LUCENE-8197: Efficient integration of static scoring factors.

This commit is contained in:
Adrien Grand 2018-03-20 11:21:39 +01:00
parent 2e35ef2b3d
commit 710993435f
4 changed files with 973 additions and 0 deletions

View File

@ -103,6 +103,9 @@ New Features
deleted documents around for later reuse. See "IW.softUpdateDocument(...)" deleted documents around for later reuse. See "IW.softUpdateDocument(...)"
for reference. (Simon Willnauer) for reference. (Simon Willnauer)
* LUCENE-8097: A new FeatureField makes it easy and efficient to integrate
static relevance signals into the final score. (Adrien Grand, Robert Muir)
Other Other
* LUCENE-8214: Improve selection of testPoint for GeoComplexPolygon. * LUCENE-8214: Improve selection of testPoint for GeoComplexPolygon.

View File

@ -0,0 +1,496 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.document;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.TermFrequencyAttribute;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermStates;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.BoostQuery;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.similarities.BM25Similarity;
import org.apache.lucene.search.similarities.Similarity.SimScorer;
/**
* {@link Field} that can be used to store static scoring factors into
* documents. This is mostly inspired from the work from Nick Craswell,
* Stephen Robertson, Hugo Zaragoza and Michael Taylor. Relevance weighting
* for query independent evidence. Proceedings of the 28th annual international
* ACM SIGIR conference on Research and development in information retrieval.
* August 15-19, 2005, Salvador, Brazil.
* <p>
* Feature values are internally encoded as term frequencies. Putting
* feature queries as
* {@link org.apache.lucene.search.BooleanClause.Occur#SHOULD} clauses of a
* {@link BooleanQuery} allows to combine query-dependent scores (eg. BM25)
* with query-independent scores using a linear combination. The fact that
* feature values are stored as frequencies also allows search logic to
* efficiently skip documents that can't be competitive when total hit counts
* are not requested. This makes it a compelling option compared to storing
* such factors eg. in a doc-value field.
* <p>
* This field may only store factors that are positively correlated with the
* final score, like pagerank. In case of factors that are inversely correlated
* with the score like url length, the inverse of the scoring factor should be
* stored, ie. {@code 1/urlLength}.
* <p>
* This field only considers the top 9 significant bits for storage efficiency
* which allows to store them on 16 bits internally. In practice this limitation
* means that values are stored with a relative precision of
* 2<sup>-8</sup> = 0.00390625.
* <p>
* Given a scoring factor {@code S > 0} and its weight {@code w > 0}, there
* are three ways that S can be turned into a score:
* <ul>
* <li>{@link #newLogQuery w * log(a + S)}, with a &ge; 1. This function
* usually makes sense because the distribution of scoring factors
* often follows a power law. This is typically the case for pagerank for
* instance. However the paper suggested that the {@code satu} and
* {@code sigm} functions give even better results.
* <li>{@link #newSaturationQuery satu(S) = w * S / (S + k)}, with k &gt; 0. This
* function is similar to the one used by {@link BM25Similarity} in order
* to incorporate term frequency into the final score and produces values
* between 0 and 1. A value of 0.5 is obtained when S and k are equal.
* <li>{@link #newSigmoidQuery sigm(S) = w * S<sup>a</sup> / (S<sup>a</sup> + k<sup>a</sup>)},
* with k &gt; 0, a &gt; 0. This function provided even better results
* than the two above but is also harder to tune due to the fact it has
* 2 parameters. Like with {@code satu}, values are in the 0..1 range and
* 0.5 is obtained when S and k are equal.
* </ul>
* <p>
* The constants in the above formulas typically need training in order to
* compute optimal values. If you don't know where to start, the
* {@link #newSaturationQuery(IndexSearcher, String, String)} method uses
* {@code 1f} as a weight and tries to guess a sensible value for the
* {@code pivot} parameter of the saturation function based on index
* statistics, which shouldn't perform too bad. Here is an example, assuming
* that documents have a {@link FeatureField} called 'features' with values for
* the 'pagerank' feature.
* <pre class="prettyprint">
* Query query = new BooleanQuery.Builder()
* .add(new TermQuery(new Term("body", "apache")), Occur.SHOULD)
* .add(new TermQuery(new Term("body", "lucene")), Occur.SHOULD)
* .build();
* Query boost = FeatureField.newSaturationQuery(searcher, "features", "pagerank");
* Query boostedQuery = new BooleanQuery.Builder()
* .add(query, Occur.MUST)
* .add(boost, Occur.SHOULD)
* .build();
* TopDocs topDocs = searcher.search(boostedQuery, 10);
* </pre>
* @lucene.experimental
*/
public final class FeatureField extends Field {
private static final FieldType FIELD_TYPE = new FieldType();
static {
FIELD_TYPE.setTokenized(false);
FIELD_TYPE.setOmitNorms(true);
FIELD_TYPE.setIndexOptions(IndexOptions.DOCS_AND_FREQS);
}
private float featureValue;
/**
* Create a feature.
* @param fieldName The name of the field to store the information into. All features may be stored in the same field.
* @param featureName The name of the feature, eg. 'pagerank`. It will be indexed as a term.
* @param featureValue The value of the feature, must be a positive, finite, normal float.
*/
public FeatureField(String fieldName, String featureName, float featureValue) {
super(fieldName, featureName, FIELD_TYPE);
setFeatureValue(featureValue);
}
/**
* Update the feature value of this field.
*/
public void setFeatureValue(float featureValue) {
if (Float.isFinite(featureValue) == false) {
throw new IllegalArgumentException("featureValue must be finite, got: " + featureValue +
" for feature " + fieldsData + " on field " + name);
}
if (featureValue < Float.MIN_NORMAL) {
throw new IllegalArgumentException("featureValue must be a positive normal float, got: " +
featureValue + "for feature " + fieldsData + " on field " + name +
" which is less than the minimum positive normal float: " + Float.MIN_NORMAL);
}
this.featureValue = featureValue;
}
@Override
public TokenStream tokenStream(Analyzer analyzer, TokenStream reuse) {
FeatureTokenStream stream;
if (reuse instanceof FeatureTokenStream) {
stream = (FeatureTokenStream) reuse;
} else {
stream = new FeatureTokenStream();
}
int freqBits = Float.floatToIntBits(featureValue);
stream.setValues((String) fieldsData, freqBits >>> 15);
return stream;
}
private static final class FeatureTokenStream extends TokenStream {
private final CharTermAttribute termAttribute = addAttribute(CharTermAttribute.class);
private final TermFrequencyAttribute freqAttribute = addAttribute(TermFrequencyAttribute.class);
private boolean used = true;
private String value = null;
private int freq = 0;
private FeatureTokenStream() {
}
/** Sets the values */
void setValues(String value, int freq) {
this.value = value;
this.freq = freq;
}
@Override
public boolean incrementToken() {
if (used) {
return false;
}
clearAttributes();
termAttribute.append(value);
freqAttribute.setTermFrequency(freq);
used = true;
return true;
}
@Override
public void reset() {
used = false;
}
@Override
public void close() {
value = null;
}
}
private static final int MAX_FREQ = Float.floatToIntBits(Float.MAX_VALUE) >>> 15;
private static float decodeFeatureValue(float freq) {
if (freq > MAX_FREQ) {
// This is never used in practice but callers of the SimScorer API might
// occasionally call it on eg. Float.MAX_VALUE to compute the max score
// so we need to be consistent.
return Float.MAX_VALUE;
}
int tf = (int) freq; // lossless
int featureBits = tf << 15;
return Float.intBitsToFloat(featureBits);
}
static abstract class FeatureFunction {
abstract SimScorer scorer(String field, float w);
abstract Explanation explain(String field, String feature, float w, int freq);
}
static final class LogFunction extends FeatureFunction {
private final float scalingFactor;
LogFunction(float a) {
this.scalingFactor = a;
}
@Override
public boolean equals(Object obj) {
if (obj == null || getClass() != obj.getClass()) {
return false;
}
LogFunction that = (LogFunction) obj;
return scalingFactor == that.scalingFactor;
}
@Override
public int hashCode() {
return Float.hashCode(scalingFactor);
}
@Override
public String toString() {
return "LogFunction(scalingFactor=" + scalingFactor + ")";
}
@Override
SimScorer scorer(String field, float weight) {
return new SimScorer(field) {
@Override
public float score(float freq, long norm) {
return (float) (weight * Math.log(scalingFactor + decodeFeatureValue(freq)));
}
};
}
@Override
Explanation explain(String field, String feature, float w, int freq) {
float featureValue = decodeFeatureValue(freq);
float score = scorer(field, w).score(freq, 1L);
return Explanation.match(score,
"Log function on the " + field + " field for the " + feature + " feature, computed as w * log(a + S) from:",
Explanation.match(w, "w, weight of this function"),
Explanation.match(scalingFactor, "a, scaling factor"),
Explanation.match(featureValue, "S, feature value"));
}
}
static final class SaturationFunction extends FeatureFunction {
private final float pivot;
SaturationFunction(float pivot) {
this.pivot = pivot;
}
@Override
public boolean equals(Object obj) {
if (obj == null || getClass() != obj.getClass()) {
return false;
}
SaturationFunction that = (SaturationFunction) obj;
return pivot == that.pivot;
}
@Override
public int hashCode() {
return Float.hashCode(pivot);
}
@Override
public String toString() {
return "SaturationFunction(pivot=" + pivot + ")";
}
@Override
SimScorer scorer(String field, float weight) {
return new SimScorer(field) {
@Override
public float score(float freq, long norm) {
float f = decodeFeatureValue(freq);
// should be f / (f + k) but we rewrite it to
// 1 - k / (f + k) to make sure it doesn't decrease
// with f in spite of rounding
return weight * (1 - pivot / (f + pivot));
}
};
}
@Override
Explanation explain(String field, String feature, float weight, int freq) {
float featureValue = decodeFeatureValue(freq);
float score = scorer(field, weight).score(freq, 1L);
return Explanation.match(score,
"Saturation function on the " + field + " field for the " + feature + " feature, computed as w * S / (S + k) from:",
Explanation.match(weight, "w, weight of this function"),
Explanation.match(pivot, "k, pivot feature value that would give a score contribution equal to w/2"),
Explanation.match(featureValue, "S, feature value"));
}
}
static final class SigmoidFunction extends FeatureFunction {
private final float pivot, a;
private final double pivotPa;
SigmoidFunction(float pivot, float a) {
this.pivot = pivot;
this.a = a;
this.pivotPa = Math.pow(pivot, a);
}
@Override
public boolean equals(Object obj) {
if (obj == null || getClass() != obj.getClass()) {
return false;
}
SigmoidFunction that = (SigmoidFunction) obj;
return pivot == that.pivot
&& a == that.a;
}
@Override
public int hashCode() {
int h = Float.hashCode(pivot);
h = 31 * h + Float.hashCode(a);
return h;
}
@Override
public String toString() {
return "SigmoidFunction(pivot=" + pivot + ", a=" + a + ")";
}
@Override
SimScorer scorer(String field, float weight) {
return new SimScorer(field) {
@Override
public float score(float freq, long norm) {
float f = decodeFeatureValue(freq);
// should be f^a / (f^a + k^a) but we rewrite it to
// 1 - k^a / (f + k^a) to make sure it doesn't decrease
// with f in spite of rounding
return (float) (weight * (1 - pivotPa / (Math.pow(f, a) + pivotPa)));
}
};
}
@Override
Explanation explain(String field, String feature, float weight, int freq) {
float featureValue = decodeFeatureValue(freq);
float score = scorer(field, weight).score(freq, 1L);
return Explanation.match(score,
"Sigmoid function on the " + field + " field for the " + feature + " feature, computed as w * S^a / (S^a + k^a) from:",
Explanation.match(weight, "w, weight of this function"),
Explanation.match(pivot, "k, pivot feature value that would give a score contribution equal to w/2"),
Explanation.match(pivot, "a, exponent, higher values make the function grow slower before k and faster after k"),
Explanation.match(featureValue, "S, feature value"));
}
}
/**
* Given that IDFs are logs, similarities that incorporate term freq and
* document length in sane (ie. saturated) ways should have their score
* bounded by a log. So we reject weights that are too high as it would mean
* that this clause would completely dominate ranking, removing the need for
* query-dependent scores.
*/
private static final float MAX_WEIGHT = Long.SIZE;
/**
* Return a new {@link Query} that will score documents as
* {@code weight * Math.log(scalingFactor + S)} where S is the value of the static feature.
* @param fieldName field that stores features
* @param featureName name of the feature
* @param weight weight to give to this feature, must be in (0,64]
* @param scalingFactor scaling factor applied before taking the logarithm, must be in [1, +Infinity)
* @throws IllegalArgumentException if weight is not in (0,64] or scalingFactor is not in [1, +Infinity)
*/
public static Query newLogQuery(String fieldName, String featureName, float weight, float scalingFactor) {
if (weight <= 0 || weight > MAX_WEIGHT) {
throw new IllegalArgumentException("weight must be in (0, " + MAX_WEIGHT + "], got: " + weight);
}
if (scalingFactor < 1 || Float.isFinite(scalingFactor) == false) {
throw new IllegalArgumentException("scalingFactor must be >= 1, got: " + scalingFactor);
}
Query q = new FeatureQuery(fieldName, featureName, new LogFunction(scalingFactor));
if (weight != 1f) {
q = new BoostQuery(q, weight);
}
return q;
}
/**
* Return a new {@link Query} that will score documents as
* {@code weight * S / (S + pivot)} where S is the value of the static feature.
* @param fieldName field that stores features
* @param featureName name of the feature
* @param weight weight to give to this feature, must be in (0,64]
* @param pivot feature value that would give a score contribution equal to weight/2, must be in (0, +Infinity)
* @throws IllegalArgumentException if weight is not in (0,64] or pivot is not in (0, +Infinity)
*/
public static Query newSaturationQuery(String fieldName, String featureName, float weight, float pivot) {
if (weight <= 0 || weight > MAX_WEIGHT) {
throw new IllegalArgumentException("weight must be in (0, " + MAX_WEIGHT + "], got: " + weight);
}
if (pivot <= 0 || Float.isFinite(pivot) == false) {
throw new IllegalArgumentException("pivot must be > 0, got: " + pivot);
}
Query q = new FeatureQuery(fieldName, featureName, new SaturationFunction(pivot));
if (weight != 1f) {
q = new BoostQuery(q, weight);
}
return q;
}
/**
* Same as {@link #newSaturationQuery(String, String, float, float)} but
* uses {@code 1f} as a weight and tries to compute a sensible default value
* for {@code pivot} using
* {@link #computePivotFeatureValue(IndexSearcher, String, String)}. This
* isn't expected to give an optimal configuration of these parameters but
* should be a good start if you have no idea what the values of these
* parameters should be.
* @param searcher the {@link IndexSearcher} that you will search against
* @param featureFieldName the field that stores features
* @param featureName the name of the feature
*/
public static Query newSaturationQuery(IndexSearcher searcher,
String featureFieldName, String featureName) throws IOException {
float weight = 1f;
float pivot = computePivotFeatureValue(searcher, featureFieldName, featureName);
return newSaturationQuery(featureFieldName, featureName, weight, pivot);
}
/**
* Return a new {@link Query} that will score documents as
* {@code weight * S^a / (S^a + pivot^a)} where S is the value of the static feature.
* @param fieldName field that stores features
* @param featureName name of the feature
* @param weight weight to give to this feature, must be in (0,64]
* @param pivot feature value that would give a score contribution equal to weight/2, must be in (0, +Infinity)
* @param exp exponent, higher values make the function grow slower before 'pivot' and faster after 'pivot', must be in (0, +Infinity)
* @throws IllegalArgumentException if w is not in (0,64] or either k or a are not in (0, +Infinity)
*/
public static Query newSigmoidQuery(String fieldName, String featureName, float weight, float pivot, float exp) {
if (weight <= 0 || weight > MAX_WEIGHT) {
throw new IllegalArgumentException("weight must be in (0, " + MAX_WEIGHT + "], got: " + weight);
}
if (pivot <= 0 || Float.isFinite(pivot) == false) {
throw new IllegalArgumentException("pivot must be > 0, got: " + pivot);
}
if (exp <= 0 || Float.isFinite(exp) == false) {
throw new IllegalArgumentException("exp must be > 0, got: " + exp);
}
Query q = new FeatureQuery(fieldName, featureName, new SigmoidFunction(pivot, exp));
if (weight != 1f) {
q = new BoostQuery(q, weight);
}
return q;
}
/**
* Compute a feature value that may be used as the {@code pivot} parameter of
* the {@link #newSaturationQuery(String, String, float, float)} and
* {@link #newSigmoidQuery(String, String, float, float, float)} factory
* methods. The implementation takes the average of the int bits of the float
* representation in practice before converting it back to a float. Given that
* floats store the exponent in the higher bits, it means that the result will
* be an approximation of the geometric mean of all feature values.
* @param searcher the {@link IndexSearcher} to search against
* @param featureField the field that stores features
* @param featureName the name of the feature
*/
public static float computePivotFeatureValue(IndexSearcher searcher, String featureField, String featureName) throws IOException {
Term term = new Term(featureField, featureName);
TermStates states = TermStates.build(searcher.getIndexReader().getContext(), term, true);
float avgFreq = (float) ((double) states.totalTermFreq() / states.docFreq());
return decodeFeatureValue(avgFreq);
}
}

View File

@ -0,0 +1,157 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.document;
import java.io.IOException;
import java.util.Objects;
import java.util.Set;
import org.apache.lucene.document.FeatureField.FeatureFunction;
import org.apache.lucene.index.ImpactsEnum;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.PostingsEnum;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreMode;
import org.apache.lucene.search.Scorer;
import org.apache.lucene.search.Weight;
import org.apache.lucene.search.similarities.Similarity.SimScorer;
import org.apache.lucene.util.BytesRef;
final class FeatureQuery extends Query {
private final String fieldName;
private final String featureName;
private final FeatureFunction function;
FeatureQuery(String fieldName, String featureName, FeatureFunction function) {
this.fieldName = Objects.requireNonNull(fieldName);
this.featureName = Objects.requireNonNull(featureName);
this.function = Objects.requireNonNull(function);
}
@Override
public boolean equals(Object obj) {
if (obj == null || getClass() != obj.getClass()) {
return false;
}
FeatureQuery that = (FeatureQuery) obj;
return Objects.equals(fieldName, that.fieldName) &&
Objects.equals(featureName, that.featureName) &&
Objects.equals(function, that.function);
}
@Override
public int hashCode() {
int h = getClass().hashCode();
h = 31 * h + fieldName.hashCode();
h = 31 * h + featureName.hashCode();
h = 31 * h + function.hashCode();
return h;
}
@Override
public Weight createWeight(IndexSearcher searcher, ScoreMode scoreMode, float boost) throws IOException {
return new Weight(this) {
@Override
public boolean isCacheable(LeafReaderContext ctx) {
return false;
}
@Override
public void extractTerms(Set<Term> terms) {}
@Override
public Explanation explain(LeafReaderContext context, int doc) throws IOException {
String desc = "weight(" + getQuery() + " in " + doc + ") [" + function + "]";
Terms terms = context.reader().terms(fieldName);
if (terms == null) {
return Explanation.noMatch(desc + ". Field " + fieldName + " doesn't exist.");
}
TermsEnum termsEnum = terms.iterator();
if (termsEnum.seekExact(new BytesRef(featureName)) == false) {
return Explanation.noMatch(desc + ". Feature " + featureName + " doesn't exist.");
}
PostingsEnum postings = termsEnum.postings(null, PostingsEnum.FREQS);
if (postings.advance(doc) != doc) {
return Explanation.noMatch(desc + ". Feature " + featureName + " isn't set.");
}
return function.explain(fieldName, featureName, boost, postings.freq());
}
@Override
public Scorer scorer(LeafReaderContext context) throws IOException {
Terms terms = context.reader().terms(fieldName);
if (terms == null) {
return null;
}
TermsEnum termsEnum = terms.iterator();
if (termsEnum.seekExact(new BytesRef(featureName)) == false) {
return null;
}
SimScorer scorer = function.scorer(fieldName, boost);
ImpactsEnum impacts = termsEnum.impacts(scorer, PostingsEnum.FREQS);
return new Scorer(this) {
@Override
public int docID() {
return impacts.docID();
}
@Override
public float score() throws IOException {
return scorer.score(impacts.freq(), 1L);
}
@Override
public DocIdSetIterator iterator() {
return impacts;
}
@Override
public int advanceShallow(int target) throws IOException {
return impacts.advanceShallow(target);
}
@Override
public float getMaxScore(int upTo) throws IOException {
return impacts.getMaxScore(upTo);
}
};
}
};
}
@Override
public String toString(String field) {
return "FeatureQuery(field=" + fieldName + ", feature=" + featureName + ", function=" + function + ")";
}
}

View File

@ -0,0 +1,317 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.document;
import java.io.IOException;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.RandomIndexWriter;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.BooleanClause.Occur;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.QueryUtils;
import org.apache.lucene.search.ScoreMode;
import org.apache.lucene.search.Scorer;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.search.Weight;
import org.apache.lucene.search.similarities.BM25Similarity;
import org.apache.lucene.search.similarities.Similarity.SimScorer;
import org.apache.lucene.store.Directory;
import org.apache.lucene.util.LuceneTestCase;
public class TestFeatureField extends LuceneTestCase {
/** Round a float value the same way that {@link FeatureField} rounds feature values. */
private static float round(float f) {
int bits = Float.floatToIntBits(f);
bits &= ~0 << 15; // clear last 15 bits
return Float.intBitsToFloat(bits);
}
public void testBasics() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), dir, newIndexWriterConfig()
.setMergePolicy(newLogMergePolicy(random().nextBoolean())));
Document doc = new Document();
FeatureField pagerank = new FeatureField("features", "pagerank", 1);
FeatureField urlLength = new FeatureField("features", "urlLen", 1);
doc.add(pagerank);
doc.add(urlLength);
pagerank.setFeatureValue(10);
urlLength.setFeatureValue(1f / 24);
writer.addDocument(doc);
pagerank.setFeatureValue(100);
urlLength.setFeatureValue(1f / 20);
writer.addDocument(doc);
writer.addDocument(new Document()); // gap
pagerank.setFeatureValue(1);
urlLength.setFeatureValue(1f / 100);
writer.addDocument(doc);
pagerank.setFeatureValue(42);
urlLength.setFeatureValue(1f / 23);
writer.addDocument(doc);
writer.forceMerge(1);
DirectoryReader reader = writer.getReader();
writer.close();
IndexSearcher searcher = new IndexSearcher(reader);
LeafReaderContext context = reader.leaves().get(0);
Query q = FeatureField.newLogQuery("features", "pagerank", 3f, 4.5f);
Weight w = q.createWeight(searcher, ScoreMode.TOP_SCORES, 2);
Scorer s = w.scorer(context);
assertEquals(0, s.iterator().nextDoc());
assertEquals((float) (6.0 * Math.log(4.5f + 10)), s.score(), 0f);
assertEquals(1, s.iterator().nextDoc());
assertEquals((float) (6.0 * Math.log(4.5f + 100)), s.score(), 0f);
assertEquals(3, s.iterator().nextDoc());
assertEquals((float) (6.0 * Math.log(4.5f + 1)), s.score(), 0f);
assertEquals(4, s.iterator().nextDoc());
assertEquals((float) (6.0 * Math.log(4.5f + 42)), s.score(), 0f);
assertEquals(DocIdSetIterator.NO_MORE_DOCS, s.iterator().nextDoc());
q = FeatureField.newSaturationQuery("features", "pagerank", 3f, 4.5f);
w = q.createWeight(searcher, ScoreMode.TOP_SCORES, 2);
s = w.scorer(context);
assertEquals(0, s.iterator().nextDoc());
assertEquals(6f * (1 - 4.5f / (4.5f + 10)), s.score(), 0f);
assertEquals(1, s.iterator().nextDoc());
assertEquals(6f * (1 - 4.5f / (4.5f + 100)), s.score(), 0f);
assertEquals(3, s.iterator().nextDoc());
assertEquals(6f * (1 - 4.5f / (4.5f + 1)), s.score(), 0f);
assertEquals(4, s.iterator().nextDoc());
assertEquals(6f * (1 - 4.5f / (4.5f + 42)), s.score(), 0f);
assertEquals(DocIdSetIterator.NO_MORE_DOCS, s.iterator().nextDoc());
q = FeatureField.newSigmoidQuery("features", "pagerank", 3f, 4.5f, 0.6f);
w = q.createWeight(searcher, ScoreMode.TOP_SCORES, 2);
s = w.scorer(context);
double kPa = Math.pow(4.5f, 0.6f);
assertEquals(0, s.iterator().nextDoc());
assertEquals((float) (6 * (1 - kPa / (kPa + Math.pow(10, 0.6f)))), s.score(), 0f);
assertEquals(1, s.iterator().nextDoc());
assertEquals((float) (6 * (1 - kPa / (kPa + Math.pow(100, 0.6f)))), s.score(), 0f);
assertEquals(3, s.iterator().nextDoc());
assertEquals((float) (6 * (1 - kPa / (kPa + Math.pow(1, 0.6f)))), s.score(), 0f);
assertEquals(4, s.iterator().nextDoc());
assertEquals((float) (6 * (1 - kPa / (kPa + Math.pow(42, 0.6f)))), s.score(), 0f);
assertEquals(DocIdSetIterator.NO_MORE_DOCS, s.iterator().nextDoc());
q = FeatureField.newSaturationQuery("features", "urlLen", 3f, 1f/24);
w = q.createWeight(searcher, ScoreMode.TOP_SCORES, 2);
s = w.scorer(context);
assertEquals(0, s.iterator().nextDoc());
assertEquals(6f * (1 - (1f/24) / (1f/24 + round(1f/24))), s.score(), 0f);
assertEquals(1, s.iterator().nextDoc());
assertEquals(6f * (1 - 1f/24 / (1f/24 + round(1f/20))), s.score(), 0f);
assertEquals(3, s.iterator().nextDoc());
assertEquals(6f * (1 - 1f/24 / (1f/24 + round(1f/100))), s.score(), 0f);
assertEquals(4, s.iterator().nextDoc());
assertEquals(6f * (1 - 1f/24 / (1f/24 + round(1f/23))), s.score(), 0f);
assertEquals(DocIdSetIterator.NO_MORE_DOCS, s.iterator().nextDoc());
reader.close();
dir.close();
}
public void testExplanations() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), dir, newIndexWriterConfig()
.setMergePolicy(newLogMergePolicy(random().nextBoolean())));
Document doc = new Document();
FeatureField pagerank = new FeatureField("features", "pagerank", 1);
doc.add(pagerank);
pagerank.setFeatureValue(10);
writer.addDocument(doc);
pagerank.setFeatureValue(100);
writer.addDocument(doc);
writer.addDocument(new Document()); // gap
pagerank.setFeatureValue(1);
writer.addDocument(doc);
pagerank.setFeatureValue(42);
writer.addDocument(doc);
DirectoryReader reader = writer.getReader();
writer.close();
IndexSearcher searcher = new IndexSearcher(reader);
QueryUtils.check(random(), FeatureField.newLogQuery("features", "pagerank", 1f, 4.5f), searcher);
QueryUtils.check(random(), FeatureField.newSaturationQuery("features", "pagerank", 1f, 12f), searcher);
QueryUtils.check(random(), FeatureField.newSigmoidQuery("features", "pagerank", 1f, 12f, 0.6f), searcher);
// Test boosts that are > 1
QueryUtils.check(random(), FeatureField.newLogQuery("features", "pagerank", 3f, 4.5f), searcher);
QueryUtils.check(random(), FeatureField.newSaturationQuery("features", "pagerank", 3f, 12f), searcher);
QueryUtils.check(random(), FeatureField.newSigmoidQuery("features", "pagerank", 3f, 12f, 0.6f), searcher);
// Test boosts that are < 1
QueryUtils.check(random(), FeatureField.newLogQuery("features", "pagerank", .2f, 4.5f), searcher);
QueryUtils.check(random(), FeatureField.newSaturationQuery("features", "pagerank", .2f, 12f), searcher);
QueryUtils.check(random(), FeatureField.newSigmoidQuery("features", "pagerank", .2f, 12f, 0.6f), searcher);
reader.close();
dir.close();
}
public void testLogSimScorer() {
doTestSimScorer(new FeatureField.LogFunction(4.5f).scorer("foo", 3f));
}
public void testSatuSimScorer() {
doTestSimScorer(new FeatureField.SaturationFunction(20f).scorer("foo", 3f));
}
public void testSigmSimScorer() {
doTestSimScorer(new FeatureField.SigmoidFunction(20f, 0.6f).scorer("foo", 3f));
}
private void doTestSimScorer(SimScorer s) {
float maxScore = s.score(Float.MAX_VALUE, 1);
assertTrue(Float.isFinite(maxScore)); // used to compute max scores
// Test that the score doesn't decrease with freq
for (int freq = 2; freq < 65536; ++freq) {
assertTrue(s.score(freq - 1, 1L) <= s.score(freq, 1L));
}
assertTrue(s.score(65535, 1L) <= maxScore);
}
public void testComputePivotFeatureValue() throws IOException {
Directory dir = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), dir, newIndexWriterConfig());
Document doc = new Document();
FeatureField pagerank = new FeatureField("features", "pagerank", 1);
doc.add(pagerank);
pagerank.setFeatureValue(10);
writer.addDocument(doc);
pagerank.setFeatureValue(100);
writer.addDocument(doc);
writer.addDocument(new Document()); // gap
pagerank.setFeatureValue(1);
writer.addDocument(doc);
pagerank.setFeatureValue(42);
writer.addDocument(doc);
DirectoryReader reader = writer.getReader();
writer.close();
IndexSearcher searcher = new IndexSearcher(reader);
float pivot = FeatureField.computePivotFeatureValue(searcher, "features", "pagerank");
double expected = Math.pow(10 * 100 * 1 * 42, 1/4.); // geometric mean
assertEquals(expected, pivot, 0.1);
reader.close();
dir.close();
}
public void testDemo() throws IOException {
Directory dir = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), dir, newIndexWriterConfig()
.setMergePolicy(newLogMergePolicy(random().nextBoolean())));
Document doc = new Document();
FeatureField pagerank = new FeatureField("features", "pagerank", 1);
doc.add(pagerank);
TextField body = new TextField("body", "", Store.NO);
doc.add(body);
pagerank.setFeatureValue(10);
body.setStringValue("Apache Lucene");
writer.addDocument(doc);
pagerank.setFeatureValue(1000);
body.setStringValue("Apache Web HTTP server");
writer.addDocument(doc);
pagerank.setFeatureValue(1);
body.setStringValue("Lucene is a search engine");
writer.addDocument(doc);
pagerank.setFeatureValue(42);
body.setStringValue("Lucene in the sky with diamonds");
writer.addDocument(doc);
DirectoryReader reader = writer.getReader();
writer.close();
// NOTE: If you need to make changes below, then you likely also need to
// update javadocs of FeatureField.
IndexSearcher searcher = new IndexSearcher(reader);
searcher.setSimilarity(new BM25Similarity());
Query query = new BooleanQuery.Builder()
.add(new TermQuery(new Term("body", "apache")), Occur.SHOULD)
.add(new TermQuery(new Term("body", "lucene")), Occur.SHOULD)
.build();
Query boost = FeatureField.newSaturationQuery(searcher, "features", "pagerank");
Query boostedQuery = new BooleanQuery.Builder()
.add(query, Occur.MUST)
.add(boost, Occur.SHOULD)
.build();
TopDocs topDocs = searcher.search(boostedQuery, 10);
assertEquals(4, topDocs.scoreDocs.length);
assertEquals(1, topDocs.scoreDocs[0].doc);
assertEquals(0, topDocs.scoreDocs[1].doc);
assertEquals(3, topDocs.scoreDocs[2].doc);
assertEquals(2, topDocs.scoreDocs[3].doc);
reader.close();
dir.close();
}
}