- LUCENE-728: Removed duplicate/old MoreLikeThis and SimilarityQueries classes,

as their new home is under contrib/queries.
  This means contrib/similarity is not completely empty.  I am leaving it in SVN
  for now, as it seems like it could be a nice warm home for custom Similarity
  implementations.


git-svn-id: https://svn.apache.org/repos/asf/lucene/java/trunk@480200 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Otis Gospodnetic 2006-11-28 20:46:42 +00:00
parent 338991bd51
commit 57ce49d49a
6 changed files with 9 additions and 1055 deletions

View File

@ -226,6 +226,10 @@ Bug fixes
23. LUCENE-717: Fixed build.xml not to fail when there is no lib dir.
(Doron Cohen via Otis Gospodnetic)
24. LUCENE-728: Removed duplicate/old MoreLikeThis and SimilarityQueries
classes from contrib/similarity, as their new home is under
contrib/queries.
Optimizations
1. LUCENE-586: TermDocs.skipTo() is now more efficient for

View File

@ -1,3 +1,2 @@
Document similarity measures.
This most significant contribution here is MoreLikeThis,
in /src/java/org/apache/lucene/search/similar.
Custom Document similarity measures, to be put in
src/java/org/apache/lucene/search/similar.

View File

@ -3,7 +3,7 @@
<project name="similarity" default="default">
<description>
Similarity - MoreLikeThis
Custom Similarities
</description>
<import file="../contrib-build.xml"/>

View File

@ -1,927 +0,0 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.search.similar;
import org.apache.lucene.util.PriorityQueue;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermFreqVector;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.DefaultSimilarity;
import org.apache.lucene.search.Similarity;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.Hits;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import java.util.Set;
import java.util.HashMap;
import java.util.Map;
import java.util.Collection;
import java.util.Iterator;
import java.io.IOException;
import java.io.Reader;
import java.io.File;
import java.io.PrintStream;
import java.io.StringReader;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.ArrayList;
/**
* Generate "more like this" similarity queries.
* Based on this mail:
* <code><pre>
* Lucene does let you access the document frequency of terms, with IndexReader.docFreq().
* Term frequencies can be computed by re-tokenizing the text, which, for a single document,
* is usually fast enough. But looking up the docFreq() of every term in the document is
* probably too slow.
*
* You can use some heuristics to prune the set of terms, to avoid calling docFreq() too much,
* or at all. Since you're trying to maximize a tf*idf score, you're probably most interested
* in terms with a high tf. Choosing a tf threshold even as low as two or three will radically
* reduce the number of terms under consideration. Another heuristic is that terms with a
* high idf (i.e., a low df) tend to be longer. So you could threshold the terms by the
* number of characters, not selecting anything less than, e.g., six or seven characters.
* With these sorts of heuristics you can usually find small set of, e.g., ten or fewer terms
* that do a pretty good job of characterizing a document.
*
* It all depends on what you're trying to do. If you're trying to eek out that last percent
* of precision and recall regardless of computational difficulty so that you can win a TREC
* competition, then the techniques I mention above are useless. But if you're trying to
* provide a "more like this" button on a search results page that does a decent job and has
* good performance, such techniques might be useful.
*
* An efficient, effective "more-like-this" query generator would be a great contribution, if
* anyone's interested. I'd imagine that it would take a Reader or a String (the document's
* text), analyzer Analyzer, and return a set of representative terms using heuristics like those
* above. The frequency and length thresholds could be parameters, etc.
*
* Doug
* </pre></code>
*
*
* <p>
* <h3>Initial Usage</h3>
*
* This class has lots of options to try to make it efficient and flexible.
* See the body of {@link #main main()} below in the source for real code, or
* if you want pseudo code, the simpliest possible usage is as follows. The bold
* fragment is specific to this class.
*
* <code><pre>
*
* IndexReader ir = ...
* IndexSearcher is = ...
* <b>
* MoreLikeThis mlt = new MoreLikeThis(ir);
* Reader target = ... </b><em>// orig source of doc you want to find similarities to</em><b>
* Query query = mlt.like( target);
* </b>
* Hits hits = is.search(query);
* <em>// now the usual iteration thru 'hits' - the only thing to watch for is to make sure
* you ignore the doc if it matches your 'target' document, as it should be similar to itself </em>
*
* </pre></code>
*
* Thus you:
* <ol>
* <li> do your normal, Lucene setup for searching,
* <li> create a MoreLikeThis,
* <li> get the text of the doc you want to find similaries to
* <li> then call one of the like() calls to generate a similarity query
* <li> call the searcher to find the similar docs
* </ol>
*
* <h3>More Advanced Usage</h3>
*
* You may want to use {@link #setFieldNames setFieldNames(...)} so you can examine
* multiple fields (e.g. body and title) for similarity.
* <p>
*
* Depending on the size of your index and the size and makeup of your documents you
* may want to call the other set methods to control how the similarity queries are
* generated:
* <ul>
* <li> {@link #setMinTermFreq setMinTermFreq(...)}
* <li> {@link #setMinDocFreq setMinDocFreq(...)}
* <li> {@link #setMinWordLen setMinWordLen(...)}
* <li> {@link #setMaxWordLen setMaxWordLen(...)}
* <li> {@link #setMaxQueryTerms setMaxQueryTerms(...)}
* <li> {@link #setMaxNumTokensParsed setMaxNumTokensParsed(...)}
* <li> {@link #setStopWords setStopWord(...)}
* </ul>
*
* <hr>
* <pre>
* Changes: Mark Harwood 29/02/04
* Some bugfixing, some refactoring, some optimisation.
* - bugfix: retrieveTerms(int docNum) was not working for indexes without a termvector -added missing code
* - bugfix: No significant terms being created for fields with a termvector - because
* was only counting one occurence per term/field pair in calculations(ie not including frequency info from TermVector)
* - refactor: moved common code into isNoiseWord()
* - optimise: when no termvector support available - used maxNumTermsParsed to limit amount of tokenization
* </pre>
*
* @author David Spencer
* @author Bruce Ritchie
* @author Mark Harwood
*/
public final class MoreLikeThis {
/**
* Default maximum number of tokens to parse in each example doc field that is not stored with TermVector support.
* @see #getMaxNumTokensParsed
*/
public static final int DEFAULT_MAX_NUM_TOKENS_PARSED=5000;
/**
* Default analyzer to parse source doc with.
* @see #getAnalyzer
*/
public static final Analyzer DEFAULT_ANALYZER = new StandardAnalyzer();
/**
* Ignore terms with less than this frequency in the source doc.
* @see #getMinTermFreq
* @see #setMinTermFreq
*/
public static final int DEFAULT_MIN_TERM_FREQ = 2;
/**
* Ignore words which do not occur in at least this many docs.
* @see #getMinDocFreq
* @see #setMinDocFreq
*/
public static final int DEFAULT_MIN_DOC_FREQ = 5;
/**
* Boost terms in query based on score.
* @see #isBoost
* @see #setBoost
*/
public static final boolean DEFAULT_BOOST = false;
/**
* Default field names. Null is used to specify that the field names should be looked
* up at runtime from the provided reader.
*/
public static final String[] DEFAULT_FIELD_NAMES = new String[] { "contents"};
/**
* Ignore words less than this length or if 0 then this has no effect.
* @see #getMinWordLen
* @see #setMinWordLen
*/
public static final int DEFAULT_MIN_WORD_LENGTH = 0;
/**
* Ignore words greater than this length or if 0 then this has no effect.
* @see #getMaxWordLen
* @see #setMaxWordLen
*/
public static final int DEFAULT_MAX_WORD_LENGTH = 0;
/**
* Default set of stopwords.
* If null means to allow stop words.
*
* @see #setStopWords
* @see #getStopWords
*/
public static final Set DEFAULT_STOP_WORDS = null;
/**
* Current set of stop words.
*/
private Set stopWords = DEFAULT_STOP_WORDS;
/**
* Return a Query with no more than this many terms.
*
* @see BooleanQuery#getMaxClauseCount
* @see #getMaxQueryTerms
* @see #setMaxQueryTerms
*/
public static final int DEFAULT_MAX_QUERY_TERMS = 25;
/**
* Analyzer that will be used to parse the doc.
*/
private Analyzer analyzer = DEFAULT_ANALYZER;
/**
* Ignore words less freqent that this.
*/
private int minTermFreq = DEFAULT_MIN_TERM_FREQ;
/**
* Ignore words which do not occur in at least this many docs.
*/
private int minDocFreq = DEFAULT_MIN_DOC_FREQ;
/**
* Should we apply a boost to the Query based on the scores?
*/
private boolean boost = DEFAULT_BOOST;
/**
* Field name we'll analyze.
*/
private String[] fieldNames = DEFAULT_FIELD_NAMES;
/**
* The maximum number of tokens to parse in each example doc field that is not stored with TermVector support
*/
private int maxNumTokensParsed=DEFAULT_MAX_NUM_TOKENS_PARSED;
/**
* Ignore words if less than this len.
*/
private int minWordLen = DEFAULT_MIN_WORD_LENGTH;
/**
* Ignore words if greater than this len.
*/
private int maxWordLen = DEFAULT_MAX_WORD_LENGTH;
/**
* Don't return a query longer than this.
*/
private int maxQueryTerms = DEFAULT_MAX_QUERY_TERMS;
/**
* For idf() calculations.
*/
private Similarity similarity = new DefaultSimilarity();
/**
* IndexReader to use
*/
private final IndexReader ir;
/**
* Constructor requiring an IndexReader.
*/
public MoreLikeThis(IndexReader ir) {
this.ir = ir;
}
/**
* Returns an analyzer that will be used to parse source doc with. The default analyzer
* is the {@link #DEFAULT_ANALYZER}.
*
* @return the analyzer that will be used to parse source doc with.
* @see #DEFAULT_ANALYZER
*/
public Analyzer getAnalyzer() {
return analyzer;
}
/**
* Sets the analyzer to use. An analyzer is not required for generating a query with the
* {@link #like(int)} method, all other 'like' methods require an analyzer.
*
* @param analyzer the analyzer to use to tokenize text.
*/
public void setAnalyzer(Analyzer analyzer) {
this.analyzer = analyzer;
}
/**
* Returns the frequency below which terms will be ignored in the source doc. The default
* frequency is the {@link #DEFAULT_MIN_TERM_FREQ}.
*
* @return the frequency below which terms will be ignored in the source doc.
*/
public int getMinTermFreq() {
return minTermFreq;
}
/**
* Sets the frequency below which terms will be ignored in the source doc.
*
* @param minTermFreq the frequency below which terms will be ignored in the source doc.
*/
public void setMinTermFreq(int minTermFreq) {
this.minTermFreq = minTermFreq;
}
/**
* Returns the frequency at which words will be ignored which do not occur in at least this
* many docs. The default frequency is {@link #DEFAULT_MIN_DOC_FREQ}.
*
* @return the frequency at which words will be ignored which do not occur in at least this
* many docs.
*/
public int getMinDocFreq() {
return minDocFreq;
}
/**
* Sets the frequency at which words will be ignored which do not occur in at least this
* many docs.
*
* @param minDocFreq the frequency at which words will be ignored which do not occur in at
* least this many docs.
*/
public void setMinDocFreq(int minDocFreq) {
this.minDocFreq = minDocFreq;
}
/**
* Returns whether to boost terms in query based on "score" or not. The default is
* {@link #DEFAULT_BOOST}.
*
* @return whether to boost terms in query based on "score" or not.
* @see #setBoost
*/
public boolean isBoost() {
return boost;
}
/**
* Sets whether to boost terms in query based on "score" or not.
*
* @param boost true to boost terms in query based on "score", false otherwise.
* @see #isBoost
*/
public void setBoost(boolean boost) {
this.boost = boost;
}
/**
* Returns the field names that will be used when generating the 'More Like This' query.
* The default field names that will be used is {@link #DEFAULT_FIELD_NAMES}.
*
* @return the field names that will be used when generating the 'More Like This' query.
*/
public String[] getFieldNames() {
return fieldNames;
}
/**
* Sets the field names that will be used when generating the 'More Like This' query.
* Set this to null for the field names to be determined at runtime from the IndexReader
* provided in the constructor.
*
* @param fieldNames the field names that will be used when generating the 'More Like This'
* query.
*/
public void setFieldNames(String[] fieldNames) {
this.fieldNames = fieldNames;
}
/**
* Returns the minimum word length below which words will be ignored. Set this to 0 for no
* minimum word length. The default is {@link #DEFAULT_MIN_WORD_LENGTH}.
*
* @return the minimum word length below which words will be ignored.
*/
public int getMinWordLen() {
return minWordLen;
}
/**
* Sets the minimum word length below which words will be ignored.
*
* @param minWordLen the minimum word length below which words will be ignored.
*/
public void setMinWordLen(int minWordLen) {
this.minWordLen = minWordLen;
}
/**
* Returns the maximum word length above which words will be ignored. Set this to 0 for no
* maximum word length. The default is {@link #DEFAULT_MAX_WORD_LENGTH}.
*
* @return the maximum word length above which words will be ignored.
*/
public int getMaxWordLen() {
return maxWordLen;
}
/**
* Sets the maximum word length above which words will be ignored.
*
* @param maxWordLen the maximum word length above which words will be ignored.
*/
public void setMaxWordLen(int maxWordLen) {
this.maxWordLen = maxWordLen;
}
/**
* Set the set of stopwords.
* Any word in this set is considered "uninteresting" and ignored.
* Even if your Analyzer allows stopwords, you might want to tell the MoreLikeThis code to ignore them, as
* for the purposes of document similarity it seems reasonable to assume that "a stop word is never interesting".
*
* @param stopWords set of stopwords, if null it means to allow stop words
*
* @see org.apache.lucene.analysis.StopFilter#makeStopSet StopFilter.makeStopSet()
* @see #getStopWords
*/
public void setStopWords(Set stopWords) {
this.stopWords = stopWords;
}
/**
* Get the current stop words being used.
* @see #setStopWords
*/
public Set getStopWords() {
return stopWords;
}
/**
* Returns the maximum number of query terms that will be included in any generated query.
* The default is {@link #DEFAULT_MAX_QUERY_TERMS}.
*
* @return the maximum number of query terms that will be included in any generated query.
*/
public int getMaxQueryTerms() {
return maxQueryTerms;
}
/**
* Sets the maximum number of query terms that will be included in any generated query.
*
* @param maxQueryTerms the maximum number of query terms that will be included in any
* generated query.
*/
public void setMaxQueryTerms(int maxQueryTerms) {
this.maxQueryTerms = maxQueryTerms;
}
/**
* @return The maximum number of tokens to parse in each example doc field that is not stored with TermVector support
* @see #DEFAULT_MAX_NUM_TOKENS_PARSED
*/
public int getMaxNumTokensParsed()
{
return maxNumTokensParsed;
}
/**
* @param i The maximum number of tokens to parse in each example doc field that is not stored with TermVector support
*/
public void setMaxNumTokensParsed(int i)
{
maxNumTokensParsed = i;
}
/**
* Return a query that will return docs like the passed lucene document ID.
*
* @param docNum the documentID of the lucene doc to generate the 'More Like This" query for.
* @return a query that will return docs like the passed lucene document ID.
*/
public Query like(int docNum) throws IOException {
if (fieldNames == null) {
// gather list of valid fields from lucene
Collection fields = ir.getFieldNames( IndexReader.FieldOption.INDEXED);
fieldNames = (String[]) fields.toArray(new String[fields.size()]);
}
return createQuery(retrieveTerms(docNum));
}
/**
* Return a query that will return docs like the passed file.
*
* @return a query that will return docs like the passed file.
*/
public Query like(File f) throws IOException {
if (fieldNames == null) {
// gather list of valid fields from lucene
Collection fields = ir.getFieldNames( IndexReader.FieldOption.INDEXED);
fieldNames = (String[]) fields.toArray(new String[fields.size()]);
}
return like(new FileReader(f));
}
/**
* Return a query that will return docs like the passed URL.
*
* @return a query that will return docs like the passed URL.
*/
public Query like(URL u) throws IOException {
return like(new InputStreamReader(u.openConnection().getInputStream()));
}
/**
* Return a query that will return docs like the passed stream.
*
* @return a query that will return docs like the passed stream.
*/
public Query like(java.io.InputStream is) throws IOException {
return like(new InputStreamReader(is));
}
/**
* Return a query that will return docs like the passed Reader.
*
* @return a query that will return docs like the passed Reader.
*/
public Query like(Reader r) throws IOException {
return createQuery(retrieveTerms(r));
}
/**
* Create the More like query from a PriorityQueue
*/
private Query createQuery(PriorityQueue q) {
BooleanQuery query = new BooleanQuery();
Object cur;
int qterms = 0;
float bestScore = 0;
while (((cur = q.pop()) != null)) {
Object[] ar = (Object[]) cur;
TermQuery tq = new TermQuery(new Term((String) ar[1], (String) ar[0]));
if (boost) {
if (qterms == 0) {
bestScore = ((Float) ar[2]).floatValue();
}
float myScore = ((Float) ar[2]).floatValue();
tq.setBoost(myScore / bestScore);
}
try {
query.add(tq, BooleanClause.Occur.SHOULD);
}
catch (BooleanQuery.TooManyClauses ignore) {
break;
}
qterms++;
if (maxQueryTerms > 0 && qterms >= maxQueryTerms) {
break;
}
}
return query;
}
/**
* Create a PriorityQueue from a word->tf map.
*
* @param words a map of words keyed on the word(String) with Int objects as the values.
*/
private PriorityQueue createQueue(Map words) throws IOException {
// have collected all words in doc and their freqs
int numDocs = ir.numDocs();
FreqQ res = new FreqQ(words.size()); // will order words by score
Iterator it = words.keySet().iterator();
while (it.hasNext()) { // for every word
String word = (String) it.next();
int tf = ((Int) words.get(word)).x; // term freq in the source doc
if (minTermFreq > 0 && tf < minTermFreq) {
continue; // filter out words that don't occur enough times in the source
}
// go through all the fields and find the largest document frequency
String topField = fieldNames[0];
int docFreq = 0;
for (int i = 0; i < fieldNames.length; i++) {
int freq = ir.docFreq(new Term(fieldNames[i], word));
topField = (freq > docFreq) ? fieldNames[i] : topField;
docFreq = (freq > docFreq) ? freq : docFreq;
}
if (minDocFreq > 0 && docFreq < minDocFreq) {
continue; // filter out words that don't occur in enough docs
}
if (docFreq == 0) {
continue; // index update problem?
}
float idf = similarity.idf(docFreq, numDocs);
float score = tf * idf;
// only really need 1st 3 entries, other ones are for troubleshooting
res.insert(new Object[]{word, // the word
topField, // the top field
new Float(score), // overall score
new Float(idf), // idf
new Integer(docFreq), // freq in all docs
new Integer(tf)
});
}
return res;
}
/**
* Describe the parameters that control how the "more like this" query is formed.
*/
public String describeParams() {
StringBuffer sb = new StringBuffer();
sb.append("\t" + "maxQueryTerms : " + maxQueryTerms + "\n");
sb.append("\t" + "minWordLen : " + minWordLen + "\n");
sb.append("\t" + "maxWordLen : " + maxWordLen + "\n");
sb.append("\t" + "fieldNames : \"");
String delim = "";
for (int i = 0; i < fieldNames.length; i++) {
String fieldName = fieldNames[i];
sb.append(delim).append(fieldName);
delim = ", ";
}
sb.append("\n");
sb.append("\t" + "boost : " + boost + "\n");
sb.append("\t" + "minTermFreq : " + minTermFreq + "\n");
sb.append("\t" + "minDocFreq : " + minDocFreq + "\n");
return sb.toString();
}
/**
* Test driver.
* Pass in "-i INDEX" and then either "-fn FILE" or "-url URL".
*/
public static void main(String[] a) throws Throwable {
String indexName = "localhost_index";
String fn = "c:/Program Files/Apache Group/Apache/htdocs/manual/vhosts/index.html.en";
URL url = null;
for (int i = 0; i < a.length; i++) {
if (a[i].equals("-i")) {
indexName = a[++i];
}
else if (a[i].equals("-f")) {
fn = a[++i];
}
else if (a[i].equals("-url")) {
url = new URL(a[++i]);
}
}
PrintStream o = System.out;
IndexReader r = IndexReader.open(indexName);
o.println("Open index " + indexName + " which has " + r.numDocs() + " docs");
MoreLikeThis mlt = new MoreLikeThis(r);
o.println("Query generation parameters:");
o.println(mlt.describeParams());
o.println();
Query query = null;
if (url != null) {
o.println("Parsing URL: " + url);
query = mlt.like(url);
}
else if (fn != null) {
o.println("Parsing file: " + fn);
query = mlt.like(new File(fn));
}
o.println("q: " + query);
o.println();
IndexSearcher searcher = new IndexSearcher(indexName);
Hits hits = searcher.search(query);
int len = hits.length();
o.println("found: " + len + " documents matching");
o.println();
for (int i = 0; i < Math.min(25, len); i++) {
Document d = hits.doc(i);
String summary = d.get( "summary");
o.println("score : " + hits.score(i));
o.println("url : " + d.get("url"));
o.println("\ttitle : " + d.get("title"));
if ( summary != null)
o.println("\tsummary: " + d.get("summary"));
o.println();
}
}
/**
* Find words for a more-like-this query former.
*
* @param docNum the id of the lucene document from which to find terms
*/
private PriorityQueue retrieveTerms(int docNum) throws IOException {
Map termFreqMap = new HashMap();
for (int i = 0; i < fieldNames.length; i++) {
String fieldName = fieldNames[i];
TermFreqVector vector = ir.getTermFreqVector(docNum, fieldName);
// field does not store term vector info
if (vector == null) {
Document d=ir.document(docNum);
String text[]=d.getValues(fieldName);
if(text!=null)
{
for (int j = 0; j < text.length; j++) {
addTermFrequencies(new StringReader(text[j]), termFreqMap, fieldName);
}
}
}
else {
addTermFrequencies(termFreqMap, vector);
}
}
return createQueue(termFreqMap);
}
/**
* Adds terms and frequencies found in vector into the Map termFreqMap
* @param termFreqMap a Map of terms and their frequencies
* @param vector List of terms and their frequencies for a doc/field
*/
private void addTermFrequencies(Map termFreqMap, TermFreqVector vector)
{
String[] terms = vector.getTerms();
int freqs[]=vector.getTermFrequencies();
for (int j = 0; j < terms.length; j++) {
String term = terms[j];
if(isNoiseWord(term)){
continue;
}
// increment frequency
Int cnt = (Int) termFreqMap.get(term);
if (cnt == null) {
cnt=new Int();
termFreqMap.put(term, cnt);
cnt.x=freqs[j];
}
else {
cnt.x+=freqs[j];
}
}
}
/**
* Adds term frequencies found by tokenizing text from reader into the Map words
* @param r a source of text to be tokenized
* @param termFreqMap a Map of terms and their frequencies
* @param fieldName Used by analyzer for any special per-field analysis
*/
private void addTermFrequencies(Reader r, Map termFreqMap, String fieldName)
throws IOException
{
TokenStream ts = analyzer.tokenStream(fieldName, r);
org.apache.lucene.analysis.Token token;
int tokenCount=0;
while ((token = ts.next()) != null) { // for every token
String word = token.termText();
tokenCount++;
if(tokenCount>maxNumTokensParsed)
{
break;
}
if(isNoiseWord(word)){
continue;
}
// increment frequency
Int cnt = (Int) termFreqMap.get(word);
if (cnt == null) {
termFreqMap.put(word, new Int());
}
else {
cnt.x++;
}
}
}
/** determines if the passed term is likely to be of interest in "more like" comparisons
*
* @param term The word being considered
* @return true if should be ignored, false if should be used in further analysis
*/
private boolean isNoiseWord(String term)
{
int len = term.length();
if (minWordLen > 0 && len < minWordLen) {
return true;
}
if (maxWordLen > 0 && len > maxWordLen) {
return true;
}
if (stopWords != null && stopWords.contains( term)) {
return true;
}
return false;
}
/**
* Find words for a more-like-this query former.
* The result is a priority queue of arrays with one entry for <b>every word</b> in the document.
* Each array has 6 elements.
* The elements are:
* <ol>
* <li> The word (String)
* <li> The top field that this word comes from (String)
* <li> The score for this word (Float)
* <li> The IDF value (Float)
* <li> The frequency of this word in the index (Integer)
* <li> The frequency of this word in the source document (Integer)
* </ol>
* This is a somewhat "advanced" routine, and in general only the 1st entry in the array is of interest.
* This method is exposed so that you can identify the "interesting words" in a document.
* For an easier method to call see {@link #retrieveInterestingTerms retrieveInterestingTerms()}.
*
* @param r the reader that has the content of the document
* @return the most intresting words in the document ordered by score, with the highest scoring, or best entry, first
*
* @see #retrieveInterestingTerms
*/
public PriorityQueue retrieveTerms(Reader r) throws IOException {
Map words = new HashMap();
for (int i = 0; i < fieldNames.length; i++) {
String fieldName = fieldNames[i];
addTermFrequencies(r, words, fieldName);
}
return createQueue(words);
}
/**
* Convenience routine to make it easy to return the most interesting words in a document.
* More advanced users will call {@link #retrieveTerms(java.io.Reader) retrieveTerms()} directly.
* @param r the source document
* @return the most interesting words in the document
*
* @see #retrieveTerms(java.io.Reader)
* @see #setMaxQueryTerms
*/
public String[] retrieveInterestingTerms( Reader r) throws IOException {
ArrayList al = new ArrayList( maxQueryTerms);
PriorityQueue pq = retrieveTerms( r);
Object cur;
int lim = maxQueryTerms; // have to be careful, retrieveTerms returns all words but that's probably not useful to our caller...
// we just want to return the top words
while (((cur = pq.pop()) != null) && lim-- > 0) {
Object[] ar = (Object[]) cur;
al.add( ar[ 0]); // the 1st entry is the interesting word
}
String[] res = new String[ al.size()];
return (String[]) al.toArray( res);
}
/**
* PriorityQueue that orders words by score.
*/
private static class FreqQ extends PriorityQueue {
FreqQ (int s) {
initialize(s);
}
protected boolean lessThan(Object a, Object b) {
Object[] aa = (Object[]) a;
Object[] bb = (Object[]) b;
Float fa = (Float) aa[2];
Float fb = (Float) bb[2];
return fa.floatValue() > fb.floatValue();
}
}
/**
* Use for frequencies and to avoid renewing Integers.
*/
private static class Int {
int x;
Int() {
x = 1;
}
}
}

View File

@ -1,122 +0,0 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.search.similar;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.BooleanClause;
import java.io.IOException;
import java.io.StringReader;
import java.util.HashSet;
import java.util.Set;
/**
* Simple similarity measures.
*
*
* @see MoreLikeThis
*/
public final class SimilarityQueries
{
/**
*
*/
private SimilarityQueries()
{
}
/**
* Simple similarity query generators.
* Takes every unique word and forms a boolean query where all words are optional.
* After you get this you'll use to to query your {@link IndexSearcher} for similar docs.
* The only caveat is the first hit returned <b>should be</b> your source document - you'll
* need to then ignore that.
*
* <p>
*
* So, if you have a code fragment like this:
* <br>
* <code>
* Query q = formSimilaryQuery( "I use Lucene to search fast. Fast searchers are good", new StandardAnalyzer(), "contents", null);
* </code>
*
* <p>
*
* The query returned, in string form, will be <code>'(i use lucene to search fast searchers are good')</code>.
*
* <p>
* The philosophy behind this method is "two documents are similar if they share lots of words".
* Note that behind the scenes, Lucenes scoring algorithm will tend to give two documents a higher similarity score if the share more uncommon words.
*
* <P>
* This method is fail-safe in that if a long 'body' is passed in and
* {@link BooleanQuery#add BooleanQuery.add()} (used internally)
* throws
* {@link org.apache.lucene.search.BooleanQuery.TooManyClauses BooleanQuery.TooManyClauses}, the
* query as it is will be returned.
*
*
*
*
*
* @param body the body of the document you want to find similar documents to
* @param a the analyzer to use to parse the body
* @param field the field you want to search on, probably something like "contents" or "body"
* @param stop optional set of stop words to ignore
* @return a query with all unique words in 'body'
* @throws IOException this can't happen...
*/
public static Query formSimilarQuery( String body,
Analyzer a,
String field,
Set stop)
throws IOException
{
TokenStream ts = a.tokenStream( field, new StringReader( body));
org.apache.lucene.analysis.Token t;
BooleanQuery tmp = new BooleanQuery();
Set already = new HashSet(); // ignore dups
while ( (t = ts.next()) != null)
{
String word = t.termText();
// ignore opt stop words
if ( stop != null &&
stop.contains( word)) continue;
// ignore dups
if ( ! already.add( word)) continue;
// add to query
TermQuery tq = new TermQuery( new Term( field, word));
try
{
tmp.add( tq, BooleanClause.Occur.SHOULD);//false, false);
}
catch( BooleanQuery.TooManyClauses too)
{
// fail-safe, just return what we have, not the end of the world
break;
}
}
return tmp;
}
}

View File

@ -1,5 +1,5 @@
<html>
<body>
Document similarity query generators.
Custom Document similarity implementations.
</body>
</html>