LUCENE-7838 - removed dep from sandbox, created a minimal FLT version specific for knn classification

This commit is contained in:
Tommaso Teofili 2017-06-29 10:01:49 +02:00
parent 85069cacf4
commit 92e460389d
5 changed files with 348 additions and 23 deletions

View File

@ -19,6 +19,5 @@
<orderEntry type="module" module-name="analysis-common" />
<orderEntry type="module" module-name="grouping" />
<orderEntry type="module" module-name="misc" />
<orderEntry type="module" module-name="sandbox" />
</component>
</module>

View File

@ -28,7 +28,6 @@
<path refid="base.classpath"/>
<pathelement path="${queries.jar}"/>
<pathelement path="${grouping.jar}"/>
<pathelement path="${sandbox.jar}"/>
<pathelement path="${analyzers-common.jar}"/>
</path>
@ -38,18 +37,17 @@
<path refid="test.base.classpath"/>
</path>
<target name="compile-core" depends="jar-sandbox,jar-grouping,jar-queries,jar-analyzers-common,common.compile-core" />
<target name="compile-core" depends="jar-grouping,jar-queries,jar-analyzers-common,common.compile-core" />
<target name="jar-core" depends="common.jar-core" />
<target name="javadocs" depends="javadocs-sandbox,javadocs-grouping,compile-core,check-javadocs-uptodate"
<target name="javadocs" depends="javadocs-grouping,compile-core,check-javadocs-uptodate"
unless="javadocs-uptodate-${name}">
<invoke-module-javadoc>
<links>
<link href="../queries"/>
<link href="../analyzers-common"/>
<link href="../grouping"/>
<link href="../sandbox"/>
</links>
</invoke-module-javadoc>
</target>

View File

@ -25,11 +25,11 @@ import java.util.List;
import java.util.Map;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.classification.utils.NearestFuzzyQuery;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexableField;
import org.apache.lucene.index.LeafReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.sandbox.queries.FuzzyLikeThisQuery;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.IndexSearcher;
@ -42,7 +42,7 @@ import org.apache.lucene.search.similarities.Similarity;
import org.apache.lucene.util.BytesRef;
/**
* A k-Nearest Neighbor classifier based on {@link FuzzyLikeThisQuery}.
* A k-Nearest Neighbor classifier based on {@link NearestFuzzyQuery}.
*
* @lucene.experimental
*/
@ -51,27 +51,27 @@ public class KNearestFuzzyClassifier implements Classifier<BytesRef> {
/**
* the name of the fields used as the input text
*/
protected final String[] textFieldNames;
private final String[] textFieldNames;
/**
* the name of the field used as the output text
*/
protected final String classFieldName;
private final String classFieldName;
/**
* an {@link IndexSearcher} used to perform queries
*/
protected final IndexSearcher indexSearcher;
private final IndexSearcher indexSearcher;
/**
* the no. of docs to compare in order to find the nearest neighbor to the input text
*/
protected final int k;
private final int k;
/**
* a {@link Query} used to filter the documents that should be used from this classifier's underlying {@link LeafReader}
*/
protected final Query query;
private final Query query;
private final Analyzer analyzer;
/**
@ -145,11 +145,11 @@ public class KNearestFuzzyClassifier implements Classifier<BytesRef> {
private TopDocs knnSearch(String text) throws IOException {
BooleanQuery.Builder bq = new BooleanQuery.Builder();
FuzzyLikeThisQuery fuzzyLikeThisQuery = new FuzzyLikeThisQuery(300, analyzer);
NearestFuzzyQuery nearestFuzzyQuery = new NearestFuzzyQuery(analyzer);
for (String fieldName : textFieldNames) {
fuzzyLikeThisQuery.addTerms(text, fieldName, 1f, 2); // TODO: make this parameters configurable
nearestFuzzyQuery.addTerms(text, fieldName);
}
bq.add(fuzzyLikeThisQuery, BooleanClause.Occur.MUST);
bq.add(nearestFuzzyQuery, BooleanClause.Occur.MUST);
Query classFieldQuery = new WildcardQuery(new Term(classFieldName, "*"));
bq.add(new BooleanClause(classFieldQuery, BooleanClause.Occur.MUST));
if (query != null) {
@ -165,7 +165,7 @@ public class KNearestFuzzyClassifier implements Classifier<BytesRef> {
* @return a {@link List} of {@link ClassificationResult}, one for each existing class
* @throws IOException if it's not possible to get the stored value of class field
*/
protected List<ClassificationResult<BytesRef>> buildListFromTopDocs(TopDocs topDocs) throws IOException {
private List<ClassificationResult<BytesRef>> buildListFromTopDocs(TopDocs topDocs) throws IOException {
Map<BytesRef, Integer> classCounts = new HashMap<>();
Map<BytesRef, Double> classBoosts = new HashMap<>(); // this is a boost based on class ranking positions in topDocs
float maxScore = topDocs.getMaxScore();
@ -174,12 +174,7 @@ public class KNearestFuzzyClassifier implements Classifier<BytesRef> {
if (storableField != null) {
BytesRef cl = new BytesRef(storableField.stringValue());
//update count
Integer count = classCounts.get(cl);
if (count != null) {
classCounts.put(cl, count + 1);
} else {
classCounts.put(cl, 1);
}
classCounts.merge(cl, 1, (a, b) -> a + b);
//update boost, the boost is based on the best score
Double totalBoost = classBoosts.get(cl);
double singleBoost = scoreDoc.score / maxScore;

View File

@ -0,0 +1,333 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.classification.utils;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Objects;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.MultiFields;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermContext;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.BoostAttribute;
import org.apache.lucene.search.BoostQuery;
import org.apache.lucene.search.FuzzyTermsEnum;
import org.apache.lucene.search.MaxNonCompetitiveBoostAttribute;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.util.AttributeSource;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.PriorityQueue;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
/**
* Simplification of FuzzyLikeThisQuery, to be used in the context of KNN classification.
*/
public class NearestFuzzyQuery extends Query {
private final ArrayList<FieldVals> fieldVals = new ArrayList<>();
private final Analyzer analyzer;
// fixed parameters
private static final int MAX_VARIANTS_PER_TERM = 50;
private static final float MIN_SIMILARITY = 1f;
private static final int PREFIX_LENGTH = 2;
private static final int MAX_NUM_TERMS = 300;
/**
* Default constructor
*
* @param analyzer the analyzer used to proecss the query text
*/
public NearestFuzzyQuery(Analyzer analyzer) {
this.analyzer = analyzer;
}
static class FieldVals {
final String queryString;
final String fieldName;
final int maxEdits;
final int prefixLength;
FieldVals(String name, int maxEdits, String queryString) {
this.fieldName = name;
this.maxEdits = maxEdits;
this.queryString = queryString;
this.prefixLength = NearestFuzzyQuery.PREFIX_LENGTH;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result
+ ((fieldName == null) ? 0 : fieldName.hashCode());
result = prime * result + maxEdits;
result = prime * result + prefixLength;
result = prime * result
+ ((queryString == null) ? 0 : queryString.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
FieldVals other = (FieldVals) obj;
if (fieldName == null) {
if (other.fieldName != null)
return false;
} else if (!fieldName.equals(other.fieldName))
return false;
if (maxEdits != other.maxEdits) {
return false;
}
if (prefixLength != other.prefixLength)
return false;
if (queryString == null) {
if (other.queryString != null)
return false;
} else if (!queryString.equals(other.queryString))
return false;
return true;
}
}
/**
* Adds user input for "fuzzification"
*
* @param queryString The string which will be parsed by the analyzer and for which fuzzy variants will be parsed
*/
public void addTerms(String queryString, String fieldName) {
int maxEdits = (int) MIN_SIMILARITY;
if (maxEdits != MIN_SIMILARITY) {
throw new IllegalArgumentException("MIN_SIMILARITY must integer value between 0 and " + LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE + ", inclusive; got " + MIN_SIMILARITY);
}
fieldVals.add(new FieldVals(fieldName, maxEdits, queryString));
}
private void addTerms(IndexReader reader, FieldVals f, ScoreTermQueue q) throws IOException {
if (f.queryString == null) return;
final Terms terms = MultiFields.getTerms(reader, f.fieldName);
if (terms == null) {
return;
}
try (TokenStream ts = analyzer.tokenStream(f.fieldName, f.queryString)) {
CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class);
int corpusNumDocs = reader.numDocs();
HashSet<String> processedTerms = new HashSet<>();
ts.reset();
while (ts.incrementToken()) {
String term = termAtt.toString();
if (!processedTerms.contains(term)) {
processedTerms.add(term);
ScoreTermQueue variantsQ = new ScoreTermQueue(MAX_VARIANTS_PER_TERM); //maxNum variants considered for any one term
float minScore = 0;
Term startTerm = new Term(f.fieldName, term);
AttributeSource atts = new AttributeSource();
MaxNonCompetitiveBoostAttribute maxBoostAtt =
atts.addAttribute(MaxNonCompetitiveBoostAttribute.class);
FuzzyTermsEnum fe = new FuzzyTermsEnum(terms, atts, startTerm, f.maxEdits, f.prefixLength, true);
//store the df so all variants use same idf
int df = reader.docFreq(startTerm);
int numVariants = 0;
int totalVariantDocFreqs = 0;
BytesRef possibleMatch;
BoostAttribute boostAtt =
fe.attributes().addAttribute(BoostAttribute.class);
while ((possibleMatch = fe.next()) != null) {
numVariants++;
totalVariantDocFreqs += fe.docFreq();
float score = boostAtt.getBoost();
if (variantsQ.size() < MAX_VARIANTS_PER_TERM || score > minScore) {
ScoreTerm st = new ScoreTerm(new Term(startTerm.field(), BytesRef.deepCopyOf(possibleMatch)), score, startTerm);
variantsQ.insertWithOverflow(st);
minScore = variantsQ.top().score; // maintain minScore
}
maxBoostAtt.setMaxNonCompetitiveBoost(variantsQ.size() >= MAX_VARIANTS_PER_TERM ? minScore : Float.NEGATIVE_INFINITY);
}
if (numVariants > 0) {
int avgDf = totalVariantDocFreqs / numVariants;
if (df == 0)//no direct match we can use as df for all variants
{
df = avgDf; //use avg df of all variants
}
// take the top variants (scored by edit distance) and reset the score
// to include an IDF factor then add to the global queue for ranking
// overall top query terms
int size = variantsQ.size();
for (int i = 0; i < size; i++) {
ScoreTerm st = variantsQ.pop();
if (st != null) {
st.score = (st.score * st.score) * idf(df, corpusNumDocs);
q.insertWithOverflow(st);
}
}
}
}
}
ts.end();
}
}
private float idf(int docFreq, int docCount) {
return (float)(Math.log((docCount+1)/(double)(docFreq+1)) + 1.0);
}
private Query newTermQuery(IndexReader reader, Term term) throws IOException {
// we build an artificial TermContext that will give an overall df and ttf
// equal to 1
TermContext context = new TermContext(reader.getContext());
for (LeafReaderContext leafContext : reader.leaves()) {
Terms terms = leafContext.reader().terms(term.field());
if (terms != null) {
TermsEnum termsEnum = terms.iterator();
if (termsEnum.seekExact(term.bytes())) {
int freq = 1 - context.docFreq(); // we want the total df and ttf to be 1
context.register(termsEnum.termState(), leafContext.ord, freq, freq);
}
}
}
return new TermQuery(term, context);
}
@Override
public Query rewrite(IndexReader reader) throws IOException {
ScoreTermQueue q = new ScoreTermQueue(MAX_NUM_TERMS);
//load up the list of possible terms
for (FieldVals f : fieldVals) {
addTerms(reader, f, q);
}
BooleanQuery.Builder bq = new BooleanQuery.Builder();
//create BooleanQueries to hold the variants for each token/field pair and ensure it
// has no coord factor
//Step 1: sort the termqueries by term/field
HashMap<Term, ArrayList<ScoreTerm>> variantQueries = new HashMap<>();
int size = q.size();
for (int i = 0; i < size; i++) {
ScoreTerm st = q.pop();
if (st != null) {
ArrayList<ScoreTerm> l = variantQueries.computeIfAbsent(st.fuzziedSourceTerm, k -> new ArrayList<>());
l.add(st);
}
}
//Step 2: Organize the sorted termqueries into zero-coord scoring boolean queries
for (ArrayList<ScoreTerm> variants : variantQueries.values()) {
if (variants.size() == 1) {
//optimize where only one selected variant
ScoreTerm st = variants.get(0);
Query tq = newTermQuery(reader, st.term);
// set the boost to a mix of IDF and score
bq.add(new BoostQuery(tq, st.score), BooleanClause.Occur.SHOULD);
} else {
BooleanQuery.Builder termVariants = new BooleanQuery.Builder();
for (ScoreTerm st : variants) {
// found a match
Query tq = newTermQuery(reader, st.term);
// set the boost using the ScoreTerm's score
termVariants.add(new BoostQuery(tq, st.score), BooleanClause.Occur.SHOULD); // add to query
}
bq.add(termVariants.build(), BooleanClause.Occur.SHOULD); // add to query
}
}
//TODO possible alternative step 3 - organize above booleans into a new layer of field-based
// booleans with a minimum-should-match of NumFields-1?
return bq.build();
}
//Holds info for a fuzzy term variant - initially score is set to edit distance (for ranking best
// term variants) then is reset with IDF for use in ranking against all other
// terms/fields
private static class ScoreTerm {
public final Term term;
public float score;
final Term fuzziedSourceTerm;
ScoreTerm(Term term, float score, Term fuzziedSourceTerm) {
this.term = term;
this.score = score;
this.fuzziedSourceTerm = fuzziedSourceTerm;
}
}
private static class ScoreTermQueue extends PriorityQueue<ScoreTerm> {
ScoreTermQueue(int size) {
super(size);
}
/* (non-Javadoc)
* @see org.apache.lucene.util.PriorityQueue#lessThan(java.lang.Object, java.lang.Object)
*/
@Override
protected boolean lessThan(ScoreTerm termA, ScoreTerm termB) {
if (termA.score == termB.score)
return termA.term.compareTo(termB.term) > 0;
else
return termA.score < termB.score;
}
}
@Override
public String toString(String field) {
return null;
}
@Override
public int hashCode() {
int prime = 31;
int result = classHash();
result = prime * result + Objects.hashCode(analyzer);
result = prime * result + Objects.hashCode(fieldVals);
return result;
}
@Override
public boolean equals(Object other) {
return sameClassAs(other) &&
equalsTo(getClass().cast(other));
}
private boolean equalsTo(NearestFuzzyQuery other) {
return Objects.equals(analyzer, other.analyzer) &&
Objects.equals(fieldVals, other.fieldVals);
}
}

View File

@ -28,7 +28,7 @@ import org.apache.lucene.util.BytesRef;
import org.junit.Test;
/**
* Testcase for {@link KNearestFuzzyClassifier}
* Tests for {@link KNearestFuzzyClassifier}
*/
public class KNearestFuzzyClassifierTest extends ClassificationTestBase<BytesRef> {