LUCENE-3867: Fix incorrect short-circuit, improve memory usage.

git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1304485 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Uwe Schindler 2012-03-23 17:05:58 +00:00
parent 3a8241485d
commit 56a177774e
5 changed files with 654 additions and 210 deletions

View File

@ -27,6 +27,11 @@ import org.apache.lucene.LucenePackage;
public final class Constants { public final class Constants {
private Constants() {} // can't construct private Constants() {} // can't construct
/** JVM vendor info. */
public static final String JVM_VENDOR = System.getProperty("java.vm.vendor");
public static final String JVM_VERSION = System.getProperty("java.vm.version");
public static final String JVM_NAME = System.getProperty("java.vm.name");
/** The value of <tt>System.getProperty("java.version")<tt>. **/ /** The value of <tt>System.getProperty("java.version")<tt>. **/
public static final String JAVA_VERSION = System.getProperty("java.version"); public static final String JAVA_VERSION = System.getProperty("java.version");

View File

@ -24,14 +24,50 @@ import java.text.DecimalFormatSymbols;
import java.util.*; import java.util.*;
/** /**
* Estimates the size of Java objects using a simple memory model * Estimates the size (memory representation) of Java objects.
* for primitive size information. *
* @see #sizeOf(Object)
* @see #shallowSizeOf(Object)
* @see #shallowSizeOfInstance(Class)
* *
* @lucene.internal * @lucene.internal
*/ */
public final class RamUsageEstimator { public final class RamUsageEstimator {
/**
* JVM diagnostic features.
*/
public static enum JvmFeature {
OBJECT_REFERENCE_SIZE("Object reference size estimated using array index scale."),
ARRAY_HEADER_SIZE("Array header size estimated using array based offset."),
FIELD_OFFSETS("Shallow instance size based on field offsets."),
OBJECT_ALIGNMENT("Object alignment retrieved from HotSpotDiagnostic MX bean.");
private RamUsageEstimator() {} // no instance public final String description;
private JvmFeature(String description) {
this.description = description;
}
@Override
public String toString() {
return super.name() + " (" + description + ")";
}
}
/** JVM info string for debugging and reports. */
public final static String JVM_INFO_STRING;
/** One kilobyte bytes. */
public static final long ONE_KB = 1024;
/** One megabyte bytes. */
public static final long ONE_MB = ONE_KB * ONE_KB;
/** One gigabyte bytes.*/
public static final long ONE_GB = ONE_KB * ONE_MB;
/** No instantiation. */
private RamUsageEstimator() {}
public final static int NUM_BYTES_BOOLEAN = 1; public final static int NUM_BYTES_BOOLEAN = 1;
public final static int NUM_BYTES_BYTE = 1; public final static int NUM_BYTES_BYTE = 1;
@ -42,9 +78,19 @@ public final class RamUsageEstimator {
public final static int NUM_BYTES_LONG = 8; public final static int NUM_BYTES_LONG = 8;
public final static int NUM_BYTES_DOUBLE = 8; public final static int NUM_BYTES_DOUBLE = 8;
/**
* Number of bytes this jvm uses to represent an object reference.
*/
public final static int NUM_BYTES_OBJECT_REF; public final static int NUM_BYTES_OBJECT_REF;
/**
* Number of bytes to represent an object header (no fields, no alignments).
*/
public final static int NUM_BYTES_OBJECT_HEADER; public final static int NUM_BYTES_OBJECT_HEADER;
/**
* Number of bytes to represent an array header (no content, but with alignments).
*/
public final static int NUM_BYTES_ARRAY_HEADER; public final static int NUM_BYTES_ARRAY_HEADER;
/** /**
@ -69,9 +115,20 @@ public final class RamUsageEstimator {
primitiveSizes.put(long.class, Integer.valueOf(NUM_BYTES_LONG)); primitiveSizes.put(long.class, Integer.valueOf(NUM_BYTES_LONG));
} }
/**
* A handle to <code>sun.misc.Unsafe</code>.
*/
private final static Object theUnsafe; private final static Object theUnsafe;
/**
* A handle to <code>sun.misc.Unsafe#fieldOffset(Field)</code>.
*/
private final static Method objectFieldOffsetMethod; private final static Method objectFieldOffsetMethod;
private final static boolean useUnsafe, isSupportedJVM;
/**
* All the supported "internal" JVM features detected at clinit.
*/
private final static EnumSet<JvmFeature> supportedFeatures;
/** /**
* Initialize constants and try to collect information about the JVM internals. * Initialize constants and try to collect information about the JVM internals.
@ -85,80 +142,71 @@ public final class RamUsageEstimator {
// so on 64 bit JVMs it'll be align(16 + 4, @8) = 24. // so on 64 bit JVMs it'll be align(16 + 4, @8) = 24.
int arrayHeader = Constants.JRE_IS_64BIT ? 24 : 12; int arrayHeader = Constants.JRE_IS_64BIT ? 24 : 12;
Object unsafe = null; supportedFeatures = EnumSet.noneOf(JvmFeature.class);
Method objectFieldOffsetM = null;
boolean supportedJvm = true; Class<?> unsafeClass = null;
Object tempTheUnsafe = null;
try { try {
final Class<?> unsafeClass = Class.forName("sun.misc.Unsafe"); unsafeClass = Class.forName("sun.misc.Unsafe");
final Field unsafeField = unsafeClass.getDeclaredField("theUnsafe"); final Field unsafeField = unsafeClass.getDeclaredField("theUnsafe");
unsafeField.setAccessible(true); unsafeField.setAccessible(true);
unsafe = unsafeField.get(null); tempTheUnsafe = unsafeField.get(null);
} catch (Exception e) {
// Ignore.
}
theUnsafe = tempTheUnsafe;
// get object reference size by getting scale factor of Object[] arrays: // get object reference size by getting scale factor of Object[] arrays:
try { try {
final Method arrayIndexScaleM = unsafeClass.getMethod("arrayIndexScale", Class.class); final Method arrayIndexScaleM = unsafeClass.getMethod("arrayIndexScale", Class.class);
referenceSize = ((Number) arrayIndexScaleM.invoke(unsafe, Object[].class)).intValue(); referenceSize = ((Number) arrayIndexScaleM.invoke(theUnsafe, Object[].class)).intValue();
} catch (Exception e) { supportedFeatures.add(JvmFeature.OBJECT_REFERENCE_SIZE);
// ignore } catch (Exception e) {
supportedJvm = false; // ignore.
} }
// updated best guess based on reference size: // "best guess" based on reference size. We will attempt to modify
objectHeader = Constants.JRE_IS_64BIT ? (8 + referenceSize) : 8; // these to exact values if there is supported infrastructure.
arrayHeader = Constants.JRE_IS_64BIT ? (8 + 2 * referenceSize) : 12; objectHeader = Constants.JRE_IS_64BIT ? (8 + referenceSize) : 8;
arrayHeader = Constants.JRE_IS_64BIT ? (8 + 2 * referenceSize) : 12;
// get the object header size: // get the object header size:
// - first try out if the field offsets are not scaled (see warning in Unsafe docs) // - first try out if the field offsets are not scaled (see warning in Unsafe docs)
// - get the object header size by getting the field offset of the first field of a dummy object // - get the object header size by getting the field offset of the first field of a dummy object
// If the scaling is byte-wise and unsafe is available, enable dynamic size measurement for // If the scaling is byte-wise and unsafe is available, enable dynamic size measurement for
// estimateRamUsage(). // estimateRamUsage().
try { Method tempObjectFieldOffsetMethod = null;
objectFieldOffsetM = unsafeClass.getMethod("objectFieldOffset", Field.class); try {
final Field dummy1Field = DummyTwoLongObject.class.getDeclaredField("dummy1"); final Method objectFieldOffsetM = unsafeClass.getMethod("objectFieldOffset", Field.class);
final int ofs1 = ((Number) objectFieldOffsetM.invoke(unsafe, dummy1Field)).intValue(); final Field dummy1Field = DummyTwoLongObject.class.getDeclaredField("dummy1");
final Field dummy2Field = DummyTwoLongObject.class.getDeclaredField("dummy2"); final int ofs1 = ((Number) objectFieldOffsetM.invoke(theUnsafe, dummy1Field)).intValue();
final int ofs2 = ((Number) objectFieldOffsetM.invoke(unsafe, dummy2Field)).intValue(); final Field dummy2Field = DummyTwoLongObject.class.getDeclaredField("dummy2");
if (Math.abs(ofs2 - ofs1) == NUM_BYTES_LONG) { final int ofs2 = ((Number) objectFieldOffsetM.invoke(theUnsafe, dummy2Field)).intValue();
final Field baseField = DummyOneFieldObject.class.getDeclaredField("base"); if (Math.abs(ofs2 - ofs1) == NUM_BYTES_LONG) {
objectHeader = ((Number) objectFieldOffsetM.invoke(unsafe, baseField)).intValue(); final Field baseField = DummyOneFieldObject.class.getDeclaredField("base");
} else { objectHeader = ((Number) objectFieldOffsetM.invoke(theUnsafe, baseField)).intValue();
// it is not safe to use Unsafe.objectFieldOffset(), supportedFeatures.add(JvmFeature.FIELD_OFFSETS);
// as it may be scaled (see "cookie" comment in Unsafe), better use defaults tempObjectFieldOffsetMethod = objectFieldOffsetM;
// and conventional size estimation:
objectFieldOffsetM = null;
supportedJvm = false;
}
} catch (Exception e) {
// on exception ensure useUnsafe will be set to false later:
objectFieldOffsetM = null;
supportedJvm = false;
}
// Get the array header size by retrieving the array base offset
// (offset of the first element of an array).
try {
final Method arrayBaseOffsetM = unsafeClass.getMethod("arrayBaseOffset", Class.class);
// we calculate that only for byte[] arrays, it's actually the same for all types:
arrayHeader = ((Number) arrayBaseOffsetM.invoke(unsafe, byte[].class)).intValue();
} catch (Exception e) {
// ignore
supportedJvm = false;
} }
} catch (Exception e) { } catch (Exception e) {
// ignore // Ignore.
supportedJvm = false; }
objectFieldOffsetMethod = tempObjectFieldOffsetMethod;
// Get the array header size by retrieving the array base offset
// (offset of the first element of an array).
try {
final Method arrayBaseOffsetM = unsafeClass.getMethod("arrayBaseOffset", Class.class);
// we calculate that only for byte[] arrays, it's actually the same for all types:
arrayHeader = ((Number) arrayBaseOffsetM.invoke(theUnsafe, byte[].class)).intValue();
supportedFeatures.add(JvmFeature.ARRAY_HEADER_SIZE);
} catch (Exception e) {
// Ignore.
} }
NUM_BYTES_OBJECT_REF = referenceSize; NUM_BYTES_OBJECT_REF = referenceSize;
NUM_BYTES_OBJECT_HEADER = objectHeader; NUM_BYTES_OBJECT_HEADER = objectHeader;
NUM_BYTES_ARRAY_HEADER = arrayHeader; NUM_BYTES_ARRAY_HEADER = arrayHeader;
useUnsafe = (unsafe != null && objectFieldOffsetM != null);
if (useUnsafe) {
theUnsafe = unsafe;
objectFieldOffsetMethod = objectFieldOffsetM;
} else {
theUnsafe = objectFieldOffsetMethod = null;
}
// Try to get the object alignment (the default seems to be 8 on Hotspot, // Try to get the object alignment (the default seems to be 8 on Hotspot,
// regardless of the architecture). // regardless of the architecture).
@ -176,18 +224,34 @@ public final class RamUsageEstimator {
objectAlignment = Integer.parseInt( objectAlignment = Integer.parseInt(
vmOption.getClass().getMethod("getValue").invoke(vmOption).toString() vmOption.getClass().getMethod("getValue").invoke(vmOption).toString()
); );
supportedFeatures.add(JvmFeature.OBJECT_ALIGNMENT);
} catch (InvocationTargetException ite) { } catch (InvocationTargetException ite) {
if (!(ite.getCause() instanceof IllegalArgumentException)) if (!(ite.getCause() instanceof IllegalArgumentException))
throw ite; throw ite;
// ignore the error completely and use default of 8 (32 bit JVMs). // ignore the error completely and use default of 8 (32 bit JVMs).
} }
} catch (Exception e) { } catch (Exception e) {
// ignore // Ignore.
supportedJvm = false;
} }
NUM_BYTES_OBJECT_ALIGNMENT = objectAlignment; NUM_BYTES_OBJECT_ALIGNMENT = objectAlignment;
isSupportedJVM = supportedJvm; JVM_INFO_STRING = "[JVM: " +
Constants.JVM_NAME + ", " + Constants.JVM_VERSION + ", " + Constants.JVM_VENDOR + ", " +
Constants.JAVA_VENDOR + ", " + Constants.JAVA_VERSION + "]";
}
/**
* Cached information about a given class.
*/
private static final class ClassCache {
public final long alignedShallowInstanceSize;
public final Field[] referenceFields;
public ClassCache(long alignedShallowInstanceSize, Field[] referenceFields) {
this.alignedShallowInstanceSize = alignedShallowInstanceSize;
this.referenceFields = referenceFields;
}
} }
// Object with just one field to determine the object header size by getting the offset of the dummy field: // Object with just one field to determine the object header size by getting the offset of the dummy field:
@ -204,14 +268,14 @@ public final class RamUsageEstimator {
} }
/** /**
* Returns true, if the current JVM is supported by {@code RamUsageEstimator}. * Returns true, if the current JVM is fully supported by {@code RamUsageEstimator}.
* If this method returns {@code false} you are maybe using a 3rd party Java VM * If this method returns {@code false} you are maybe using a 3rd party Java VM
* that is not supporting Oracle/Sun private APIs. The memory estimates can be * that is not supporting Oracle/Sun private APIs. The memory estimates can be
* imprecise then (no way of detecting compressed references, alignments, etc.). * imprecise then (no way of detecting compressed references, alignments, etc.).
* Lucene still tries to use sensible defaults. * Lucene still tries to use sensible defaults.
*/ */
public static boolean isSupportedJVM() { public static boolean isSupportedJVM() {
return isSupportedJVM; return supportedFeatures.size() == JvmFeature.values().length;
} }
/** /**
@ -272,13 +336,7 @@ public final class RamUsageEstimator {
* should be GCed.</p> * should be GCed.</p>
*/ */
public static long sizeOf(Object obj) { public static long sizeOf(Object obj) {
final Set<Object> seen = Collections.newSetFromMap(new IdentityHashMap<Object,Boolean>(64)); return measureObjectSize(obj);
try {
return measureObjectSize(obj, seen);
} finally {
// Help the GC.
seen.clear();
}
} }
/** /**
@ -292,7 +350,7 @@ public final class RamUsageEstimator {
if (obj == null) return 0; if (obj == null) return 0;
final Class<?> clz = obj.getClass(); final Class<?> clz = obj.getClass();
if (clz.isArray()) { if (clz.isArray()) {
return measureArraySize(obj, null); return shallowSizeOfArray(obj);
} else { } else {
return shallowSizeOfInstance(clz); return shallowSizeOfInstance(clz);
} }
@ -302,8 +360,8 @@ public final class RamUsageEstimator {
* Returns the shallow instance size in bytes an instance of the given class would occupy. * Returns the shallow instance size in bytes an instance of the given class would occupy.
* This works with all conventional classes and primitive types, but not with arrays * This works with all conventional classes and primitive types, but not with arrays
* (the size then depends on the number of elements and varies from object to object). * (the size then depends on the number of elements and varies from object to object).
* Use the array-instance methods instead.
* *
* @see #shallowSizeOf(Object)
* @throws IllegalArgumentException if {@code clazz} is an array class. * @throws IllegalArgumentException if {@code clazz} is an array class.
*/ */
public static long shallowSizeOfInstance(Class<?> clazz) { public static long shallowSizeOfInstance(Class<?> clazz) {
@ -315,85 +373,161 @@ public final class RamUsageEstimator {
long size = NUM_BYTES_OBJECT_HEADER; long size = NUM_BYTES_OBJECT_HEADER;
// Walk type hierarchy // Walk type hierarchy
while (clazz != null) { for (;clazz != null; clazz = clazz.getSuperclass()) {
final Field[] fields = clazz.getDeclaredFields(); final Field[] fields = clazz.getDeclaredFields();
boolean fieldFound = false; for (Field f : fields) {
for (final Field f : fields) { if (!Modifier.isStatic(f.getModifiers())) {
if (Modifier.isStatic(f.getModifiers())) { size = adjustForField(size, f);
continue;
} }
size = reflectFieldSize(size, f);
fieldFound = true;
} }
if (useUnsafe && fieldFound) {
// no need to recurse to superclasses, as all fields are
// added at the end, so we won't find any larger offset
break;
}
clazz = clazz.getSuperclass();
} }
return alignObjectSize(size); return alignObjectSize(size);
} }
/** /**
* Recursive descend into an object. * Return shallow size of any <code>array</code>.
*/ */
private static long measureObjectSize(Object obj, Set<Object> seen) { private static long shallowSizeOfArray(Object array) {
if (obj == null) { long size = NUM_BYTES_ARRAY_HEADER;
return 0; final int len = Array.getLength(array);
if (len > 0) {
Class<?> arrayElementClazz = array.getClass().getComponentType();
if (arrayElementClazz.isPrimitive()) {
size += (long) len * primitiveSizes.get(arrayElementClazz);
} else {
size += (long) NUM_BYTES_OBJECT_REF * len;
}
} }
return alignObjectSize(size);
}
// skip if we have seen before /*
if (seen.contains(obj)) { * Non-recursive version of object descend. This consumes more memory than recursive in-depth
return 0; * traversal but prevents stack overflows on long chains of objects
} * or complex graphs (a max. recursion depth on my machine was ~5000 objects linked in a chain
* so not too much).
*/
private static long measureObjectSize(Object root) {
// Objects seen so far.
final IdentityHashSet<Object> seen = new IdentityHashSet<Object>();
// Class cache with reference Field and precalculated shallow size.
final IdentityHashMap<Class<?>, ClassCache> classCache = new IdentityHashMap<Class<?>, ClassCache>();
// Stack of objects pending traversal. Recursion caused stack overflows.
final ArrayList<Object> stack = new ArrayList<Object>();
stack.add(root);
// add to seen long totalSize = 0;
seen.add(obj); while (!stack.isEmpty()) {
final Object ob = stack.remove(stack.size() - 1);
Class<?> clazz = obj.getClass(); if (ob == null || seen.contains(ob)) {
if (clazz.isArray()) { continue;
return measureArraySize(obj, seen); }
} seen.add(ob);
long size = NUM_BYTES_OBJECT_HEADER; final Class<?> obClazz = ob.getClass();
long innerSize = 0L; if (obClazz.isArray()) {
/*
* Consider an array, possibly of primitive types. Push any of its references to
* the processing stack and accumulate this array's shallow size.
*/
long size = NUM_BYTES_ARRAY_HEADER;
final int len = Array.getLength(ob);
if (len > 0) {
Class<?> componentClazz = obClazz.getComponentType();
if (componentClazz.isPrimitive()) {
size += (long) len * primitiveSizes.get(componentClazz);
} else {
size += (long) NUM_BYTES_OBJECT_REF * len;
// walk type hierarchy // Push refs for traversal later.
while (clazz != null) { for (int i = len; --i >= 0 ;) {
final Field[] fields = clazz.getDeclaredFields(); final Object o = Array.get(ob, i);
for (final Field f : fields) { if (o != null && !seen.contains(o)) {
if (Modifier.isStatic(f.getModifiers())) { stack.add(o);
continue; }
}
}
} }
totalSize += alignObjectSize(size);
} else {
/*
* Consider an object. Push any references it has to the processing stack
* and accumulate this object's shallow size.
*/
try {
ClassCache cachedInfo = classCache.get(obClazz);
if (cachedInfo == null) {
classCache.put(obClazz, cachedInfo = createCacheEntry(obClazz));
}
size = reflectFieldSize(size, f); for (Field f : cachedInfo.referenceFields) {
// Fast path to eliminate redundancies.
final Object o = f.get(ob);
if (o != null && !seen.contains(o)) {
stack.add(o);
}
}
if (!f.getType().isPrimitive()) { totalSize += cachedInfo.alignedShallowInstanceSize;
try { } catch (IllegalAccessException e) {
// this should never happen as we enabled setAccessible().
throw new RuntimeException("Reflective field access failed?", e);
}
}
}
// Help the GC (?).
seen.clear();
stack.clear();
classCache.clear();
return totalSize;
}
/**
* Create a cached information about shallow size and reference fields for
* a given class.
*/
private static ClassCache createCacheEntry(final Class<?> clazz) {
ClassCache cachedInfo;
long shallowInstanceSize = NUM_BYTES_OBJECT_HEADER;
final ArrayList<Field> referenceFields = new ArrayList<Field>(32);
for (Class<?> c = clazz; c != null; c = c.getSuperclass()) {
final Field[] fields = c.getDeclaredFields();
for (final Field f : fields) {
if (!Modifier.isStatic(f.getModifiers())) {
shallowInstanceSize = adjustForField(shallowInstanceSize, f);
if (!f.getType().isPrimitive()) {
f.setAccessible(true); f.setAccessible(true);
innerSize += measureObjectSize(f.get(obj), seen); referenceFields.add(f);
} catch (IllegalAccessException ex) {
// this should never happen as we enable setAccessible()!
throw new RuntimeException("Cannot reflect instance field: " +
f.getDeclaringClass().getName() + "#" + f.getName(), ex);
} }
} }
} }
clazz = clazz.getSuperclass();
} }
return alignObjectSize(size) + innerSize;
cachedInfo = new ClassCache(
alignObjectSize(shallowInstanceSize),
referenceFields.toArray(new Field[referenceFields.size()]));
return cachedInfo;
} }
private static long reflectFieldSize(long size, final Field f) { /**
* This method returns the maximum representation size of an object. <code>sizeSoFar</code>
* is the object's size measured so far. <code>f</code> is the field being probed.
*
* <p>The returned offset will be the maximum of whatever was measured so far and
* <code>f</code> field's offset and representation size (unaligned).
*/
private static long adjustForField(long sizeSoFar, final Field f) {
final Class<?> type = f.getType(); final Class<?> type = f.getType();
final int fsize = type.isPrimitive() ? primitiveSizes.get(type) : NUM_BYTES_OBJECT_REF; final int fsize = type.isPrimitive() ? primitiveSizes.get(type) : NUM_BYTES_OBJECT_REF;
if (useUnsafe) { if (objectFieldOffsetMethod != null) {
try { try {
final long offsetPlusSize = final long offsetPlusSize =
((Number) objectFieldOffsetMethod.invoke(theUnsafe, f)).longValue() + fsize; ((Number) objectFieldOffsetMethod.invoke(theUnsafe, f)).longValue() + fsize;
return Math.max(size, offsetPlusSize); return Math.max(sizeSoFar, offsetPlusSize);
} catch (IllegalAccessException ex) { } catch (IllegalAccessException ex) {
throw new RuntimeException("Access problem with sun.misc.Unsafe", ex); throw new RuntimeException("Access problem with sun.misc.Unsafe", ex);
} catch (InvocationTargetException ite) { } catch (InvocationTargetException ite) {
@ -409,40 +543,22 @@ public final class RamUsageEstimator {
f.getDeclaringClass().getName() + "#" + f.getName(), cause); f.getDeclaringClass().getName() + "#" + f.getName(), cause);
} }
} else { } else {
return size + fsize; // TODO: No alignments based on field type/ subclass fields alignments?
return sizeSoFar + fsize;
} }
} }
/** /** Return the set of unsupported JVM features that improve the estimation. */
* Return the deep size of an <code>array</code>, including public static EnumSet<JvmFeature> getUnsupportedFeatures() {
* sub-objects if there are any. EnumSet<JvmFeature> unsupported = EnumSet.allOf(JvmFeature.class);
* unsupported.removeAll(supportedFeatures);
* @param seen A set of already seen objects. If <code>null</code> no references return unsupported;
* are followed and this method returns shallow size.
*/
private static long measureArraySize(Object array, Set<Object> seen) {
long size = NUM_BYTES_ARRAY_HEADER;
final int len = Array.getLength(array);
if (len > 0) {
Class<?> arrayElementClazz = array.getClass().getComponentType();
if (arrayElementClazz.isPrimitive()) {
size += (long) len * primitiveSizes.get(arrayElementClazz);
} else {
size += (long) NUM_BYTES_OBJECT_REF * len;
if (seen != null) {
for (int i = 0; i < len; i++) {
size += measureObjectSize(Array.get(array, i), seen);
}
}
}
}
return alignObjectSize(size);
} }
public static final long ONE_KB = 1024; /** Return the set of supported JVM features that improve the estimation. */
public static final long ONE_MB = ONE_KB * ONE_KB; public static EnumSet<JvmFeature> getSupportedFeatures() {
public static final long ONE_GB = ONE_KB * ONE_MB; return EnumSet.copyOf(supportedFeatures);
}
/** /**
* Returns <code>size</code> in human-readable units (GB, MB, KB or bytes). * Returns <code>size</code> in human-readable units (GB, MB, KB or bytes).
@ -466,4 +582,252 @@ public final class RamUsageEstimator {
return bytes + " bytes"; return bytes + " bytes";
} }
} }
/**
* Return a human-readable size of a given object.
* @see #sizeOf(Object)
* @see #humanReadableUnits(long)
*/
public static String humanSizeOf(Object object) {
return humanReadableUnits(sizeOf(object));
}
/**
* An identity hash set implemented using open addressing. No null keys are allowed.
*
* TODO: If this is useful outside this class, make it public - needs some work
*/
static final class IdentityHashSet<KType> implements Iterable<KType> {
/**
* Default load factor.
*/
public final static float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* Minimum capacity for the set.
*/
public final static int MIN_CAPACITY = 4;
/**
* All of set entries. Always of power of two length.
*/
public Object[] keys;
/**
* Cached number of assigned slots.
*/
public int assigned;
/**
* The load factor for this set (fraction of allocated or deleted slots before
* the buffers must be rehashed or reallocated).
*/
public final float loadFactor;
/**
* Cached capacity threshold at which we must resize the buffers.
*/
private int resizeThreshold;
/**
* Creates a hash set with the default capacity of 16.
* load factor of {@value #DEFAULT_LOAD_FACTOR}. `
*/
public IdentityHashSet() {
this(16, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a hash set with the given capacity, load factor of
* {@value #DEFAULT_LOAD_FACTOR}.
*/
public IdentityHashSet(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Creates a hash set with the given capacity and load factor.
*/
public IdentityHashSet(int initialCapacity, float loadFactor) {
initialCapacity = Math.max(MIN_CAPACITY, initialCapacity);
assert initialCapacity > 0 : "Initial capacity must be between (0, "
+ Integer.MAX_VALUE + "].";
assert loadFactor > 0 && loadFactor < 1 : "Load factor must be between (0, 1).";
this.loadFactor = loadFactor;
allocateBuffers(roundCapacity(initialCapacity));
}
/**
* Adds a reference to the set. Null keys are not allowed.
*/
public boolean add(KType e) {
assert e != null : "Null keys not allowed.";
if (assigned >= resizeThreshold) expandAndRehash();
final int mask = keys.length - 1;
int slot = rehash(e) & mask;
Object existing;
while ((existing = keys[slot]) != null) {
if (e == existing) {
return false; // already found.
}
slot = (slot + 1) & mask;
}
assigned++;
keys[slot] = e;
return true;
}
/**
* Checks if the set contains a given ref.
*/
public boolean contains(KType e) {
final int mask = keys.length - 1;
int slot = rehash(e) & mask;
Object existing;
while ((existing = keys[slot]) != null) {
if (e == existing) {
return true;
}
slot = (slot + 1) & mask;
}
return false;
}
/** Rehash via MurmurHash.
*
* <p>The implementation is based on the
* finalization step from Austin Appleby's
* <code>MurmurHash3</code>.
*
* @see "http://sites.google.com/site/murmurhash/"
*/
private static int rehash(Object o) {
int k = System.identityHashCode(o);
k ^= k >>> 16;
k *= 0x85ebca6b;
k ^= k >>> 13;
k *= 0xc2b2ae35;
k ^= k >>> 16;
return k;
}
/**
* Expand the internal storage buffers (capacity) or rehash current keys and
* values if there are a lot of deleted slots.
*/
private void expandAndRehash() {
final Object[] oldKeys = this.keys;
assert assigned >= resizeThreshold;
allocateBuffers(nextCapacity(keys.length));
/*
* Rehash all assigned slots from the old hash table.
*/
final int mask = keys.length - 1;
for (int i = 0; i < oldKeys.length; i++) {
final Object key = oldKeys[i];
if (key != null) {
int slot = rehash(key) & mask;
while (keys[slot] != null) {
slot = (slot + 1) & mask;
}
keys[slot] = key;
}
}
Arrays.fill(oldKeys, null);
}
/**
* Allocate internal buffers for a given capacity.
*
* @param capacity
* New capacity (must be a power of two).
*/
private void allocateBuffers(int capacity) {
this.keys = new Object[capacity];
this.resizeThreshold = (int) (capacity * DEFAULT_LOAD_FACTOR);
}
/**
* Return the next possible capacity, counting from the current buffers' size.
*/
protected int nextCapacity(int current) {
assert current > 0 && Long.bitCount(current) == 1 : "Capacity must be a power of two.";
assert ((current << 1) > 0) : "Maximum capacity exceeded ("
+ (0x80000000 >>> 1) + ").";
if (current < MIN_CAPACITY / 2) current = MIN_CAPACITY / 2;
return current << 1;
}
/**
* Round the capacity to the next allowed value.
*/
protected int roundCapacity(int requestedCapacity) {
// Maximum positive integer that is a power of two.
if (requestedCapacity > (0x80000000 >>> 1)) return (0x80000000 >>> 1);
int capacity = MIN_CAPACITY;
while (capacity < requestedCapacity) {
capacity <<= 1;
}
return capacity;
}
public void clear() {
assigned = 0;
Arrays.fill(keys, null);
}
public int size() {
return assigned;
}
public boolean isEmpty() {
return size() == 0;
}
@Override
public Iterator<KType> iterator() {
return new Iterator<KType>() {
int pos = -1;
Object nextElement = fetchNext();
@Override
public boolean hasNext() {
return nextElement != null;
}
@SuppressWarnings("unchecked")
@Override
public KType next() {
Object r = this.nextElement;
if (r == null) {
throw new NoSuchElementException();
}
this.nextElement = fetchNext();
return (KType) r;
}
private Object fetchNext() {
pos++;
while (pos < keys.length && keys[pos] == null) {
pos++;
}
return (pos >= keys.length ? null : keys[pos]);
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
}
} }

View File

@ -0,0 +1,39 @@
package org.apache.lucene.util;
import java.util.*;
import org.junit.Assert;
import org.junit.Test;
public class TestIdentityHashSet extends LuceneTestCase {
@Test
public void testCheck() {
Random rnd = random;
Set<Object> jdk = Collections.newSetFromMap(
new IdentityHashMap<Object,Boolean>());
RamUsageEstimator.IdentityHashSet<Object> us = new RamUsageEstimator.IdentityHashSet<Object>();
int max = 100000;
int threshold = 256;
for (int i = 0; i < max; i++) {
// some of these will be interned and some will not so there will be collisions.
Integer v = rnd.nextInt(threshold);
boolean e1 = jdk.contains(v);
boolean e2 = us.contains(v);
Assert.assertEquals(e1, e2);
e1 = jdk.add(v);
e2 = us.add(v);
Assert.assertEquals(e1, e2);
}
Set<Object> collected = Collections.newSetFromMap(
new IdentityHashMap<Object,Boolean>());
for (Object o : us) {
collected.add(o);
}
Assert.assertEquals(collected, jdk);
}
}

View File

@ -22,83 +22,83 @@ import java.util.Random;
*/ */
public class TestRamUsageEstimator extends LuceneTestCase { public class TestRamUsageEstimator extends LuceneTestCase {
public void testSanity() {
public void testBasic() { assertTrue(sizeOf(new String("test string")) > shallowSizeOfInstance(String.class));
assertTrue(sizeOf(new String("test strin")) > shallowSizeOfInstance(String.class));
Holder holder = new Holder(); Holder holder = new Holder();
holder.holder = new Holder("string2", 5000L); holder.holder = new Holder("string2", 5000L);
assertTrue(sizeOf(holder) > shallowSizeOfInstance(Holder.class)); assertTrue(sizeOf(holder) > shallowSizeOfInstance(Holder.class));
assertTrue(sizeOf(holder) > sizeOf(holder.holder)); assertTrue(sizeOf(holder) > sizeOf(holder.holder));
assertTrue(shallowSizeOfInstance(HolderSubclass.class) >= shallowSizeOfInstance(Holder.class)); assertTrue(
assertEquals(shallowSizeOfInstance(Holder.class), shallowSizeOfInstance(HolderSubclass2.class)); shallowSizeOfInstance(HolderSubclass.class) >= shallowSizeOfInstance(Holder.class));
assertTrue(
shallowSizeOfInstance(Holder.class) == shallowSizeOfInstance(HolderSubclass2.class));
String[] strings = new String[]{new String("test strin"), new String("hollow"), new String("catchmaster")}; String[] strings = new String[] {
new String("test string"),
new String("hollow"),
new String("catchmaster")
};
assertTrue(sizeOf(strings) > shallowSizeOf(strings)); assertTrue(sizeOf(strings) > shallowSizeOf(strings));
} }
public void testStaticOverloads() { public void testStaticOverloads() {
Random rnd = random; Random rnd = random;
{ {
byte[] array = new byte [rnd.nextInt(1024)]; byte[] array = new byte[rnd.nextInt(1024)];
assertEquals(sizeOf(array), sizeOf((Object) array)); assertEquals(sizeOf(array), sizeOf((Object) array));
} }
{ {
boolean[] array = new boolean [rnd.nextInt(1024)]; boolean[] array = new boolean[rnd.nextInt(1024)];
assertEquals(sizeOf(array), sizeOf((Object) array)); assertEquals(sizeOf(array), sizeOf((Object) array));
} }
{ {
char[] array = new char [rnd.nextInt(1024)]; char[] array = new char[rnd.nextInt(1024)];
assertEquals(sizeOf(array), sizeOf((Object) array)); assertEquals(sizeOf(array), sizeOf((Object) array));
} }
{ {
short[] array = new short [rnd.nextInt(1024)]; short[] array = new short[rnd.nextInt(1024)];
assertEquals(sizeOf(array), sizeOf((Object) array)); assertEquals(sizeOf(array), sizeOf((Object) array));
} }
{ {
int[] array = new int [rnd.nextInt(1024)]; int[] array = new int[rnd.nextInt(1024)];
assertEquals(sizeOf(array), sizeOf((Object) array)); assertEquals(sizeOf(array), sizeOf((Object) array));
} }
{ {
float[] array = new float [rnd.nextInt(1024)]; float[] array = new float[rnd.nextInt(1024)];
assertEquals(sizeOf(array), sizeOf((Object) array)); assertEquals(sizeOf(array), sizeOf((Object) array));
} }
{ {
long[] array = new long [rnd.nextInt(1024)]; long[] array = new long[rnd.nextInt(1024)];
assertEquals(sizeOf(array), sizeOf((Object) array)); assertEquals(sizeOf(array), sizeOf((Object) array));
} }
{ {
double[] array = new double [rnd.nextInt(1024)]; double[] array = new double[rnd.nextInt(1024)];
assertEquals(sizeOf(array), sizeOf((Object) array)); assertEquals(sizeOf(array), sizeOf((Object) array));
} }
} }
public void testReferenceSize() { public void testReferenceSize() {
if (!isSupportedJVM()) { if (!isSupportedJVM()) {
System.err.println("WARN: Your JVM does not support the Oracle/Sun extensions (Hotspot diagnostics, sun.misc.Unsafe),"); System.err.println("WARN: Your JVM does not support certain Oracle/Sun extensions.");
System.err.println("so the memory estimates may be inprecise."); System.err.println(" Memory estimates may be inaccurate.");
System.err.println("Please report this to the Lucene mailing list, noting your JVM version: " + System.err.println(" Please report this to the Lucene mailing list. JVM version: " + RamUsageEstimator.JVM_INFO_STRING);
Constants.JAVA_VENDOR + " " + Constants.JAVA_VERSION); for (JvmFeature f : RamUsageEstimator.getUnsupportedFeatures()) {
} System.err.println(" - " + f.toString());
if (VERBOSE) { }
System.out.println("This JVM is 64bit: " + Constants.JRE_IS_64BIT);
System.out.println("Reference size in this JVM: " + NUM_BYTES_OBJECT_REF);
System.out.println("Object header size in this JVM: " + NUM_BYTES_OBJECT_HEADER);
System.out.println("Array header size in this JVM: " + NUM_BYTES_ARRAY_HEADER);
System.out.println("Object alignment in this JVM: " + NUM_BYTES_OBJECT_ALIGNMENT);
} }
assertTrue(NUM_BYTES_OBJECT_REF == 4 || NUM_BYTES_OBJECT_REF == 8); assertTrue(NUM_BYTES_OBJECT_REF == 4 || NUM_BYTES_OBJECT_REF == 8);
if (!Constants.JRE_IS_64BIT) { if (!Constants.JRE_IS_64BIT) {
assertEquals("For 32bit JVMs, reference size must always be 4", 4, NUM_BYTES_OBJECT_REF); assertEquals("For 32bit JVMs, reference size must always be 4?", 4, NUM_BYTES_OBJECT_REF);
} }
} }
@ -109,8 +109,7 @@ public class TestRamUsageEstimator extends LuceneTestCase {
Holder holder; Holder holder;
long field2, field3, field4; long field2, field3, field4;
Holder() { Holder() {}
}
Holder(String name, long field1) { Holder(String name, long field1) {
this.name = name; this.name = name;

View File

@ -0,0 +1,37 @@
package org.apache.lucene.util;
import org.junit.Assert;
/**
* Check large and special graphs.
*/
public class TestRamUsageEstimatorOnWildAnimals extends LuceneTestCase {
public static class ListElement {
ListElement next;
}
public void testOverflowMaxChainLength() {
int UPPERLIMIT = 100000;
int lower = 0;
int upper = UPPERLIMIT;
while (lower + 1 < upper) {
int mid = (lower + upper) / 2;
try {
ListElement first = new ListElement();
ListElement last = first;
for (int i = 0; i < mid; i++) {
last = (last.next = new ListElement());
}
RamUsageEstimator.sizeOf(first); // cause SOE or pass.
lower = mid;
} catch (StackOverflowError e) {
upper = mid;
}
}
if (lower + 1 < UPPERLIMIT) {
Assert.fail("Max object chain length till stack overflow: " + lower);
}
}
}