LUCENE-9024: Optimize IntroSelector to use median of medians (#966)

This commit is contained in:
Paul Sanwald 2019-10-29 04:21:52 -04:00 committed by Adrien Grand
parent e713811b17
commit 7d0dbdaf62
3 changed files with 85 additions and 18 deletions

View File

@ -35,6 +35,10 @@ Optimizations
* LUCENE-8932: BKDReader's index is now stored off-heap when the IndexInput is
an instance of ByteBufferIndexInput. (Jack Conradson via Adrien Grand)
* LUCENE-9024: IntroSelector now falls back to the median of medians algorithm
instead of sorting when the maximum recursion level is exceeded, providing
better worst-case runtime. (Paul Sanwald via Adrien Grand)
Bug Fixes
* LUCENE-9001: Fix race condition in SetOnce. (Przemko Robakowski)

View File

@ -20,9 +20,8 @@ import java.util.Comparator;
/** Implementation of the quick select algorithm.
* <p>It uses the median of the first, middle and last values as a pivot and
* falls back to a heap sort when the number of recursion levels exceeds
* {@code 2 lg(n)}, as a consequence it runs in linear time on average and in
* {@code n log(n)} time in the worst case.</p>
* falls back to a median of medians when the number of recursion levels exceeds
* {@code 2 lg(n)}, as a consequence it runs in linear time on average.</p>
* @lucene.internal */
public abstract class IntroSelector extends Selector {
@ -33,26 +32,90 @@ public abstract class IntroSelector extends Selector {
quickSelect(from, to, k, maxDepth);
}
// heap sort
// TODO: use median of median instead to have linear worst-case rather than
// n*log(n)
void slowSelect(int from, int to, int k) {
new Sorter() {
int slowSelect(int from, int to, int k) {
return medianOfMediansSelect(from, to-1, k);
}
@Override
protected void swap(int i, int j) {
IntroSelector.this.swap(i, j);
int medianOfMediansSelect(int left, int right, int k) {
do {
// Defensive check, this is also checked in the calling
// method. Including here so this method can be used
// as a self contained quickSelect implementation.
if (left == right) {
return left;
}
int pivotIndex = pivot(left, right);
pivotIndex = partition(left, right, k, pivotIndex);
if (k == pivotIndex) {
return k;
} else if (k < pivotIndex) {
right = pivotIndex-1;
} else {
left = pivotIndex+1;
}
} while (left != right);
return left;
}
@Override
protected int compare(int i, int j) {
return IntroSelector.this.compare(i, j);
private int partition(int left, int right, int k, int pivotIndex) {
setPivot(pivotIndex);
swap(pivotIndex, right);
int storeIndex = left;
for (int i = left; i < right; i++) {
if (comparePivot(i) > 0) {
swap(storeIndex, i);
storeIndex++;
}
}
int storeIndexEq = storeIndex;
for (int i = storeIndex; i < right; i++) {
if (comparePivot(i) == 0) {
swap(storeIndexEq, i);
storeIndexEq++;
}
}
swap(right, storeIndexEq);
if (k < storeIndex) {
return storeIndex;
} else if (k <= storeIndexEq) {
return k;
}
return storeIndexEq;
}
public void sort(int from, int to) {
heapSort(from, to);
private int pivot(int left, int right) {
if (right - left < 5) {
int pivotIndex = partition5(left, right);
return pivotIndex;
}
for (int i = left; i <= right; i=i+5) {
int subRight = i + 4;
if (subRight > right) {
subRight = right;
}
}.sort(from, to);
int median5 = partition5(i, subRight);
swap(median5, left + ((i-left)/5));
}
int mid = ((right - left) / 10) + left + 1;
int to = left + ((right - left)/5);
return medianOfMediansSelect(left, to, mid);
}
// selects the median of a group of at most five elements,
// implemented using insertion sort. Efficient due to
// bounded nature of data set.
private int partition5(int left, int right) {
int i = left + 1;
while( i <= right) {
int j = i;
while (j > left && compare(j-1,j)>0) {
swap(j-1, j);
j--;
}
i++;
}
return (left + right) >>> 1;
}
private void quickSelect(int from, int to, int k, int maxDepth) {

View File

@ -36,7 +36,7 @@ public class TestIntroSelector extends LuceneTestCase {
final int from = random().nextInt(5);
final int to = from + TestUtil.nextInt(random(), 1, 10000);
final int max = random().nextBoolean() ? random().nextInt(100) : random().nextInt(100000);
Integer[] arr = new Integer[from + to + random().nextInt(5)];
Integer[] arr = new Integer[to + random().nextInt(5)];
for (int i = 0; i < arr.length; ++i) {
arr[i] = TestUtil.nextInt(random(), 0, max);
}