LUCENE-7270: Robert's implementation of the tree structure works as well and it's simpler, so I'm switching to that.

This commit is contained in:
Karl Wright 2016-05-03 18:06:09 -04:00
parent 7bf176313b
commit 8349546eaa
1 changed files with 64 additions and 185 deletions

View File

@ -425,17 +425,39 @@ class GeoComplexPolygon extends GeoBasePolygon {
*
*/
private static class Node {
public final double minimumValue;
public final double maximumValue;
public final Edge edge;
public Node lesser = null;
public Node greater = null;
public Node within = null;
public final double low;
public final double high;
public Node left = null;
public Node right = null;
public double max;
public Node(final Edge edge, final double minimumValue, final double maximumValue) {
this.edge = edge;
this.minimumValue = minimumValue;
this.maximumValue = maximumValue;
this.low = minimumValue;
this.high = maximumValue;
this.max = maximumValue;
}
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
if (minValue <= max) {
// Does this node overlap?
if (minValue <= high && maxValue >= low) {
if (edgeIterator.matches(edge) == false) {
return false;
}
}
if (left != null && left.traverse(edgeIterator, minValue, maxValue) == false) {
return false;
}
if (right != null && minValue >= low && right.traverse(edgeIterator, minValue, maxValue) == false) {
return false;
}
}
return true;
}
}
@ -443,42 +465,48 @@ class GeoComplexPolygon extends GeoBasePolygon {
/** An interface describing a tree.
*/
private static abstract class Tree {
private Node rootNode = null;
private final Node rootNode;
protected static final int CONTAINED = 0;
protected static final int WITHIN = 1;
protected static final int OVERLAPS_MINIMUM = 2;
protected static final int OVERLAPS_MAXIMUM = 3;
protected static final int LESS = 4;
protected static final int GREATER = 5;
protected static final int EXACT = 6;
protected static final Edge[] EMPTY_ARRAY = new Edge[0];
private final static Edge[] NO_EDGES = new Edge[0];
/** Create a tree.
* @param allEdges is the list of edges.
/** Constructor.
* @param allEdges is the list of all edges for the tree.
*/
public Tree(final List<Edge> allEdges) {
final Edge[] edges = allEdges.toArray(NO_EDGES);
// Sort by edge length, and then by minimum value
// Dump edges into an array and then sort it
final Node[] edges = new Node[allEdges.size()];
int i = 0;
for (final Edge edge : allEdges) {
edges[i++] = new Node(edge, getMinimum(edge), getMaximum(edge));
}
Arrays.sort(edges, (left, right) -> {
int ret = Double.compare(getMaximum(left) - getMinimum(left), getMaximum(right) - getMinimum(right));
int ret = Double.compare(left.low, right.low);
if (ret == 0) {
ret = Double.compare(getMinimum(left), getMinimum(right));
ret = Double.compare(left.max, right.max);
}
return ret;
});
for (final Edge edge : edges) {
add(edge);
}
rootNode = createTree(edges, 0, edges.length - 1);
}
/** Add a new edge to the tree.
* @param edge is the edge to add.
*/
private void add(final Edge edge) {
rootNode = addEdge(rootNode, edge, getMinimum(edge), getMaximum(edge));
private static Node createTree(final Node[] edges, final int low, final int high) {
if (low > high) {
return null;
}
// add midpoint
int mid = (low + high) >>> 1;
final Node newNode = edges[mid];
// add children
newNode.left = createTree(edges, low, mid - 1);
newNode.right = createTree(edges, mid + 1, high);
// pull up max values to this node
if (newNode.left != null) {
newNode.max = Math.max(newNode.max, newNode.left.max);
}
if (newNode.right != null) {
newNode.max = Math.max(newNode.max, newNode.right.max);
}
return newNode;
}
/** Get the minimum value from the edge.
@ -493,109 +521,13 @@ class GeoComplexPolygon extends GeoBasePolygon {
*/
protected abstract double getMaximum(final Edge edge);
/** Worker method for adding an edge.
* @param node is the node to add into.
* @param newEdge is the new edge to add.
* @param minimumValue is the minimum limit of the subrange of the edge we'll be adding.
* @param maximumValue is the maximum limit of the subrange of the edge we'll be adding.
* @return the updated node reference.
*/
protected Node addEdge(final Node node, final Edge newEdge, final double minimumValue, final double maximumValue) {
if (node == null) {
// Create and return a new node
final Node rval = new Node(newEdge, minimumValue, maximumValue);
//System.err.println("Creating new node "+rval+" for edge "+newEdge+" in tree "+this);
return rval;
}
//System.err.println("Adding edge "+newEdge+" into node "+node+" in tree "+this);
// Compare with what's here
int result = compareForAdd(node.minimumValue, node.maximumValue, minimumValue, maximumValue);
switch (result) {
case CONTAINED:
{
final double lesserMaximum = Math.nextDown(node.minimumValue);
final double greaterMinimum = Math.nextUp(node.maximumValue);
node.lesser = addEdge(node.lesser, newEdge, minimumValue, lesserMaximum);
node.greater = addEdge(node.greater, newEdge, greaterMinimum, maximumValue);
return addEdge(node, newEdge, node.minimumValue, node.maximumValue);
}
case EXACT:
// The node is exactly equal to the range provided. We need to create a new node and insert
// it into the "within" chain.
final Node rval = new Node(newEdge, minimumValue, maximumValue);
//System.err.println(" Inserting new node "+rval+" at head of current 'within' chain in tree "+this);
rval.within = node;
rval.lesser = node.lesser;
rval.greater = node.greater;
node.lesser = null;
node.greater = null;
return rval;
case WITHIN:
// The new edge is within the node provided
//System.err.println(" Adding edge into 'within' chain in tree "+this);
node.within = addEdge(node.within, newEdge, minimumValue, maximumValue);
return node;
case OVERLAPS_MINIMUM:
{
// The new edge overlaps the minimum value, but not the maximum value.
// Here we need to create TWO entries: one for the lesser side, and one for the within chain.
//System.err.println(" Inserting edge into BOTH lesser chain and within chain in tree "+this);
final double lesserMaximum = Math.nextDown(node.minimumValue);
node.lesser = addEdge(node.lesser, newEdge, minimumValue, lesserMaximum);
return addEdge(node, newEdge, node.minimumValue, maximumValue);
}
case OVERLAPS_MAXIMUM:
{
// The new edge overlaps the maximum value, but not the minimum value.
// Need to create two entries, one on the greater side, and one back into the current node.
//System.err.println(" Inserting edge into BOTH greater chain and within chain in tree "+this);
final double greaterMinimum = Math.nextUp(node.maximumValue);
node.greater = addEdge(node.greater, newEdge, greaterMinimum, maximumValue);
return addEdge(node, newEdge, minimumValue, node.maximumValue);
}
case LESS:
// The new edge is clearly less than the current node.
//System.err.println(" Edge goes into the lesser chain in tree "+this);
node.lesser = addEdge(node.lesser, newEdge, minimumValue, maximumValue);
return node;
case GREATER:
// The new edge is clearly greater than the current node.
//System.err.println(" Edge goes into the greater chain in tree "+this);
node.greater = addEdge(node.greater, newEdge, minimumValue, maximumValue);
return node;
default:
throw new RuntimeException("Unexpected comparison result: "+result);
}
}
/** Traverse the tree, finding all edges that intersect the provided value.
* @param edgeIterator provides the method to call for any encountered matching edge.
* @param value is the value to match.
* @return false if the traversal was aborted before completion.
*/
public boolean traverse(final EdgeIterator edgeIterator, final double value) {
//System.err.println("Traversing tree, value = "+value);
// Since there is one distinct value we are looking for, we can just do a straight descent through the nodes.
Node currentNode = rootNode;
while (currentNode != null) {
if (value < currentNode.minimumValue) {
//System.err.println(" value is less than "+currentNode.minimumValue);
currentNode = currentNode.lesser;
} else if (value > currentNode.maximumValue) {
//System.err.println(" value is greater than "+currentNode.maximumValue);
currentNode = currentNode.greater;
} else {
//System.err.println(" value within "+currentNode.minimumValue+" to "+currentNode.maximumValue);
// We're within the bounds of the node. Call the iterator, and descend
if (!edgeIterator.matches(currentNode.edge)) {
return false;
}
currentNode = currentNode.within;
}
}
//System.err.println("Done with tree");
return true;
return traverse(edgeIterator, value, value);
}
/** Traverse the tree, finding all edges that intersect the provided value range.
@ -606,66 +538,13 @@ class GeoComplexPolygon extends GeoBasePolygon {
* @return false if the traversal was aborted before completion.
*/
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
// This is tricky because edges are duplicated in the tree (where they got split).
// We need to eliminate those duplicate edges as we traverse. This requires us to keep a set of edges we've seen.
// Luckily, the number of edges we're likely to encounter in a real-world situation is small, so we can get away with it.
return traverseEdges(rootNode, edgeIterator, minValue, maxValue, new HashSet<>());
}
protected boolean traverseEdges(final Node node, final EdgeIterator edgeIterator, final double minValue, final double maxValue, final Set<Edge> edgeSet) {
if (node == null) {
if (rootNode == null) {
return true;
}
if (maxValue < node.minimumValue) {
return traverseEdges(node.lesser, edgeIterator, minValue, maxValue, edgeSet);
} else if (minValue > node.maximumValue) {
return traverseEdges(node.greater, edgeIterator, minValue, maxValue, edgeSet);
} else {
// There's overlap with the current node, and there may also be overlap with the lesser side and greater side
if (minValue < node.minimumValue) {
if (!traverseEdges(node.lesser, edgeIterator, minValue, maxValue, edgeSet)) {
return false;
}
}
if (!edgeSet.contains(node.edge)) {
if (!edgeIterator.matches(node.edge)) {
return false;
}
edgeSet.add(node.edge);
}
if (maxValue > node.maximumValue) {
if (!traverseEdges(node.greater, edgeIterator, minValue, maxValue, edgeSet)) {
return false;
}
}
return traverseEdges(node.within, edgeIterator, minValue, maxValue, edgeSet);
}
return rootNode.traverse(edgeIterator, minValue, maxValue);
}
/** Compare a node against a subrange of a new edge.
* @param nodeMinimumValue is the node's minimum value.
* @param nodeMaximumValue is the node's maximum value.
* @param minimumValue is the minimum value for the edge being added.
* @param maximumValue is the maximum value for the edge being added.
* @return the comparison result.
*/
protected int compareForAdd(final double nodeMinimumValue, final double nodeMaximumValue, final double minimumValue, final double maximumValue) {
if (minimumValue == nodeMinimumValue && maximumValue == nodeMaximumValue) {
return EXACT;
} else if (minimumValue <= nodeMinimumValue && maximumValue >= nodeMaximumValue) {
return CONTAINED;
} else if (nodeMinimumValue <= minimumValue && nodeMaximumValue >= maximumValue) {
return WITHIN;
} else if (maximumValue < nodeMinimumValue) {
return LESS;
} else if (minimumValue > nodeMaximumValue) {
return GREATER;
} else if (minimumValue < nodeMinimumValue) {
return OVERLAPS_MINIMUM;
} else {
return OVERLAPS_MAXIMUM;
}
}
}
/** This is the z-tree.