.withFunctionName("rowCount", RowCountEvaluator.class)
|
||||||
|
.withFunctionName("fuzzyKmeans", FuzzyKmeansEvaluator.class)
|
||||||
|
.withFunctionName("getMembershipMatrix", GetMembershipMatrixEvaluator.class)
|
||||||
|
|
||||||
// Boolean Stream Evaluators
|
// Boolean Stream Evaluators
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,106 @@
|
||||||
|
/*
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
* contributor license agreements. See the NOTICE file distributed with
|
||||||
|
* this work for additional information regarding copyright ownership.
|
||||||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
* (the "License"); you may not use this file except in compliance with
|
||||||
|
* the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package org.apache.solr.client.solrj.io.eval;
|
||||||
|
|
||||||
|
import java.io.IOException;
|
||||||
|
import java.util.ArrayList;
|
||||||
|
import java.util.List;
|
||||||
|
import java.util.Map;
|
||||||
|
import java.util.HashMap;
|
||||||
|
|
||||||
|
import org.apache.commons.math3.linear.RealMatrix;
|
||||||
|
import org.apache.commons.math3.ml.clustering.CentroidCluster;
|
||||||
|
import org.apache.commons.math3.ml.distance.EuclideanDistance;
|
||||||
|
import org.apache.commons.math3.ml.clustering.FuzzyKMeansClusterer;
|
||||||
|
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
|
||||||
|
import org.apache.solr.client.solrj.io.stream.expr.StreamExpressionNamedParameter;
|
||||||
|
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
|
||||||
|
|
||||||
|
public class FuzzyKmeansEvaluator extends RecursiveObjectEvaluator implements TwoValueWorker {
|
||||||
|
protected static final long serialVersionUID = 1L;
|
||||||
|
|
||||||
|
|
||||||
|
private int maxIterations = 1000;
|
||||||
|
private double fuzziness = 1.2;
|
||||||
|
|
||||||
|
public FuzzyKmeansEvaluator(StreamExpression expression, StreamFactory factory) throws IOException{
|
||||||
|
super(expression, factory);
|
||||||
|
|
||||||
|
List<StreamExpressionNamedParameter> namedParams = factory.getNamedOperands(expression);
|
||||||
|
|
||||||
|
for(StreamExpressionNamedParameter namedParam : namedParams){
|
||||||
|
if(namedParam.getName().equals("fuzziness")){
|
||||||
|
this.fuzziness = Double.parseDouble(namedParam.getParameter().toString().trim());
|
||||||
|
} else if(namedParam.getName().equals("maxIterations")) {
|
||||||
|
this.maxIterations = Integer.parseInt(namedParam.getParameter().toString().trim());
|
||||||
|
} else {
|
||||||
|
throw new IOException("Unexpected named parameter:"+namedParam.getName());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public Object doWork(Object value1, Object value2) throws IOException {
|
||||||
|
|
||||||
|
|
||||||
|
Matrix matrix = null;
|
||||||
|
int k = 0;
|
||||||
|
|
||||||
|
|
||||||
|
if(value1 instanceof Matrix) {
|
||||||
|
matrix = (Matrix)value1;
|
||||||
|
} else {
|
||||||
|
throw new IOException("The first parameter for fuzzyKmeans should be the observation matrix.");
|
||||||
|
}
|
||||||
|
|
||||||
|
if(value2 instanceof Number) {
|
||||||
|
k = ((Number)value2).intValue();
|
||||||
|
} else {
|
||||||
|
throw new IOException("The second parameter for fuzzyKmeans should be k.");
|
||||||
|
}
|
||||||
|
|
||||||
|
FuzzyKMeansClusterer<KmeansEvaluator.ClusterPoint> kmeans = new FuzzyKMeansClusterer(k,
|
||||||
|
fuzziness,
|
||||||
|
maxIterations,
|
||||||
|
new EuclideanDistance());
|
||||||
|
List<KmeansEvaluator.ClusterPoint> points = new ArrayList();
|
||||||
|
double[][] data = matrix.getData();
|
||||||
|
|
||||||
|
List<String> ids = matrix.getRowLabels();
|
||||||
|
|
||||||
|
for(int i=0; i<data.length; i++) {
|
||||||
|
double[] vec = data[i];
|
||||||
|
points.add(new KmeansEvaluator.ClusterPoint(ids.get(i), vec));
|
||||||
|
}
|
||||||
|
|
||||||
|
Map fields = new HashMap();
|
||||||
|
|
||||||
|
fields.put("k", k);
|
||||||
|
fields.put("fuzziness", fuzziness);
|
||||||
|
fields.put("distance", "euclidean");
|
||||||
|
fields.put("maxIterations", maxIterations);
|
||||||
|
|
||||||
|
List<CentroidCluster<KmeansEvaluator.ClusterPoint>> clusters = kmeans.cluster(points);
|
||||||
|
RealMatrix realMatrix = kmeans.getMembershipMatrix();
|
||||||
|
double[][] mmData = realMatrix.getData();
|
||||||
|
Matrix mmMatrix = new Matrix(mmData);
|
||||||
|
mmMatrix.setRowLabels(matrix.getRowLabels());
|
||||||
|
return new KmeansEvaluator.ClusterTuple(fields, clusters, matrix.getColumnLabels(),mmMatrix);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
|
@ -0,0 +1,42 @@
|
||||||
|
/*
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
* contributor license agreements. See the NOTICE file distributed with
|
||||||
|
* this work for additional information regarding copyright ownership.
|
||||||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
* (the "License"); you may not use this file except in compliance with
|
||||||
|
* the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package org.apache.solr.client.solrj.io.eval;
|
||||||
|
|
||||||
|
import java.io.IOException;
|
||||||
|
import java.util.Locale;
|
||||||
|
|
||||||
|
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
|
||||||
|
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
|
||||||
|
|
||||||
|
public class GetMembershipMatrixEvaluator extends RecursiveObjectEvaluator implements OneValueWorker {
|
||||||
|
private static final long serialVersionUID = 1;
|
||||||
|
|
||||||
|
public GetMembershipMatrixEvaluator(StreamExpression expression, StreamFactory factory) throws IOException {
|
||||||
|
super(expression, factory);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public Object doWork(Object value) throws IOException {
|
||||||
|
if(!(value instanceof KmeansEvaluator.ClusterTuple)){
|
||||||
|
throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - found type %s for value, expecting a clustering result",toExpression(constructingFactory), value.getClass().getSimpleName()));
|
||||||
|
} else {
|
||||||
|
KmeansEvaluator.ClusterTuple clusterTuple = (KmeansEvaluator.ClusterTuple)value;
|
||||||
|
return clusterTuple.getMembershipMatrix();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -29,43 +29,46 @@ import org.apache.solr.client.solrj.io.Tuple;
|
||||||
import org.apache.commons.math3.ml.clustering.Clusterable;
|
import org.apache.commons.math3.ml.clustering.Clusterable;
|
||||||
import org.apache.commons.math3.ml.clustering.KMeansPlusPlusClusterer;
|
import org.apache.commons.math3.ml.clustering.KMeansPlusPlusClusterer;
|
||||||
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
|
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
|
||||||
|
import org.apache.solr.client.solrj.io.stream.expr.StreamExpressionNamedParameter;
|
||||||
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
|
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
|
||||||
|
|
||||||
public class KmeansEvaluator extends RecursiveObjectEvaluator implements ManyValueWorker {
|
public class KmeansEvaluator extends RecursiveObjectEvaluator implements TwoValueWorker {
|
||||||
protected static final long serialVersionUID = 1L;
|
protected static final long serialVersionUID = 1L;
|
||||||
|
|
||||||
|
private int maxIterations = 1000;
|
||||||
|
|
||||||
public KmeansEvaluator(StreamExpression expression, StreamFactory factory) throws IOException{
|
public KmeansEvaluator(StreamExpression expression, StreamFactory factory) throws IOException{
|
||||||
super(expression, factory);
|
super(expression, factory);
|
||||||
|
|
||||||
|
List<StreamExpressionNamedParameter> namedParams = factory.getNamedOperands(expression);
|
||||||
|
|
||||||
|
for(StreamExpressionNamedParameter namedParam : namedParams){
|
||||||
|
if(namedParam.getName().equals("maxIterations")) {
|
||||||
|
this.maxIterations = Integer.parseInt(namedParam.getParameter().toString().trim());
|
||||||
|
} else {
|
||||||
|
throw new IOException("Unexpected named parameter:"+namedParam.getName());
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public Object doWork(Object... values) throws IOException {
|
public Object doWork(Object value1, Object value2) throws IOException {
|
||||||
|
|
||||||
if(values.length < 2) {
|
|
||||||
throw new IOException("kmeans expects atleast two parameters a Matrix of observations and k");
|
|
||||||
}
|
|
||||||
|
|
||||||
Matrix matrix = null;
|
Matrix matrix = null;
|
||||||
int k = 0;
|
int k = 0;
|
||||||
int maxIterations = 1000;
|
|
||||||
|
|
||||||
if(values[0] instanceof Matrix) {
|
if(value1 instanceof Matrix) {
|
||||||
matrix = (Matrix)values[0];
|
matrix = (Matrix)value1;
|
||||||
} else {
|
} else {
|
||||||
throw new IOException("The first parameter for kmeans should be the observation matrix.");
|
throw new IOException("The first parameter for kmeans should be the observation matrix.");
|
||||||
}
|
}
|
||||||
|
|
||||||
if(values[1] instanceof Number) {
|
if(value2 instanceof Number) {
|
||||||
k = ((Number)values[1]).intValue();
|
k = ((Number)value2).intValue();
|
||||||
} else {
|
} else {
|
||||||
throw new IOException("The second parameter for kmeans should be k.");
|
throw new IOException("The second parameter for kmeans should be k.");
|
||||||
}
|
}
|
||||||
|
|
||||||
if(values.length == 3) {
|
|
||||||
maxIterations = ((Number)values[2]).intValue();
|
|
||||||
}
|
|
||||||
|
|
||||||
KMeansPlusPlusClusterer<ClusterPoint> kmeans = new KMeansPlusPlusClusterer(k, maxIterations);
|
KMeansPlusPlusClusterer<ClusterPoint> kmeans = new KMeansPlusPlusClusterer(k, maxIterations);
|
||||||
List<ClusterPoint> points = new ArrayList();
|
List<ClusterPoint> points = new ArrayList();
|
||||||
|
@ -110,6 +113,7 @@ public class KmeansEvaluator extends RecursiveObjectEvaluator implements ManyVal
|
||||||
|
|
||||||
private List<String> columnLabels;
|
private List<String> columnLabels;
|
||||||
private List<CentroidCluster<ClusterPoint>> clusters;
|
private List<CentroidCluster<ClusterPoint>> clusters;
|
||||||
|
private Matrix membershipMatrix;
|
||||||
|
|
||||||
public ClusterTuple(Map fields,
|
public ClusterTuple(Map fields,
|
||||||
List<CentroidCluster<ClusterPoint>> clusters,
|
List<CentroidCluster<ClusterPoint>> clusters,
|
||||||
|
@ -119,6 +123,20 @@ public class KmeansEvaluator extends RecursiveObjectEvaluator implements ManyVal
|
||||||
this.columnLabels = columnLabels;
|
this.columnLabels = columnLabels;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public ClusterTuple(Map fields,
|
||||||
|
List<CentroidCluster<ClusterPoint>> clusters,
|
||||||
|
List<String> columnLabels,
|
||||||
|
Matrix membershipMatrix) {
|
||||||
|
super(fields);
|
||||||
|
this.clusters = clusters;
|
||||||
|
this.columnLabels = columnLabels;
|
||||||
|
this.membershipMatrix = membershipMatrix;
|
||||||
|
}
|
||||||
|
|
||||||
|
public Matrix getMembershipMatrix() {
|
||||||
|
return this.membershipMatrix;
|
||||||
|
}
|
||||||
|
|
||||||
public List<String> getColumnLabels() {
|
public List<String> getColumnLabels() {
|
||||||
return this.columnLabels;
|
return this.columnLabels;
|
||||||
}
|
}
|
||||||
|
@ -126,10 +144,6 @@ public class KmeansEvaluator extends RecursiveObjectEvaluator implements ManyVal
|
||||||
public List<CentroidCluster<ClusterPoint>> getClusters() {
|
public List<CentroidCluster<ClusterPoint>> getClusters() {
|
||||||
return this.clusters;
|
return this.clusters;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -7076,6 +7076,111 @@ public class StreamExpressionTest extends SolrCloudTestCase {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testFuzzyKmeans() throws Exception {
|
||||||
|
String cexpr = "let(echo=true," +
|
||||||
|
" a=array(1,1,1,0,0,0)," +
|
||||||
|
" b=array(1,1,1,0,0,0)," +
|
||||||
|
" c=array(0,0,0,1,1,1)," +
|
||||||
|
" d=array(0,0,0,1,1,1)," +
|
||||||
|
" e=setRowLabels(matrix(a,b,c,d), " +
|
||||||
|
" array(doc1, doc2, doc3, doc4))," +
|
||||||
|
" f=fuzzyKmeans(e, 2)," +
|
||||||
|
" g=getCluster(f, 0)," +
|
||||||
|
" h=getCluster(f, 1)," +
|
||||||
|
" i=getCentroids(f)," +
|
||||||
|
" j=getRowLabels(g)," +
|
||||||
|
" k=getRowLabels(h)," +
|
||||||
|
" l=getMembershipMatrix(f))";
|
||||||
|
ModifiableSolrParams paramsLoc = new ModifiableSolrParams();
|
||||||
|
paramsLoc.set("expr", cexpr);
|
||||||
|
paramsLoc.set("qt", "/stream");
|
||||||
|
String url = cluster.getJettySolrRunners().get(0).getBaseUrl().toString()+"/"+COLLECTIONORALIAS;
|
||||||
|
TupleStream solrStream = new SolrStream(url, paramsLoc);
|
||||||
|
StreamContext context = new StreamContext();
|
||||||
|
solrStream.setStreamContext(context);
|
||||||
|
List<Tuple> tuples = getTuples(solrStream);
|
||||||
|
assertTrue(tuples.size() == 1);
|
||||||
|
List<List<Number>> cluster1 = (List<List<Number>>)tuples.get(0).get("g");
|
||||||
|
List<List<Number>> cluster2 = (List<List<Number>>)tuples.get(0).get("h");
|
||||||
|
List<List<Number>> centroids = (List<List<Number>>)tuples.get(0).get("i");
|
||||||
|
List<List<Number>> membership = (List<List<Number>>)tuples.get(0).get("l");
|
||||||
|
|
||||||
|
List<String> labels1 = (List<String>)tuples.get(0).get("j");
|
||||||
|
List<String> labels2 = (List<String>)tuples.get(0).get("k");
|
||||||
|
|
||||||
|
assertEquals(cluster1.size(), 2);
|
||||||
|
assertEquals(cluster2.size(), 2);
|
||||||
|
assertEquals(centroids.size(), 2);
|
||||||
|
|
||||||
|
//Assert that the docs are not in both clusters
|
||||||
|
assertTrue(!(labels1.contains("doc1") && labels2.contains("doc1")));
|
||||||
|
assertTrue(!(labels1.contains("doc2") && labels2.contains("doc2")));
|
||||||
|
assertTrue(!(labels1.contains("doc3") && labels2.contains("doc3")));
|
||||||
|
assertTrue(!(labels1.contains("doc4") && labels2.contains("doc4")));
|
||||||
|
|
||||||
|
//Assert that (doc1 and doc2) or (doc3 and doc4) are in labels1
|
||||||
|
assertTrue((labels1.contains("doc1") && labels1.contains("doc2")) ||
|
||||||
|
((labels1.contains("doc3") && labels1.contains("doc4"))));
|
||||||
|
|
||||||
|
//Assert that (doc1 and doc2) or (doc3 and doc4) are in labels2
|
||||||
|
assertTrue((labels2.contains("doc1") && labels2.contains("doc2")) ||
|
||||||
|
((labels2.contains("doc3") && labels2.contains("doc4"))));
|
||||||
|
|
||||||
|
|
||||||
|
if(labels1.contains("doc1")) {
|
||||||
|
assertEquals(centroids.get(0).get(0).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(1).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(2).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(3).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(4).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(5).doubleValue(), 0.0, 0.0001);
|
||||||
|
|
||||||
|
assertEquals(centroids.get(1).get(0).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(1).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(2).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(3).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(4).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(5).doubleValue(), 1.0, 0.0001);
|
||||||
|
|
||||||
|
//Assert the membership matrix
|
||||||
|
assertEquals(membership.get(0).get(0).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(membership.get(0).get(1).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(membership.get(1).get(0).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(membership.get(1).get(1).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(membership.get(2).get(0).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(membership.get(2).get(1).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(membership.get(3).get(0).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(membership.get(3).get(1).doubleValue(), 1.0, 0.0001);
|
||||||
|
|
||||||
|
} else {
|
||||||
|
assertEquals(centroids.get(0).get(0).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(1).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(2).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(3).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(4).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(0).get(5).doubleValue(), 1.0, 0.0001);
|
||||||
|
|
||||||
|
assertEquals(centroids.get(1).get(0).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(1).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(2).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(3).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(4).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(centroids.get(1).get(5).doubleValue(), 0.0, 0.0001);
|
||||||
|
|
||||||
|
//Assert the membership matrix
|
||||||
|
assertEquals(membership.get(0).get(0).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(membership.get(0).get(1).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(membership.get(1).get(0).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(membership.get(1).get(1).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(membership.get(2).get(0).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(membership.get(2).get(1).doubleValue(), 0.0, 0.0001);
|
||||||
|
assertEquals(membership.get(3).get(0).doubleValue(), 1.0, 0.0001);
|
||||||
|
assertEquals(membership.get(3).get(1).doubleValue(), 0.0, 0.0001);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void testEBEMultiply() throws Exception {
|
public void testEBEMultiply() throws Exception {
|
||||||
String cexpr = "ebeMultiply(array(2,4,6,8,10,12),array(1,2,3,4,5,6))";
|
String cexpr = "ebeMultiply(array(2,4,6,8,10,12),array(1,2,3,4,5,6))";
|
||||||
|
|
Loading…
Reference in New Issue