LUCENE-1434: add IndexableBinaryStringTools

git-svn-id: https://svn.apache.org/repos/asf/lucene/java/trunk@755742 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Michael McCandless 2009-03-18 21:35:51 +00:00
parent 96863198a5
commit 5d05762169
3 changed files with 507 additions and 0 deletions

View File

@ -178,6 +178,11 @@ New features
resources with the original reader. (Torin Danil via Mike resources with the original reader. (Torin Danil via Mike
McCandless) McCandless)
17. LUCENE-1434: Added org.apache.lucene.util.IndexableBinaryStringTools,
to encode byte[] as String values that are valid terms, and
maintain sort order of the original byte[] when the bytes are
interpreted as unsigned. (Steven Rowe via Mike McCandless)
Optimizations Optimizations
1. LUCENE-1427: Fixed QueryWrapperFilter to not waste time computing 1. LUCENE-1427: Fixed QueryWrapperFilter to not waste time computing

View File

@ -0,0 +1,315 @@
package org.apache.lucene.util;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.nio.CharBuffer;
import java.nio.ByteBuffer;
/**
* Provides support for converting byte sequences to Strings and back again.
* The resulting Strings preserve the original byte sequences' sort order.
*
* The Strings are constructed using a Base 8000h encoding of the original
* binary data - each char of an encoded String represents a 15-bit chunk
* from the byte sequence. Base 8000h was chosen because it allows for all
* lower 15 bits of char to be used without restriction; the surrogate range
* [U+D8000-U+DFFF] does not represent valid chars, and would require
* complicated handling to avoid them and allow use of char's high bit.
*
* Although unset bits are used as padding in the final char, the original
* byte sequence could contain trailing bytes with no set bits (null bytes):
* padding is indistinguishable from valid information. To overcome this
* problem, a char is appended, indicating the number of encoded bytes in the
* final content char.
*
* This class's operations are defined over CharBuffers and ByteBuffers, to
* allow for wrapped arrays to be reused, reducing memory allocation costs for
* repeated operations. Note that this class calls array() and arrayOffset()
* on the CharBuffers and ByteBuffers it uses, so only wrapped arrays may be
* used. This class interprets the arrayOffset() and limit() values returned by
* its input buffers as beginning and end+1 positions on the wrapped array,
* resprectively; similarly, on the output buffer, arrayOffset() is the first
* position written to, and limit() is set to one past the final output array
* position.
*/
public class IndexableBinaryStringTools {
private static final CodingCase[] CODING_CASES = {
// CodingCase(int initialShift, int finalShift)
new CodingCase( 7, 1 ),
// CodingCase(int initialShift, int middleShift, int finalShift)
new CodingCase(14, 6, 2),
new CodingCase(13, 5, 3),
new CodingCase(12, 4, 4),
new CodingCase(11, 3, 5),
new CodingCase(10, 2, 6),
new CodingCase( 9, 1, 7),
new CodingCase( 8, 0 )
};
// Export only static methods
private IndexableBinaryStringTools() {}
/**
* Returns the number of chars required to encode the given byte sequence.
*
* @param original The byte sequence to be encoded. Must be backed by an array.
* @return The number of chars required to encode the given byte sequence
* @throws IllegalArgumentException If the given ByteBuffer is not backed by an array
*/
public static int getEncodedLength(ByteBuffer original)
throws IllegalArgumentException {
if (original.hasArray()) {
// Use long for intermediaries to protect against overflow
long length = (long)(original.limit() - original.arrayOffset());
return (int)((length * 8L + 14L) / 15L) + 1;
} else {
throw new IllegalArgumentException("original argument must have a backing array");
}
}
/**
* Returns the number of bytes required to decode the given char sequence.
*
* @param encoded The char sequence to be encoded. Must be backed by an array.
* @return The number of bytes required to decode the given char sequence
* @throws IllegalArgumentException If the given CharBuffer is not backed by an array
*/
public static int getDecodedLength(CharBuffer encoded)
throws IllegalArgumentException {
if (encoded.hasArray()) {
int numChars = encoded.limit() - encoded.arrayOffset() - 1;
if (numChars <= 0) {
return 0;
} else {
int numFullBytesInFinalChar = encoded.charAt(encoded.limit() - 1);
int numEncodedChars = numChars - 1;
return (numEncodedChars * 15 + 7) / 8 + numFullBytesInFinalChar;
}
} else {
throw new IllegalArgumentException("encoded argument must have a backing array");
}
}
/**
* Encodes the input byte sequence into the output char sequence. Before
* calling this method, ensure that the output CharBuffer has sufficient
* capacity by calling {@link #getEncodedLength(java.nio.ByteBuffer)}.
*
* @param input The byte sequence to encode
* @param output Where the char sequence encoding result will go. The limit
* is set to one past the position of the final char.
* @throws IllegalArgumentException If either the input or the output buffer
* is not backed by an array
*/
public static void encode(ByteBuffer input, CharBuffer output) {
if (input.hasArray() && output.hasArray()) {
byte[] inputArray = input.array();
int inputOffset = input.arrayOffset();
int inputLength = input.limit() - inputOffset;
char[] outputArray = output.array();
int outputOffset = output.arrayOffset();
int outputLength = getEncodedLength(input);
output.limit(outputOffset + outputLength); // Set output final pos + 1
output.position(0);
if (inputLength > 0) {
int inputByteNum = inputOffset;
int caseNum = 0;
int outputCharNum = outputOffset;
CodingCase codingCase;
for ( ; inputByteNum + CODING_CASES[caseNum].numBytes <= inputLength ;
++outputCharNum ) {
codingCase = CODING_CASES[caseNum];
if (2 == codingCase.numBytes) {
outputArray[outputCharNum]
= (char)(((inputArray[inputByteNum] & 0xFF) << codingCase.initialShift)
+ (((inputArray[inputByteNum + 1] & 0xFF) >>> codingCase.finalShift)
& codingCase.finalMask)
& (short)0x7FFF);
} else { // numBytes is 3
outputArray[outputCharNum]
= (char)(((inputArray[inputByteNum] & 0xFF) << codingCase.initialShift)
+ ((inputArray[inputByteNum + 1] & 0xFF) << codingCase.middleShift)
+ (((inputArray[inputByteNum + 2] & 0xFF) >>> codingCase.finalShift)
& codingCase.finalMask)
& (short)0x7FFF);
}
inputByteNum += codingCase.advanceBytes;
if (++caseNum == CODING_CASES.length) {
caseNum = 0;
}
}
// Produce final char (if any) and trailing count chars.
codingCase = CODING_CASES[caseNum];
if (inputByteNum + 1 < inputLength) { // codingCase.numBytes must be 3
outputArray[outputCharNum++]
= (char)((((inputArray[inputByteNum] & 0xFF) << codingCase.initialShift)
+ ((inputArray[inputByteNum + 1] & 0xFF) << codingCase.middleShift))
& (short)0x7FFF);
// Add trailing char containing the number of full bytes in final char
outputArray[outputCharNum++] = (char)1;
} else if (inputByteNum < inputLength) {
outputArray[outputCharNum++]
= (char)(((inputArray[inputByteNum] & 0xFF) << codingCase.initialShift)
& (short)0x7FFF);
// Add trailing char containing the number of full bytes in final char
outputArray[outputCharNum++] = caseNum == 0 ? (char)1 : (char)0;
} else { // No left over bits - last char is completely filled.
// Add trailing char containing the number of full bytes in final char
outputArray[outputCharNum++] = (char)1;
}
}
} else {
throw new IllegalArgumentException("Arguments must have backing arrays");
}
}
/**
* Decodes the input char sequence into the output byte sequence. Before
* calling this method, ensure that the output ByteBuffer has sufficient
* capacity by calling {@link #getDecodedLength(java.nio.CharBuffer)}.
*
* @param input The char sequence to decode
* @param output Where the byte sequence decoding result will go. The limit
* is set to one past the position of the final char.
* @throws IllegalArgumentException If either the input or the output buffer
* is not backed by an array
*/
public static void decode(CharBuffer input, ByteBuffer output) {
if (input.hasArray() && output.hasArray()) {
int numInputChars = input.limit() - input.arrayOffset() - 1;
int numOutputBytes = getDecodedLength(input);
output.limit(numOutputBytes + output.arrayOffset()); // Set output final pos + 1
output.position(0);
byte[] outputArray = output.array();
char[] inputArray = input.array();
if (numOutputBytes > 0) {
int caseNum = 0;
int outputByteNum = output.arrayOffset();
int inputCharNum = input.arrayOffset();
short inputChar;
CodingCase codingCase;
for ( ; inputCharNum < numInputChars - 1 ; ++inputCharNum) {
codingCase = CODING_CASES[caseNum];
inputChar = (short)inputArray[inputCharNum];
if (2 == codingCase.numBytes) {
if (0 == caseNum) {
outputArray[outputByteNum] = (byte)(inputChar >>> codingCase.initialShift);
} else {
outputArray[outputByteNum] += (byte)(inputChar >>> codingCase.initialShift);
}
outputArray[outputByteNum + 1] = (byte)((inputChar & codingCase.finalMask)
<< codingCase.finalShift);
} else { // numBytes is 3
outputArray[outputByteNum] += (byte)(inputChar >>> codingCase.initialShift);
outputArray[outputByteNum + 1] = (byte)((inputChar & codingCase.middleMask)
>>> codingCase.middleShift);
outputArray[outputByteNum + 2] = (byte)((inputChar & codingCase.finalMask)
<< codingCase.finalShift);
}
outputByteNum += codingCase.advanceBytes;
if (++caseNum == CODING_CASES.length) {
caseNum = 0;
}
}
// Handle final char
inputChar = (short)inputArray[inputCharNum];
codingCase = CODING_CASES[caseNum];
if (0 == caseNum) {
outputArray[outputByteNum] = 0;
}
outputArray[outputByteNum] += (byte)(inputChar >>> codingCase.initialShift);
int bytesLeft = numOutputBytes - outputByteNum;
if (bytesLeft > 1) {
if (2 == codingCase.numBytes) {
outputArray[outputByteNum + 1] = (byte)((inputChar & codingCase.finalMask)
>>> codingCase.finalShift);
} else { // numBytes is 3
outputArray[outputByteNum + 1] = (byte)((inputChar & codingCase.middleMask)
>>> codingCase.middleShift);
if (bytesLeft > 2) {
outputArray[outputByteNum + 2] = (byte)((inputChar & codingCase.finalMask)
<< codingCase.finalShift);
}
}
}
}
} else {
throw new IllegalArgumentException("Arguments must have backing arrays");
}
}
/**
* Decodes the given char sequence, which must have been encoded by
* {@link #encode(java.nio.ByteBuffer)} or
* {@link #encode(java.nio.ByteBuffer, java.nio.CharBuffer)}.
*
* @param input The char sequence to decode
* @return A byte sequence containing the decoding result. The limit
* is set to one past the position of the final char.
* @throws IllegalArgumentException If the input buffer is not backed by an
* array
*/
public static ByteBuffer decode(CharBuffer input) {
byte[] outputArray = new byte[getDecodedLength(input)];
ByteBuffer output = ByteBuffer.wrap(outputArray);
decode(input, output);
return output;
}
/**
* Encodes the input byte sequence.
*
* @param input The byte sequence to encode
* @return A char sequence containing the encoding result. The limit is set
* to one past the position of the final char.
* @throws IllegalArgumentException If the input buffer is not backed by an
* array
*/
public static CharBuffer encode(ByteBuffer input) {
char[] outputArray = new char[getEncodedLength(input)];
CharBuffer output = CharBuffer.wrap(outputArray);
encode(input, output);
return output;
}
static class CodingCase {
int numBytes, initialShift, middleShift, finalShift, advanceBytes = 2;
short middleMask, finalMask;
CodingCase(int initialShift, int middleShift, int finalShift) {
this.numBytes = 3;
this.initialShift = initialShift;
this.middleShift = middleShift;
this.finalShift = finalShift;
this.finalMask = (short)((short)0xFF >>> finalShift);
this.middleMask = (short)((short)0xFF << middleShift);
}
CodingCase(int initialShift, int finalShift) {
this.numBytes = 2;
this.initialShift = initialShift;
this.finalShift = finalShift;
this.finalMask = (short)((short)0xFF >>> finalShift);
if (finalShift != 0) {
advanceBytes = 1;
}
}
}
}

View File

@ -0,0 +1,187 @@
package org.apache.lucene.util;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.util.Random;
import java.nio.CharBuffer;
import java.nio.ByteBuffer;
public class TestIndexableBinaryStringTools extends LuceneTestCase {
private static final int NUM_RANDOM_TESTS = 20000;
private static final int MAX_RANDOM_BINARY_LENGTH = 300;
public void testSingleBinaryRoundTrip() {
byte[] binary = new byte[]
{ (byte)0x23, (byte)0x98, (byte)0x13, (byte)0xE4, (byte)0x76, (byte)0x41,
(byte)0xB2, (byte)0xC9, (byte)0x7F, (byte)0x0A, (byte)0xA6, (byte)0xD8 };
ByteBuffer binaryBuf = ByteBuffer.wrap(binary);
CharBuffer encoded = IndexableBinaryStringTools.encode(binaryBuf);
ByteBuffer decoded = IndexableBinaryStringTools.decode(encoded);
assertEquals("Round trip decode/decode returned different results:"
+ System.getProperty("line.separator")
+ "original: " + binaryDump(binaryBuf)
+ System.getProperty("line.separator")
+ " encoded: " + charArrayDump(encoded)
+ System.getProperty("line.separator")
+ " decoded: " + binaryDump(decoded),
binaryBuf, decoded);
}
public void testEncodedSortability() {
Random random = newRandom();
byte[] originalArray1 = new byte[MAX_RANDOM_BINARY_LENGTH];
ByteBuffer originalBuf1 = ByteBuffer.wrap(originalArray1);
char[] originalString1 = new char[MAX_RANDOM_BINARY_LENGTH];
CharBuffer originalStringBuf1 = CharBuffer.wrap(originalString1);
char[] encoded1 = new char[IndexableBinaryStringTools.getEncodedLength(originalBuf1)];
CharBuffer encodedBuf1 = CharBuffer.wrap(encoded1);
byte[] original2 = new byte[MAX_RANDOM_BINARY_LENGTH];
ByteBuffer originalBuf2 = ByteBuffer.wrap(original2);
char[] originalString2 = new char[MAX_RANDOM_BINARY_LENGTH];
CharBuffer originalStringBuf2 = CharBuffer.wrap(originalString2);
char[] encoded2 = new char[IndexableBinaryStringTools.getEncodedLength(originalBuf2)];
CharBuffer encodedBuf2 = CharBuffer.wrap(encoded2);
for (int testNum = 0 ; testNum < NUM_RANDOM_TESTS ; ++testNum) {
int numBytes1 = random.nextInt(MAX_RANDOM_BINARY_LENGTH - 1) + 1; // Min == 1
originalBuf1.limit(numBytes1);
originalStringBuf1.limit(numBytes1);
for (int byteNum = 0 ; byteNum < numBytes1 ; ++byteNum) {
int randomInt = random.nextInt(0x100);
originalArray1[byteNum] = (byte) randomInt;
originalString1[byteNum] = (char)randomInt;
}
int numBytes2 = random.nextInt(MAX_RANDOM_BINARY_LENGTH - 1) + 1; // Min == 1
originalBuf2.limit(numBytes2);
originalStringBuf2.limit(numBytes2);
for (int byteNum = 0 ; byteNum < numBytes2 ; ++byteNum) {
int randomInt = random.nextInt(0x100);
original2[byteNum] = (byte)randomInt;
originalString2[byteNum] = (char)randomInt;
}
int originalComparison = originalStringBuf1.compareTo(originalStringBuf2);
originalComparison = originalComparison < 0 ? -1 : originalComparison > 0 ? 1 : 0;
IndexableBinaryStringTools.encode(originalBuf1, encodedBuf1);
IndexableBinaryStringTools.encode(originalBuf2, encodedBuf2);
int encodedComparison = encodedBuf1.compareTo(encodedBuf2);
encodedComparison = encodedComparison < 0 ? -1 : encodedComparison > 0 ? 1 : 0;
assertEquals("Test #" + (testNum + 1)
+ ": Original bytes and encoded chars compare differently:"
+ System.getProperty("line.separator")
+ " binary 1: " + binaryDump(originalBuf1)
+ System.getProperty("line.separator")
+ " binary 2: " + binaryDump(originalBuf2)
+ System.getProperty("line.separator")
+ "encoded 1: " + charArrayDump(encodedBuf1)
+ System.getProperty("line.separator")
+ "encoded 2: " + charArrayDump(encodedBuf2)
+ System.getProperty("line.separator"),
originalComparison, encodedComparison);
}
}
public void testEmptyInput() {
byte[] binary = new byte[0];
CharBuffer encoded = IndexableBinaryStringTools.encode(ByteBuffer.wrap(binary));
ByteBuffer decoded = IndexableBinaryStringTools.decode(encoded);
assertNotNull("decode() returned null", decoded);
assertEquals("decoded empty input was not empty", decoded.limit(), 0);
}
public void testAllNullInput() {
byte[] binary = new byte[] { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
ByteBuffer binaryBuf = ByteBuffer.wrap(binary);
CharBuffer encoded = IndexableBinaryStringTools.encode(binaryBuf);
assertNotNull("encode() returned null", encoded);
ByteBuffer decodedBuf = IndexableBinaryStringTools.decode(encoded);
assertNotNull("decode() returned null", decodedBuf);
assertEquals("Round trip decode/decode returned different results:"
+ System.getProperty("line.separator")
+ " original: " + binaryDump(binaryBuf)
+ System.getProperty("line.separator")
+ "decodedBuf: " + binaryDump(decodedBuf),
binaryBuf, decodedBuf);
}
public void testRandomBinaryRoundTrip() {
Random random = newRandom();
byte[] binary = new byte[MAX_RANDOM_BINARY_LENGTH];
ByteBuffer binaryBuf = ByteBuffer.wrap(binary);
char[] encoded = new char[IndexableBinaryStringTools.getEncodedLength(binaryBuf)];
CharBuffer encodedBuf = CharBuffer.wrap(encoded);
byte[] decoded = new byte[MAX_RANDOM_BINARY_LENGTH];
ByteBuffer decodedBuf = ByteBuffer.wrap(decoded);
for (int testNum = 0 ; testNum < NUM_RANDOM_TESTS ; ++testNum) {
int numBytes = random.nextInt(MAX_RANDOM_BINARY_LENGTH - 1) + 1 ; // Min == 1
binaryBuf.limit(numBytes);
for (int byteNum = 0 ; byteNum < numBytes ; ++byteNum) {
binary[byteNum] = (byte)random.nextInt(0x100);
}
IndexableBinaryStringTools.encode(binaryBuf, encodedBuf);
IndexableBinaryStringTools.decode(encodedBuf, decodedBuf);
assertEquals("Test #" + (testNum + 1)
+ ": Round trip decode/decode returned different results:"
+ System.getProperty("line.separator")
+ " original: " + binaryDump(binaryBuf)
+ System.getProperty("line.separator")
+ "encodedBuf: " + charArrayDump(encodedBuf)
+ System.getProperty("line.separator")
+ "decodedBuf: " + binaryDump(decodedBuf),
binaryBuf, decodedBuf);
}
}
public String binaryDump(ByteBuffer binaryBuf) {
StringBuffer buf = new StringBuffer();
int numBytes = binaryBuf.limit() - binaryBuf.arrayOffset();
byte[] binary = binaryBuf.array();
for (int byteNum = 0 ; byteNum < numBytes ; ++byteNum) {
String hex = Integer.toHexString((int)binary[byteNum] & 0xFF);
if (hex.length() == 1) {
buf.append('0');
}
buf.append(hex.toUpperCase());
if (byteNum < numBytes - 1) {
buf.append(' ');
}
}
return buf.toString();
}
public String charArrayDump(CharBuffer charBuf) {
StringBuffer buf = new StringBuffer();
int numBytes = charBuf.limit() - charBuf.arrayOffset();
char[] charArray = charBuf.array();
for (int charNum = 0 ; charNum < numBytes ; ++charNum) {
String hex = Integer.toHexString((int)charArray[charNum]);
for (int digit = 0 ; digit < 4 - hex.length() ; ++digit) {
buf.append('0');
}
buf.append(hex.toUpperCase());
if (charNum < numBytes - 1) {
buf.append(' ');
}
}
return buf.toString();
}
}