mirror of
https://github.com/apache/lucene.git
synced 2025-02-09 11:35:14 +00:00
LUCENE-8976: Use exact distance between point and bounding rectangle in FloatPointNearestNeighbor (#874)
This commit is contained in:
parent
fb5a3e28fe
commit
579fae5f0c
@ -133,6 +133,8 @@ Improvements
|
|||||||
* LUCENE-8964: Fix geojson shape parsing on string arrays in properties
|
* LUCENE-8964: Fix geojson shape parsing on string arrays in properties
|
||||||
(Alexander Reelsen)
|
(Alexander Reelsen)
|
||||||
|
|
||||||
|
* LUCENE-8976: Use exact distance between point and bounding rectangle in FloatPointNearestNeighbor. (Ignacio Vera)
|
||||||
|
|
||||||
Optimizations
|
Optimizations
|
||||||
|
|
||||||
* LUCENE-8922: DisjunctionMaxQuery more efficiently leverages impacts to skip
|
* LUCENE-8922: DisjunctionMaxQuery more efficiently leverages impacts to skip
|
||||||
|
@ -19,7 +19,6 @@ package org.apache.lucene.document;
|
|||||||
|
|
||||||
import java.io.IOException;
|
import java.io.IOException;
|
||||||
import java.util.ArrayList;
|
import java.util.ArrayList;
|
||||||
import java.util.Arrays;
|
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
import java.util.PriorityQueue;
|
import java.util.PriorityQueue;
|
||||||
|
|
||||||
@ -46,7 +45,6 @@ public class FloatPointNearestNeighbor {
|
|||||||
final byte[] minPacked;
|
final byte[] minPacked;
|
||||||
final byte[] maxPacked;
|
final byte[] maxPacked;
|
||||||
final BKDReader.IndexTree index;
|
final BKDReader.IndexTree index;
|
||||||
|
|
||||||
/** The closest possible distance^2 of all points in this cell */
|
/** The closest possible distance^2 of all points in this cell */
|
||||||
final double distanceSquared;
|
final double distanceSquared;
|
||||||
|
|
||||||
@ -75,21 +73,15 @@ public class FloatPointNearestNeighbor {
|
|||||||
final int topN;
|
final int topN;
|
||||||
final PriorityQueue<NearestHit> hitQueue;
|
final PriorityQueue<NearestHit> hitQueue;
|
||||||
final float[] origin;
|
final float[] origin;
|
||||||
private int dims;
|
final private int dims;
|
||||||
private int updateMinMaxCounter;
|
double bottomNearestDistanceSquared = Double.POSITIVE_INFINITY;
|
||||||
private float[] min;
|
int bottomNearestDistanceDoc = Integer.MAX_VALUE;
|
||||||
private float[] max;
|
|
||||||
|
|
||||||
|
|
||||||
public NearestVisitor(PriorityQueue<NearestHit> hitQueue, int topN, float[] origin) {
|
public NearestVisitor(PriorityQueue<NearestHit> hitQueue, int topN, float[] origin) {
|
||||||
this.hitQueue = hitQueue;
|
this.hitQueue = hitQueue;
|
||||||
this.topN = topN;
|
this.topN = topN;
|
||||||
this.origin = origin;
|
this.origin = origin;
|
||||||
dims = origin.length;
|
this.dims = origin.length;
|
||||||
min = new float[dims];
|
|
||||||
max = new float[dims];
|
|
||||||
Arrays.fill(min, Float.NEGATIVE_INFINITY);
|
|
||||||
Arrays.fill(max, Float.POSITIVE_INFINITY);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
@ -97,110 +89,59 @@ public class FloatPointNearestNeighbor {
|
|||||||
throw new AssertionError();
|
throw new AssertionError();
|
||||||
}
|
}
|
||||||
|
|
||||||
private static final int MANTISSA_BITS = 23;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Returns the minimum value that will change the given distance when added to it.
|
|
||||||
*
|
|
||||||
* This value is calculated from the distance exponent reduced by (at most) 23,
|
|
||||||
* the number of bits in a float mantissa. This is necessary when the result of
|
|
||||||
* subtracting/adding the distance in a single dimension has an exponent that
|
|
||||||
* differs significantly from that of the distance value. Without this fudge
|
|
||||||
* factor (i.e. only subtracting/adding the distance), cells and values can be
|
|
||||||
* inappropriately judged as outside the search radius.
|
|
||||||
*/
|
|
||||||
private float getMinDelta(float distance) {
|
|
||||||
int exponent = Float.floatToIntBits(distance) >> MANTISSA_BITS; // extract biased exponent (distance is positive)
|
|
||||||
if (exponent == 0) {
|
|
||||||
return Float.MIN_VALUE;
|
|
||||||
} else {
|
|
||||||
exponent = exponent <= MANTISSA_BITS ? 1 : exponent - MANTISSA_BITS; // Avoid underflow
|
|
||||||
return Float.intBitsToFloat(exponent << MANTISSA_BITS);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private void maybeUpdateMinMax() {
|
|
||||||
if (updateMinMaxCounter < 1024 || (updateMinMaxCounter & 0x3F) == 0x3F) {
|
|
||||||
NearestHit hit = hitQueue.peek();
|
|
||||||
float distance = (float)Math.sqrt(hit.distanceSquared);
|
|
||||||
float minDelta = getMinDelta(distance);
|
|
||||||
// String oldMin = Arrays.toString(min);
|
|
||||||
// String oldMax = Arrays.toString(max);
|
|
||||||
for (int d = 0 ; d < dims ; ++d) {
|
|
||||||
min[d] = (origin[d] - distance) - minDelta;
|
|
||||||
max[d] = (origin[d] + distance) + minDelta;
|
|
||||||
// System.out.println("origin[" + d + "] (" + origin[d] + ") - distance (" + distance + ") - minDelta (" + minDelta + ") = min[" + d + "] (" + min[d] + ")");
|
|
||||||
// System.out.println("origin[" + d + "] (" + origin[d] + ") + distance (" + distance + ") + minDelta (" + minDelta + ") = max[" + d + "] (" + max[d] + ")");
|
|
||||||
}
|
|
||||||
// System.out.println("maybeUpdateMinMax: min: " + oldMin + " -> " + Arrays.toString(min) + " max: " + oldMax + " -> " + Arrays.toString(max));
|
|
||||||
}
|
|
||||||
++updateMinMaxCounter;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public void visit(int docID, byte[] packedValue) {
|
public void visit(int docID, byte[] packedValue) {
|
||||||
// System.out.println("visit docID=" + docID + " liveDocs=" + curLiveDocs);
|
// System.out.println("visit docID=" + docID + " liveDocs=" + curLiveDocs);;
|
||||||
|
|
||||||
if (curLiveDocs != null && curLiveDocs.get(docID) == false) {
|
if (curLiveDocs != null && curLiveDocs.get(docID) == false) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
float[] docPoint = new float[dims];
|
double distanceSquared = 0.0d;
|
||||||
for (int d = 0, offset = 0 ; d < dims ; ++d, offset += Float.BYTES) {
|
for (int d = 0, offset = 0 ; d < dims ; ++d, offset += Float.BYTES) {
|
||||||
docPoint[d] = FloatPoint.decodeDimension(packedValue, offset);
|
double diff = (double) FloatPoint.decodeDimension(packedValue, offset) - (double) origin[d];
|
||||||
if (docPoint[d] > max[d] || docPoint[d] < min[d]) {
|
distanceSquared += diff * diff;
|
||||||
|
if (distanceSquared > bottomNearestDistanceSquared) {
|
||||||
// if (docPoint[d] > max[d]) {
|
|
||||||
// System.out.println(" skipped because docPoint[" + d + "] (" + docPoint[d] + ") > max[" + d + "] (" + max[d] + ")");
|
|
||||||
// } else {
|
|
||||||
// System.out.println(" skipped because docPoint[" + d + "] (" + docPoint[d] + ") < min[" + d + "] (" + min[d] + ")");
|
|
||||||
// }
|
|
||||||
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
double distanceSquared = euclideanDistanceSquared(origin, docPoint);
|
|
||||||
|
|
||||||
// System.out.println(" visit docID=" + docID + " distanceSquared=" + distanceSquared + " value: " + Arrays.toString(docPoint));
|
// System.out.println(" visit docID=" + docID + " distanceSquared=" + distanceSquared + " value: " + Arrays.toString(docPoint));
|
||||||
|
|
||||||
int fullDocID = curDocBase + docID;
|
int fullDocID = curDocBase + docID;
|
||||||
|
|
||||||
if (hitQueue.size() == topN) { // queue already full
|
if (hitQueue.size() == topN) { // queue already full
|
||||||
NearestHit bottom = hitQueue.peek();
|
if (distanceSquared == bottomNearestDistanceSquared && fullDocID > bottomNearestDistanceDoc) {
|
||||||
// System.out.println(" bottom distanceSquared=" + bottom.distanceSquared);
|
return;
|
||||||
if (distanceSquared < bottom.distanceSquared
|
|
||||||
// we don't collect docs in order here, so we must also test the tie-break case ourselves:
|
|
||||||
|| (distanceSquared == bottom.distanceSquared && fullDocID < bottom.docID)) {
|
|
||||||
hitQueue.poll();
|
|
||||||
bottom.docID = fullDocID;
|
|
||||||
bottom.distanceSquared = distanceSquared;
|
|
||||||
hitQueue.offer(bottom);
|
|
||||||
// System.out.println(" ** keep1, now bottom=" + bottom);
|
|
||||||
maybeUpdateMinMax();
|
|
||||||
}
|
}
|
||||||
|
NearestHit bottom = hitQueue.poll();
|
||||||
|
// System.out.println(" bottom distanceSquared=" + bottom.distanceSquared);
|
||||||
|
bottom.docID = fullDocID;
|
||||||
|
bottom.distanceSquared = distanceSquared;
|
||||||
|
hitQueue.offer(bottom);
|
||||||
|
updateBottomNearestDistance();
|
||||||
|
// System.out.println(" ** keep1, now bottom=" + bottom);
|
||||||
} else {
|
} else {
|
||||||
NearestHit hit = new NearestHit();
|
NearestHit hit = new NearestHit();
|
||||||
hit.docID = fullDocID;
|
hit.docID = fullDocID;
|
||||||
hit.distanceSquared = distanceSquared;
|
hit.distanceSquared = distanceSquared;
|
||||||
hitQueue.offer(hit);
|
hitQueue.offer(hit);
|
||||||
|
if (hitQueue.size() == topN) {
|
||||||
|
updateBottomNearestDistance();
|
||||||
|
}
|
||||||
// System.out.println(" ** keep2, new addition=" + hit);
|
// System.out.println(" ** keep2, new addition=" + hit);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private void updateBottomNearestDistance() {
|
||||||
|
NearestHit newBottom = hitQueue.peek();
|
||||||
|
bottomNearestDistanceSquared = newBottom.distanceSquared;
|
||||||
|
bottomNearestDistanceDoc = newBottom.docID;
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public PointValues.Relation compare(byte[] minPackedValue, byte[] maxPackedValue) {
|
public PointValues.Relation compare(byte[] minPackedValue, byte[] maxPackedValue) {
|
||||||
for (int d = 0, offset = 0; d < dims; ++d, offset += Float.BYTES) {
|
if (hitQueue.size() == topN && pointToRectangleDistanceSquared(minPackedValue, maxPackedValue, origin) > bottomNearestDistanceSquared) {
|
||||||
float cellMaxAtDim = FloatPoint.decodeDimension(maxPackedValue, offset);
|
return PointValues.Relation.CELL_OUTSIDE_QUERY;
|
||||||
if (cellMaxAtDim < min[d]) {
|
|
||||||
// System.out.println(" skipped because cell max at " + d + " (" + cellMaxAtDim + ") < visitor.min[" + d + "] (" + min[d] + ")");
|
|
||||||
return PointValues.Relation.CELL_OUTSIDE_QUERY;
|
|
||||||
}
|
|
||||||
float cellMinAtDim = FloatPoint.decodeDimension(minPackedValue, offset);
|
|
||||||
if (cellMinAtDim > max[d]) {
|
|
||||||
// System.out.println(" skipped because cell min at " + d + " (" + cellMinAtDim + ") > visitor.max[" + d + "] (" + max[d] + ")");
|
|
||||||
return PointValues.Relation.CELL_OUTSIDE_QUERY;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
return PointValues.Relation.CELL_CROSSES_QUERY;
|
return PointValues.Relation.CELL_CROSSES_QUERY;
|
||||||
}
|
}
|
||||||
@ -252,33 +193,31 @@ public class FloatPointNearestNeighbor {
|
|||||||
states.add(state);
|
states.add(state);
|
||||||
|
|
||||||
cellQueue.offer(new Cell(state.index, i, reader.getMinPackedValue(), reader.getMaxPackedValue(),
|
cellQueue.offer(new Cell(state.index, i, reader.getMinPackedValue(), reader.getMaxPackedValue(),
|
||||||
approxBestDistanceSquared(minPackedValue, maxPackedValue, origin)));
|
pointToRectangleDistanceSquared(minPackedValue, maxPackedValue, origin)));
|
||||||
}
|
}
|
||||||
|
|
||||||
while (cellQueue.size() > 0) {
|
while (cellQueue.size() > 0) {
|
||||||
Cell cell = cellQueue.poll();
|
Cell cell = cellQueue.poll();
|
||||||
// System.out.println(" visit " + cell);
|
// System.out.println(" visit " + cell);
|
||||||
|
|
||||||
// TODO: if we replace approxBestDistance with actualBestDistance, we can put an opto here to break once this "best" cell is fully outside of the hitQueue bottom's radius:
|
if (cell.distanceSquared > visitor.bottomNearestDistanceSquared) {
|
||||||
BKDReader reader = readers.get(cell.readerIndex);
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
BKDReader reader = readers.get(cell.readerIndex);
|
||||||
if (cell.index.isLeafNode()) {
|
if (cell.index.isLeafNode()) {
|
||||||
// System.out.println(" leaf");
|
// System.out.println(" leaf");
|
||||||
// Leaf block: visit all points and possibly collect them:
|
// Leaf block: visit all points and possibly collect them:
|
||||||
visitor.curDocBase = docBases.get(cell.readerIndex);
|
visitor.curDocBase = docBases.get(cell.readerIndex);
|
||||||
visitor.curLiveDocs = liveDocs.get(cell.readerIndex);
|
visitor.curLiveDocs = liveDocs.get(cell.readerIndex);
|
||||||
reader.visitLeafBlockValues(cell.index, states.get(cell.readerIndex));
|
reader.visitLeafBlockValues(cell.index, states.get(cell.readerIndex));
|
||||||
|
|
||||||
|
//assert hitQueue.peek().distanceSquared >= cell.distanceSquared;
|
||||||
// System.out.println(" now " + hitQueue.size() + " hits");
|
// System.out.println(" now " + hitQueue.size() + " hits");
|
||||||
} else {
|
} else {
|
||||||
// System.out.println(" non-leaf");
|
// System.out.println(" non-leaf");
|
||||||
// Non-leaf block: split into two cells and put them back into the queue:
|
// Non-leaf block: split into two cells and put them back into the queue:
|
||||||
|
|
||||||
if (hitQueue.size() == topN) {
|
|
||||||
if (visitor.compare(cell.minPacked, cell.maxPacked) == PointValues.Relation.CELL_OUTSIDE_QUERY) {
|
|
||||||
// this cell is outside our search radius; don't bother exploring any more
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
BytesRef splitValue = BytesRef.deepCopyOf(cell.index.getSplitDimValue());
|
BytesRef splitValue = BytesRef.deepCopyOf(cell.index.getSplitDimValue());
|
||||||
int splitDim = cell.index.getSplitDim();
|
int splitDim = cell.index.getSplitDim();
|
||||||
|
|
||||||
@ -288,15 +227,19 @@ public class FloatPointNearestNeighbor {
|
|||||||
System.arraycopy(splitValue.bytes, splitValue.offset, splitPackedValue, splitDim * bytesPerDim, bytesPerDim);
|
System.arraycopy(splitValue.bytes, splitValue.offset, splitPackedValue, splitDim * bytesPerDim, bytesPerDim);
|
||||||
|
|
||||||
cell.index.pushLeft();
|
cell.index.pushLeft();
|
||||||
cellQueue.offer(new Cell(cell.index, cell.readerIndex, cell.minPacked, splitPackedValue,
|
double distanceLeft = pointToRectangleDistanceSquared(cell.minPacked, splitPackedValue, origin);
|
||||||
approxBestDistanceSquared(cell.minPacked, splitPackedValue, origin)));
|
if (distanceLeft <= visitor.bottomNearestDistanceSquared) {
|
||||||
|
cellQueue.offer(new Cell(cell.index, cell.readerIndex, cell.minPacked, splitPackedValue, distanceLeft));
|
||||||
|
}
|
||||||
|
|
||||||
splitPackedValue = cell.minPacked.clone();
|
splitPackedValue = cell.minPacked.clone();
|
||||||
System.arraycopy(splitValue.bytes, splitValue.offset, splitPackedValue, splitDim * bytesPerDim, bytesPerDim);
|
System.arraycopy(splitValue.bytes, splitValue.offset, splitPackedValue, splitDim * bytesPerDim, bytesPerDim);
|
||||||
|
|
||||||
newIndex.pushRight();
|
newIndex.pushRight();
|
||||||
cellQueue.offer(new Cell(newIndex, cell.readerIndex, splitPackedValue, cell.maxPacked,
|
double distanceRight = pointToRectangleDistanceSquared(splitPackedValue, cell.maxPacked, origin);
|
||||||
approxBestDistanceSquared(splitPackedValue, cell.maxPacked, origin)));
|
if (distanceRight <= visitor.bottomNearestDistanceSquared) {
|
||||||
|
cellQueue.offer(new Cell(newIndex, cell.readerIndex, splitPackedValue, cell.maxPacked, distanceRight));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -306,44 +249,27 @@ public class FloatPointNearestNeighbor {
|
|||||||
hits[downTo] = hitQueue.poll();
|
hits[downTo] = hitQueue.poll();
|
||||||
downTo--;
|
downTo--;
|
||||||
}
|
}
|
||||||
|
//System.out.println(visitor.comp);
|
||||||
return hits;
|
return hits;
|
||||||
}
|
}
|
||||||
|
|
||||||
private static double approxBestDistanceSquared(byte[] minPackedValue, byte[] maxPackedValue, float[] value) {
|
private static double pointToRectangleDistanceSquared(byte[] minPackedValue, byte[] maxPackedValue, float[] value) {
|
||||||
boolean insideCell = true;
|
|
||||||
float[] min = new float[value.length];
|
|
||||||
float[] max = new float[value.length];
|
|
||||||
double[] closest = new double[value.length];
|
|
||||||
for (int i = 0, offset = 0 ; i < value.length ; ++i, offset += Float.BYTES) {
|
|
||||||
min[i] = FloatPoint.decodeDimension(minPackedValue, offset);
|
|
||||||
max[i] = FloatPoint.decodeDimension(maxPackedValue, offset);
|
|
||||||
if (insideCell) {
|
|
||||||
if (value[i] < min[i] || value[i] > max[i]) {
|
|
||||||
insideCell = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
double minDiff = Math.abs((double)value[i] - (double)min[i]);
|
|
||||||
double maxDiff = Math.abs((double)value[i] - (double)max[i]);
|
|
||||||
closest[i] = minDiff < maxDiff ? minDiff : maxDiff;
|
|
||||||
}
|
|
||||||
if (insideCell) {
|
|
||||||
return 0.0f;
|
|
||||||
}
|
|
||||||
double sumOfSquaredDiffs = 0.0d;
|
double sumOfSquaredDiffs = 0.0d;
|
||||||
for (int d = 0 ; d < value.length ; ++d) {
|
for (int i = 0, offset = 0 ; i < value.length ; ++i, offset += Float.BYTES) {
|
||||||
sumOfSquaredDiffs += closest[d] * closest[d];
|
double min = FloatPoint.decodeDimension(minPackedValue, offset);
|
||||||
|
if (value[i] < min) {
|
||||||
|
double diff = min - (double)value[i];
|
||||||
|
sumOfSquaredDiffs += diff * diff;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
double max = FloatPoint.decodeDimension(maxPackedValue, offset);
|
||||||
|
if (value[i] > max) {
|
||||||
|
double diff = max - (double)value[i];
|
||||||
|
sumOfSquaredDiffs += diff * diff;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return sumOfSquaredDiffs;
|
return sumOfSquaredDiffs;
|
||||||
}
|
}
|
||||||
|
|
||||||
static double euclideanDistanceSquared(float[] a, float[] b) {
|
|
||||||
double sumOfSquaredDifferences = 0.0d;
|
|
||||||
for (int d = 0 ; d < a.length ; ++d) {
|
|
||||||
double diff = (double)a[d] - (double)b[d];
|
|
||||||
sumOfSquaredDifferences += diff * diff;
|
|
||||||
}
|
|
||||||
return sumOfSquaredDifferences;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static TopFieldDocs nearest(IndexSearcher searcher, String field, int topN, float... origin) throws IOException {
|
public static TopFieldDocs nearest(IndexSearcher searcher, String field, int topN, float... origin) throws IOException {
|
||||||
if (topN < 1) {
|
if (topN < 1) {
|
||||||
|
@ -188,7 +188,7 @@ public class TestFloatPointNearestNeighbor extends LuceneTestCase {
|
|||||||
FloatPointNearestNeighbor.NearestHit[] expectedHits = new FloatPointNearestNeighbor.NearestHit[numPoints];
|
FloatPointNearestNeighbor.NearestHit[] expectedHits = new FloatPointNearestNeighbor.NearestHit[numPoints];
|
||||||
for (int id = 0 ; id < numPoints ; ++id) {
|
for (int id = 0 ; id < numPoints ; ++id) {
|
||||||
FloatPointNearestNeighbor.NearestHit hit = new FloatPointNearestNeighbor.NearestHit();
|
FloatPointNearestNeighbor.NearestHit hit = new FloatPointNearestNeighbor.NearestHit();
|
||||||
hit.distanceSquared = FloatPointNearestNeighbor.euclideanDistanceSquared(origin, values[id]);
|
hit.distanceSquared = euclideanDistanceSquared(origin, values[id]);
|
||||||
hit.docID = id;
|
hit.docID = id;
|
||||||
expectedHits[id] = hit;
|
expectedHits[id] = hit;
|
||||||
}
|
}
|
||||||
@ -232,6 +232,15 @@ public class TestFloatPointNearestNeighbor extends LuceneTestCase {
|
|||||||
dir.close();
|
dir.close();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private static double euclideanDistanceSquared(float[] a, float[] b) {
|
||||||
|
double sumOfSquaredDifferences = 0.0d;
|
||||||
|
for (int d = 0 ; d < a.length ; ++d) {
|
||||||
|
double diff = (double)a[d] - (double)b[d];
|
||||||
|
sumOfSquaredDifferences += diff * diff;
|
||||||
|
}
|
||||||
|
return sumOfSquaredDifferences;
|
||||||
|
}
|
||||||
|
|
||||||
private IndexWriterConfig getIndexWriterConfig() {
|
private IndexWriterConfig getIndexWriterConfig() {
|
||||||
IndexWriterConfig iwc = newIndexWriterConfig();
|
IndexWriterConfig iwc = newIndexWriterConfig();
|
||||||
iwc.setCodec(Codec.forName("Lucene80"));
|
iwc.setCodec(Codec.forName("Lucene80"));
|
||||||
|
Loading…
x
Reference in New Issue
Block a user