LUCENE-2507: Add automaton spellchecker

git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1003642 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Robert Muir 2010-10-01 20:40:52 +00:00
parent 8003c5c703
commit 5190ea5232
8 changed files with 923 additions and 1 deletions

View File

@ -28,6 +28,9 @@ New Features
* LUCENE-2608: Added the ability to specify the accuracy at method time in the SpellChecker. The per class
method is also still available. (Grant Ingersoll)
* LUCENE-2507: Added DirectSpellChecker, which retrieves correction candidates directly
from the term dictionary using levenshtein automata. (Robert Muir)
API Changes

View File

@ -0,0 +1,482 @@
package org.apache.lucene.search.spell;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.IOException;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.Locale;
import java.util.PriorityQueue;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.FuzzyTermsEnum;
import org.apache.lucene.search.MultiTermQuery;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
/**
* Simple automaton-based spellchecker.
* <p>
* Candidates are presented directly from the term dictionary, based on
* Levenshtein distance. This is an alternative to {@link SpellChecker}
* if you are using an edit-distance-like metric such as Levenshtein
* or {@link JaroWinklerDistance}.
* <p>
* A practical benefit of this spellchecker is that it requires no additional
* datastructures (neither in RAM nor on disk) to do its work.
*
* @see LevenshteinAutomata
* @see FuzzyTermsEnum
*
* @lucene.experimental
*/
public class DirectSpellChecker {
/** The default StringDistance, Levenshtein distance implemented internally
* via {@link LevenshteinAutomata}.
* <p>
* Note: this is the fastest distance metric, because Levenshtein is used
* to draw candidates from the term dictionary: this just re-uses the scoring.
* <p>
* Note also that this metric differs in subtle ways from {@link LevenshteinDistance}:
* <ul>
* <li> This metric treats full unicode codepoints as characters, but
* LevenshteinDistance calculates based on UTF-16 code units.
* <li> This metric scales raw edit distances into a floating point score
* differently than LevenshteinDistance: the scaling is based upon the
* shortest of the two terms instead of the longest.
* </ul>
*/
public static final StringDistance INTERNAL_LEVENSHTEIN = new StringDistance() {
@Override
public float getDistance(String s1, String s2) {
throw new UnsupportedOperationException("Not for external use.");
}};
/** maximum edit distance for candidate terms */
private int maxEdits = LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE;
/** minimum prefix for candidate terms */
private int minPrefix = 1;
/** maximum number of top-N inspections per suggestion */
private int maxInspections = 5;
/** minimum accuracy for a term to match */
private float accuracy = SpellChecker.DEFAULT_ACCURACY;
/** value in [0..1] (or absolute number >=1) representing the minimum
* number of documents (of the total) where a term should appear. */
private float thresholdFrequency = 0f;
/** minimum length of a query word to return suggestions */
private int minQueryLength = 4;
/** value in [0..1] (or absolute number >=1) representing the maximum
* number of documents (of the total) a query term can appear in to
* be corrected. */
private float maxQueryFrequency = 0.01f;
/** true if the spellchecker should lowercase terms */
private boolean lowerCaseTerms = true;
/** the comparator to use */
private Comparator<SuggestWord> comparator = SuggestWordQueue.DEFAULT_COMPARATOR;
/** the string distance to use */
private StringDistance distance = INTERNAL_LEVENSHTEIN;
/** Get the maximum number of Levenshtein edit-distances to draw
* candidate terms from. */
public int getMaxEdits() {
return maxEdits;
}
/** Sets the maximum number of Levenshtein edit-distances to draw
* candidate terms from. This value can be 1 or 2. The default is 2.
* <p>
* Note: a large number of spelling errors occur with an edit distance
* of 1, by setting this value to 1 you can increase both performance
* and precision at the cost of recall.
*/
public void setMaxEdits(int maxEdits) {
if (maxEdits < 1 || maxEdits > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE)
throw new UnsupportedOperationException("Invalid maxEdits");
this.maxEdits = maxEdits;
}
/**
* Get the minimal number of characters that must match exactly
*/
public int getMinPrefix() {
return minPrefix;
}
/**
* Sets the minimal number of initial characters (default: 1)
* that must match exactly.
* <p>
* This can improve both performance and accuracy of results,
* as misspellings are commonly not the first character.
*/
public void setMinPrefix(int minPrefix) {
this.minPrefix = minPrefix;
}
/**
* Get the maximum number of top-N inspections per suggestion
*/
public int getMaxInspections() {
return maxInspections;
}
/**
* Set the maximum number of top-N inspections (default: 5) per suggestion.
* <p>
* Increasing this number can improve the accuracy of results, at the cost
* of performance.
*/
public void setMaxInspections(int maxInspections) {
this.maxInspections = maxInspections;
}
/**
* Get the minimal accuracy from the StringDistance for a match
*/
public float getAccuracy() {
return accuracy;
}
/**
* Set the minimal accuracy required (default: 0.5f) from a StringDistance
* for a suggestion match.
*/
public void setAccuracy(float accuracy) {
this.accuracy = accuracy;
}
/**
* Get the minimal threshold of documents a term must appear for a match
*/
public float getThresholdFrequency() {
return thresholdFrequency;
}
/**
* Set the minimal threshold of documents a term must appear for a match.
* <p>
* This can improve quality by only suggesting high-frequency terms. Note that
* very high values might decrease performance slightly, by forcing the spellchecker
* to draw more candidates from the term dictionary, but a practical value such
* as <code>1</code> can be very useful towards improving quality.
* <p>
* This can be specified as a relative percentage of documents such as 0.5f,
* or it can be specified as an absolute whole document frequency, such as 4f.
* Absolute document frequencies may not be fractional.
*/
public void setThresholdFrequency(float thresholdFrequency) {
if (thresholdFrequency >= 1f && thresholdFrequency != (int) thresholdFrequency)
throw new IllegalArgumentException("Fractional absolute document frequencies are not allowed");
this.thresholdFrequency = thresholdFrequency;
}
/** Get the minimum length of a query term needed to return suggestions */
public int getMinQueryLength() {
return minQueryLength;
}
/**
* Set the minimum length of a query term (default: 4) needed to return suggestions.
* <p>
* Very short query terms will often cause only bad suggestions with any distance
* metric.
*/
public void setMinQueryLength(int minQueryLength) {
this.minQueryLength = minQueryLength;
}
/**
* Get the maximum threshold of documents a query term can appear in order
* to provide suggestions.
*/
public float getMaxQueryFrequency() {
return maxQueryFrequency;
}
/**
* Set the maximum threshold (default: 0.01f) of documents a query term can
* appear in order to provide suggestions.
* <p>
* Very high-frequency terms are typically spelled correctly. Additionally,
* this can increase performance as it will do no work for the common case
* of correctly-spelled input terms.
* <p>
* This can be specified as a relative percentage of documents such as 0.5f,
* or it can be specified as an absolute whole document frequency, such as 4f.
* Absolute document frequencies may not be fractional.
*/
public void setMaxQueryFrequency(float maxQueryFrequency) {
if (maxQueryFrequency >= 1f && maxQueryFrequency != (int) maxQueryFrequency)
throw new IllegalArgumentException("Fractional absolute document frequencies are not allowed");
this.maxQueryFrequency = maxQueryFrequency;
}
/** true if the spellchecker should lowercase terms */
public boolean getLowerCaseTerms() {
return lowerCaseTerms;
}
/**
* True if the spellchecker should lowercase terms (default: true)
* <p>
* This is a convenience method, if your index field has more complicated
* analysis (such as StandardTokenizer removing punctuation), its probably
* better to turn this off, and instead run your query terms through your
* Analyzer first.
* <p>
* If this option is not on, case differences count as an edit!
*/
public void setLowerCaseTerms(boolean lowerCaseTerms) {
this.lowerCaseTerms = lowerCaseTerms;
}
/**
* Get the current comparator in use.
*/
public Comparator<SuggestWord> getComparator() {
return comparator;
}
/**
* Set the comparator for sorting suggestions.
* The default is {@link SuggestWordQueue#DEFAULT_COMPARATOR}
*/
public void setComparator(Comparator<SuggestWord> comparator) {
this.comparator = comparator;
}
/**
* Get the string distance metric in use.
*/
public StringDistance getDistance() {
return distance;
}
/**
* Set the string distance metric.
* The default is {@link #INTERNAL_LEVENSHTEIN}
* <p>
* Note: because this spellchecker draws its candidates from the
* term dictionary using Levenshtein, it works best with an edit-distance-like
* string metric. If you use a different metric than the default,
* you might want to consider increasing {@link #setMaxInspections(int)}
* to draw more candidates for your metric to rank.
*/
public void setDistance(StringDistance distance) {
this.distance = distance;
}
/**
* Calls {@link #suggestSimilar(Term, int, IndexReader, boolean)
* suggestSimilar(term, numSug, ir, false)
*/
public SuggestWord[] suggestSimilar(Term term, int numSug, IndexReader ir)
throws IOException {
return suggestSimilar(term, numSug, ir, false);
}
/**
* Calls {@link #suggestSimilar(Term, int, IndexReader, boolean, float)
* suggestSimilar(term, numSug, ir, morePopular, this.accuracy)
*/
public SuggestWord[] suggestSimilar(Term term, int numSug, IndexReader ir,
boolean morePopular) throws IOException {
return suggestSimilar(term, numSug, ir, morePopular, accuracy);
}
/**
* Suggest similar words.
*
* <p>Unlike {@link SpellChecker}, the similarity used to fetch the most
* relevant terms is an edit distance, therefore typically a low value
* for numSug will work very well.
*
* @param term Term you want to spell check on
* @param numSug the maximum number of suggested words
* @param ir IndexReader to find terms from
* @param morePopular return only suggested words that are as frequent or more frequent than the searched word
* @param accuracy return only suggested words that match with this similarity
* @return sorted list of the suggested words according to the comparator
* @throws IOException
*/
public SuggestWord[] suggestSimilar(Term term, int numSug, IndexReader ir,
boolean morePopular, float accuracy) throws IOException {
String text = term.text();
if (minQueryLength > 0 && text.codePointCount(0, text.length()) < minQueryLength)
return new SuggestWord[0];
if (lowerCaseTerms)
term = term.createTerm(text.toLowerCase(Locale.ENGLISH));
int docfreq = ir.docFreq(term);
// see line 341 of spellchecker. this is certainly very very nice for perf,
// but is it really the right way to go?
if (!morePopular && docfreq > 0) {
return new SuggestWord[0];
}
int maxDoc = ir.maxDoc();
if (maxQueryFrequency >= 1f && docfreq > maxQueryFrequency) {
return new SuggestWord[0];
} else if (docfreq > (int) Math.ceil(maxQueryFrequency * (float)maxDoc)) {
return new SuggestWord[0];
}
if (!morePopular) docfreq = 0;
if (thresholdFrequency >= 1f) {
docfreq = Math.max(docfreq, (int) thresholdFrequency);
} else if (thresholdFrequency > 0f) {
docfreq = Math.max(docfreq, (int)(thresholdFrequency * (float)maxDoc)-1);
}
Collection<ScoreTerm> terms = null;
int inspections = numSug * maxInspections;
// try ed=1 first, in case we get lucky
terms = suggestSimilar(term, inspections, ir, docfreq, 1, accuracy);
if (maxEdits > 1 && terms.size() < inspections) {
HashSet<ScoreTerm> moreTerms = new HashSet<ScoreTerm>();
moreTerms.addAll(terms);
moreTerms.addAll(suggestSimilar(term, inspections, ir, docfreq, maxEdits, accuracy));
terms = moreTerms;
}
// create the suggestword response, sort it, and trim it to size.
SuggestWord suggestions[] = new SuggestWord[terms.size()];
int index = suggestions.length - 1;
for (ScoreTerm s : terms) {
SuggestWord suggestion = new SuggestWord();
suggestion.string = s.termAsString != null ? s.termAsString : s.term.utf8ToString();
suggestion.score = s.score;
suggestion.freq = s.docfreq;
suggestions[index--] = suggestion;
}
Arrays.sort(suggestions, Collections.reverseOrder(comparator));
if (numSug < suggestions.length) {
SuggestWord trimmed[] = new SuggestWord[numSug];
System.arraycopy(suggestions, 0, trimmed, 0, numSug);
suggestions = trimmed;
}
return suggestions;
}
private Collection<ScoreTerm> suggestSimilar(Term term, int numSug,
IndexReader ir, int docfreq, int editDistance, float accuracy) throws IOException {
FuzzyTermsEnum e = new FuzzyTermsEnum(ir, term, editDistance, Math.max(minPrefix, editDistance-1));
final PriorityQueue<ScoreTerm> stQueue = new PriorityQueue<ScoreTerm>();
BytesRef queryTerm = new BytesRef(term.text());
BytesRef candidateTerm;
ScoreTerm st = new ScoreTerm();
MultiTermQuery.BoostAttribute boostAtt =
e.attributes().addAttribute(MultiTermQuery.BoostAttribute.class);
while ((candidateTerm = e.next()) != null) {
final float boost = boostAtt.getBoost();
// ignore uncompetitive hits
if (stQueue.size() >= numSug && boost <= stQueue.peek().boost)
continue;
// ignore exact match of the same term
if (queryTerm.bytesEquals(candidateTerm))
continue;
int df = e.docFreq();
// check docFreq if required
if (df <= docfreq)
continue;
final float score;
final String termAsString;
if (distance == INTERNAL_LEVENSHTEIN) {
// delay creating strings until the end
termAsString = null;
// undo FuzzyTermsEnum's scale factor for a real scaled lev score
score = boost / e.getScaleFactor() + e.getMinSimilarity();
} else {
termAsString = candidateTerm.utf8ToString();
score = distance.getDistance(term.text(), termAsString);
}
if (score < accuracy)
continue;
// add new entry in PQ
st.term = new BytesRef(candidateTerm);
st.boost = boost;
st.docfreq = df;
st.termAsString = termAsString;
st.score = score;
stQueue.offer(st);
// possibly drop entries from queue
st = (stQueue.size() > numSug) ? stQueue.poll() : new ScoreTerm();
boostAtt.setMaxNonCompetitiveBoost((stQueue.size() >= numSug) ? stQueue.peek().boost : Float.NEGATIVE_INFINITY);
}
return stQueue;
}
private static class ScoreTerm implements Comparable<ScoreTerm> {
public BytesRef term;
public float boost;
public int docfreq;
public String termAsString;
public float score;
public int compareTo(ScoreTerm other) {
if (term.bytesEquals(other.term))
return 0; // consistent with equals
if (this.boost == other.boost)
return other.term.compareTo(this.term);
else
return Float.compare(this.boost, other.boost);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((term == null) ? 0 : term.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) return true;
if (obj == null) return false;
if (getClass() != obj.getClass()) return false;
ScoreTerm other = (ScoreTerm) obj;
if (term == null) {
if (other.term != null) return false;
} else if (!term.bytesEquals(other.term)) return false;
return true;
}
}
}

View File

@ -0,0 +1,144 @@
package org.apache.lucene.search.spell;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import org.apache.lucene.analysis.MockAnalyzer;
import org.apache.lucene.analysis.MockTokenizer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.RandomIndexWriter;
import org.apache.lucene.index.Term;
import org.apache.lucene.store.Directory;
import org.apache.lucene.util.English;
import org.apache.lucene.util.LuceneTestCase;
public class TestDirectSpellChecker extends LuceneTestCase {
public void testSimpleExamples() throws Exception {
DirectSpellChecker spellChecker = new DirectSpellChecker();
spellChecker.setMinQueryLength(0);
Directory dir = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random, dir,
new MockAnalyzer(MockTokenizer.SIMPLE, true));
for (int i = 0; i < 20; i++) {
Document doc = new Document();
doc.add(newField("numbers", English.intToEnglish(i), Field.Store.NO, Field.Index.ANALYZED));
writer.addDocument(doc);
}
IndexReader ir = writer.getReader();
SuggestWord[] similar = spellChecker.suggestSimilar(new Term("numbers", "fvie"), 2, ir, false);
assertTrue(similar.length > 0);
assertEquals("five", similar[0].string);
similar = spellChecker.suggestSimilar(new Term("numbers", "five"), 2, ir, false);
if (similar.length > 0) {
assertFalse(similar[0].string.equals("five")); // don't suggest a word for itself
}
similar = spellChecker.suggestSimilar(new Term("numbers", "fvie"), 2, ir, false);
assertTrue(similar.length > 0);
assertEquals("five", similar[0].string);
similar = spellChecker.suggestSimilar(new Term("numbers", "fiv"), 2, ir, false);
assertTrue(similar.length > 0);
assertEquals("five", similar[0].string);
similar = spellChecker.suggestSimilar(new Term("numbers", "fives"), 2, ir, false);
assertTrue(similar.length > 0);
assertEquals("five", similar[0].string);
assertTrue(similar.length > 0);
similar = spellChecker.suggestSimilar(new Term("numbers", "fie"), 2, ir, false);
assertEquals("five", similar[0].string);
// add some more documents
for (int i = 1000; i < 1100; i++) {
Document doc = new Document();
doc.add(newField("numbers", English.intToEnglish(i), Field.Store.NO, Field.Index.ANALYZED));
writer.addDocument(doc);
}
ir.close();
ir = writer.getReader();
// look ma, no spellcheck index rebuild
similar = spellChecker.suggestSimilar(new Term("numbers", "tousand"), 10, ir, false);
assertTrue(similar.length > 0);
assertEquals("thousand", similar[0].string);
ir.close();
writer.close();
dir.close();
}
public void testOptions() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random, dir,
new MockAnalyzer(MockTokenizer.SIMPLE, true));
Document doc = new Document();
doc.add(newField("text", "foobar", Field.Store.NO, Field.Index.ANALYZED));
writer.addDocument(doc);
doc.add(newField("text", "foobar", Field.Store.NO, Field.Index.ANALYZED));
writer.addDocument(doc);
doc.add(newField("text", "foobaz", Field.Store.NO, Field.Index.ANALYZED));
writer.addDocument(doc);
doc.add(newField("text", "fobar", Field.Store.NO, Field.Index.ANALYZED));
writer.addDocument(doc);
IndexReader ir = writer.getReader();
DirectSpellChecker spellChecker = new DirectSpellChecker();
spellChecker.setMaxQueryFrequency(0F);
SuggestWord[] similar = spellChecker.suggestSimilar(new Term("text", "fobar"), 1, ir, true);
assertEquals(0, similar.length);
spellChecker = new DirectSpellChecker(); // reset defaults
spellChecker.setMinQueryLength(5);
similar = spellChecker.suggestSimilar(new Term("text", "foba"), 1, ir, true);
assertEquals(0, similar.length);
spellChecker = new DirectSpellChecker(); // reset defaults
spellChecker.setMaxEdits(1);
similar = spellChecker.suggestSimilar(new Term("text", "foobazzz"), 1, ir, true);
assertEquals(0, similar.length);
spellChecker = new DirectSpellChecker(); // reset defaults
spellChecker.setAccuracy(0.9F);
similar = spellChecker.suggestSimilar(new Term("text", "foobazzz"), 1, ir, true);
assertEquals(0, similar.length);
spellChecker = new DirectSpellChecker(); // reset defaults
spellChecker.setMinPrefix(0);
similar = spellChecker.suggestSimilar(new Term("text", "roobaz"), 1, ir, true);
assertEquals(1, similar.length);
spellChecker = new DirectSpellChecker(); // reset defaults
spellChecker.setMinPrefix(1);
similar = spellChecker.suggestSimilar(new Term("text", "roobaz"), 1, ir, true);
assertEquals(0, similar.length);
ir.close();
writer.close();
dir.close();
}
}

View File

@ -514,4 +514,14 @@ public final class FuzzyTermsEnum extends TermsEnum {
(int)((1-minSimilarity) * (Math.min(text.length, m) + realPrefixLength)));
}
}
/** @lucene.internal */
public float getMinSimilarity() {
return minSimilarity;
}
/** @lucene.internal */
public float getScaleFactor() {
return scale_factor;
}
}

View File

@ -280,7 +280,9 @@ New Features
after parsing the functions, instead of silently ignoring it.
This allows expressions like q=dist(2,vector(1,2),$pt)&pt=3,4 (yonik)
* LUCENE-2507: Added DirectSolrSpellChecker, which uses Lucene's DirectSpellChecker
to retrieve correction candidates directly from the term dictionary using
levenshtein automata. (rmuir)
Optimizations
----------------------

View File

@ -708,6 +708,18 @@
<str name="spellcheckIndexDir">./spellchecker</str>
</lst>
<!-- a spellchecker that uses no auxiliary index
<lst name="spellchecker">
<str name="name">default</str>
<str name="field">name</str>
<str name="classname">solr.DirectSolrSpellChecker</str>
&lt;!&ndash; Note: this value is just for the example,
to correct hell to dell. In practice a value of 1
is highly recommended.
&ndash;&gt;
<str name="minPrefix">0</str>
</lst>
-->
<!-- a spellchecker that uses a different distance measure
<lst name="spellchecker">
<str name="name">jarowinkler</str>

View File

@ -0,0 +1,191 @@
package org.apache.solr.spelling;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.IOException;
import java.util.Comparator;
import org.apache.lucene.analysis.Token;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.spell.DirectSpellChecker;
import org.apache.lucene.search.spell.StringDistance;
import org.apache.lucene.search.spell.SuggestWord;
import org.apache.lucene.search.spell.SuggestWordFrequencyComparator;
import org.apache.lucene.search.spell.SuggestWordQueue;
import org.apache.solr.common.util.NamedList;
import org.apache.solr.core.SolrCore;
import org.apache.solr.search.SolrIndexSearcher;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Spellchecker implementation that uses {@link DirectSpellChecker}
* <p>
* Requires no auxiliary index or data structure.
* <p>
* Supported options:
* <ul>
* <li>field: Used as the source of terms.
* <li>distanceMeasure: Sets {@link DirectSpellChecker#setDistance(StringDistance)}.
* Note: to set the default {@link DirectSpellChecker#INTERNAL_LEVENSHTEIN}, use "internal".
* <li>accuracy: Sets {@link DirectSpellChecker#setAccuracy(float)}.
* <li>maxEdits: Sets {@link DirectSpellChecker#setMaxEdits(int)}.
* <li>minPrefix: Sets {@link DirectSpellChecker#setMinPrefix(int)}.
* <li>maxInspections: Sets {@link DirectSpellChecker#setMaxInspections(int)}.
* <li>comparatorClass: Sets {@link DirectSpellChecker#setComparator(Comparator)}.
* Note: score-then-frequency can be specified as "score" and frequency-then-score
* can be specified as "freq".
* <li>thresholdTokenFrequency: sets {@link DirectSpellChecker#setThresholdFrequency(float)}.
* <li>minQueryLength: sets {@link DirectSpellChecker#setMinQueryLength(int)}.
* <li>maxQueryFrequency: sets {@link DirectSpellChecker#setMaxQueryFrequency(float)}.
* </ul>
* @see DirectSpellChecker
*/
public class DirectSolrSpellChecker extends SolrSpellChecker {
private static final Logger LOG = LoggerFactory.getLogger(DirectSolrSpellChecker.class);
/** Field to use as the source of terms */
public static final String FIELD = "field";
public static final String STRING_DISTANCE = "distanceMeasure";
public static final String INTERNAL_DISTANCE = "internal";
public static final String ACCURACY = "accuracy";
public static final float DEFAULT_ACCURACY = 0.5f;
public static final String MAXEDITS = "maxEdits";
public static final int DEFAULT_MAXEDITS = 2;
public static final String MINPREFIX = "minPrefix";
public static final int DEFAULT_MINPREFIX = 1;
public static final String MAXINSPECTIONS = "maxInspections";
public static final int DEFAULT_MAXINSPECTIONS = 5;
public static final String COMPARATOR_CLASS = "comparatorClass";
public static final String SCORE_COMP = "score";
public static final String FREQ_COMP = "freq";
public static final String THRESHOLD = "thresholdTokenFrequency";
public static final float DEFAULT_THRESHOLD = 0.0f;
public static final String MINQUERYLENGTH = "minQueryLength";
public static final int DEFAULT_MINQUERYLENGTH = 4;
public static final String MAXQUERYFREQUENCY = "maxQueryFrequency";
public static final float DEFAULT_MAXQUERYFREQUENCY = 0.01f;
private DirectSpellChecker checker = new DirectSpellChecker();
private String field;
@Override
public String init(NamedList config, SolrCore core) {
LOG.info("init: " + config);
String name = super.init(config, core);
Comparator<SuggestWord> comp = SuggestWordQueue.DEFAULT_COMPARATOR;
String compClass = (String) config.get(COMPARATOR_CLASS);
if (compClass != null) {
if (compClass.equalsIgnoreCase(SCORE_COMP))
comp = SuggestWordQueue.DEFAULT_COMPARATOR;
else if (compClass.equalsIgnoreCase(FREQ_COMP))
comp = new SuggestWordFrequencyComparator();
else //must be a FQCN
comp = (Comparator<SuggestWord>) core.getResourceLoader().newInstance(compClass);
}
StringDistance sd = DirectSpellChecker.INTERNAL_LEVENSHTEIN;
String distClass = (String) config.get(STRING_DISTANCE);
if (distClass != null && !distClass.equalsIgnoreCase(INTERNAL_DISTANCE))
sd = (StringDistance) core.getResourceLoader().newInstance(distClass);
field = (String) config.get(FIELD);
float minAccuracy = DEFAULT_ACCURACY;
String accuracy = (String) config.get(ACCURACY);
if (accuracy != null)
minAccuracy = Float.parseFloat(accuracy);
int maxEdits = DEFAULT_MAXEDITS;
String edits = (String) config.get(MAXEDITS);
if (edits != null)
maxEdits = Integer.parseInt(edits);
int minPrefix = DEFAULT_MINPREFIX;
String prefix = (String) config.get(MINPREFIX);
if (prefix != null)
minPrefix = Integer.parseInt(prefix);
int maxInspections = DEFAULT_MAXINSPECTIONS;
String inspections = (String) config.get(MAXINSPECTIONS);
if (inspections != null)
maxInspections = Integer.parseInt(inspections);
float minThreshold = DEFAULT_THRESHOLD;
String threshold = (String) config.get(THRESHOLD);
if (threshold != null)
minThreshold = Float.parseFloat(threshold);
int minQueryLength = DEFAULT_MINQUERYLENGTH;
String queryLength = (String) config.get(MINQUERYLENGTH);
if (queryLength != null)
minQueryLength = Integer.parseInt(queryLength);
float maxQueryFrequency = DEFAULT_MAXQUERYFREQUENCY;
String queryFreq = (String) config.get(MAXQUERYFREQUENCY);
if (queryFreq != null)
maxQueryFrequency = Float.parseFloat(queryFreq);
checker.setComparator(comp);
checker.setDistance(sd);
checker.setMaxEdits(maxEdits);
checker.setMinPrefix(minPrefix);
checker.setAccuracy(minAccuracy);
checker.setThresholdFrequency(minThreshold);
checker.setMaxInspections(maxInspections);
checker.setMinQueryLength(minQueryLength);
checker.setMaxQueryFrequency(maxQueryFrequency);
checker.setLowerCaseTerms(false);
return name;
}
@Override
public void reload(SolrCore core, SolrIndexSearcher searcher)
throws IOException {}
@Override
public void build(SolrCore core, SolrIndexSearcher searcher) {}
@Override
public SpellingResult getSuggestions(SpellingOptions options)
throws IOException {
LOG.debug("getSuggestions: " + options.tokens);
SpellingResult result = new SpellingResult();
float accuracy = (options.accuracy == Float.MIN_VALUE) ? checker.getAccuracy() : options.accuracy;
for (Token token : options.tokens) {
SuggestWord[] suggestions = checker.suggestSimilar(new Term(field, token.toString()),
options.count, options.reader, options.onlyMorePopular, accuracy);
for (SuggestWord suggestion : suggestions)
result.add(token, suggestion.string, suggestion.freq);
}
return result;
}
}

View File

@ -0,0 +1,78 @@
package org.apache.solr.spelling;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.util.Collection;
import java.util.Map;
import org.apache.lucene.analysis.Token;
import org.apache.lucene.index.IndexReader;
import org.apache.solr.SolrTestCaseJ4;
import org.apache.solr.common.util.NamedList;
import org.apache.solr.core.SolrCore;
import org.junit.BeforeClass;
import org.junit.Test;
/**
* Simple tests for {@link DirectSolrSpellChecker}
*/
public class DirectSolrSpellCheckerTest extends SolrTestCaseJ4 {
private static SpellingQueryConverter queryConverter;
@BeforeClass
public static void beforeClass() throws Exception {
initCore("solrconfig.xml","schema.xml");
//Index something with a title
assertNull(h.validateUpdate(adoc("id", "0", "teststop", "This is a title")));
assertNull(h.validateUpdate(adoc("id", "1", "teststop", "The quick reb fox jumped over the lazy brown dogs.")));
assertNull(h.validateUpdate(adoc("id", "2", "teststop", "This is a Solr")));
assertNull(h.validateUpdate(adoc("id", "3", "teststop", "solr foo")));
assertNull(h.validateUpdate(commit()));
queryConverter = new SimpleQueryConverter();
queryConverter.init(new NamedList());
}
@Test
public void test() throws Exception {
DirectSolrSpellChecker checker = new DirectSolrSpellChecker();
NamedList spellchecker = new NamedList();
spellchecker.add("classname", DirectSolrSpellChecker.class.getName());
spellchecker.add(DirectSolrSpellChecker.FIELD, "teststop");
spellchecker.add(DirectSolrSpellChecker.MINQUERYLENGTH, "2"); // we will try "fob"
SolrCore core = h.getCore();
checker.init(spellchecker, core);
IndexReader reader = core.getSearcher().get().getReader();
Collection<Token> tokens = queryConverter.convert("fob");
SpellingOptions spellOpts = new SpellingOptions(tokens, reader);
SpellingResult result = checker.getSuggestions(spellOpts);
assertTrue("result is null and it shouldn't be", result != null);
Map<String, Integer> suggestions = result.get(tokens.iterator().next());
Map.Entry<String, Integer> entry = suggestions.entrySet().iterator().next();
assertTrue(entry.getKey() + " is not equal to " + "foo", entry.getKey().equals("foo") == true);
assertFalse(entry.getValue() + " equals: " + SpellingResult.NO_FREQUENCY_INFO, entry.getValue() == SpellingResult.NO_FREQUENCY_INFO);
spellOpts.tokens = queryConverter.convert("super");
result = checker.getSuggestions(spellOpts);
assertTrue("result is null and it shouldn't be", result != null);
suggestions = result.get(tokens.iterator().next());
assertTrue("suggestions is not null and it should be", suggestions == null);
}
}