mirror of https://github.com/apache/lucene.git
LUCENE-6821 - TermQuery's constructors should clone the incoming term
git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1709576 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
d2bee4788a
commit
9534904c25
|
@ -152,16 +152,14 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
|
|||
while ((next = classesEnum.next()) != null) {
|
||||
if (next.length > 0) {
|
||||
// We are passing the term to IndexSearcher so we need to make sure it will not change over time
|
||||
next = BytesRef.deepCopyOf(next);
|
||||
double clVal = calculateLogPrior(next, docsWithClassSize) + calculateLogLikelihood(tokenizedText, next, docsWithClassSize);
|
||||
assignedClasses.add(new ClassificationResult<>(next, clVal));
|
||||
Term term = new Term(this.classFieldName, next);
|
||||
double clVal = calculateLogPrior(term, docsWithClassSize) + calculateLogLikelihood(tokenizedText, term, docsWithClassSize);
|
||||
assignedClasses.add(new ClassificationResult<>(term.bytes(), clVal));
|
||||
}
|
||||
}
|
||||
|
||||
// normalization; the values transforms to a 0-1 range
|
||||
ArrayList<ClassificationResult<BytesRef>> assignedClassesNorm = normClassificationResults(assignedClasses);
|
||||
|
||||
return assignedClassesNorm;
|
||||
return normClassificationResults(assignedClasses);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -208,18 +206,18 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
|
|||
return result.toArray(new String[result.size()]);
|
||||
}
|
||||
|
||||
private double calculateLogLikelihood(String[] tokenizedText, BytesRef c, int docsWithClass) throws IOException {
|
||||
private double calculateLogLikelihood(String[] tokenizedText, Term term, int docsWithClass) throws IOException {
|
||||
// for each word
|
||||
double result = 0d;
|
||||
for (String word : tokenizedText) {
|
||||
// search with text:word AND class:c
|
||||
int hits = getWordFreqForClass(word,c);
|
||||
int hits = getWordFreqForClass(word, term);
|
||||
|
||||
// num : count the no of times the word appears in documents of class c (+1)
|
||||
double num = hits + 1; // +1 is added because of add 1 smoothing
|
||||
|
||||
// den : for the whole dictionary, count the no of times a word appears in documents of class c (+|V|)
|
||||
double den = getTextTermFreqForClass(c) + docsWithClass;
|
||||
double den = getTextTermFreqForClass(term) + docsWithClass;
|
||||
|
||||
// P(w|c) = num/den
|
||||
double wordProbability = num / den;
|
||||
|
@ -232,18 +230,18 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
|
|||
|
||||
/**
|
||||
* Returns the average number of unique terms times the number of docs belonging to the input class
|
||||
* @param c the class
|
||||
* @param term the term representing the class
|
||||
* @return the average number of unique terms
|
||||
* @throws IOException if a low level I/O problem happens
|
||||
*/
|
||||
private double getTextTermFreqForClass(BytesRef c) throws IOException {
|
||||
private double getTextTermFreqForClass(Term term) throws IOException {
|
||||
double avgNumberOfUniqueTerms = 0;
|
||||
for (String textFieldName : textFieldNames) {
|
||||
Terms terms = MultiFields.getTerms(leafReader, textFieldName);
|
||||
long numPostings = terms.getSumDocFreq(); // number of term/doc pairs
|
||||
avgNumberOfUniqueTerms += numPostings / (double) terms.getDocCount(); // avg # of unique terms per doc
|
||||
}
|
||||
int docsWithC = leafReader.docFreq(new Term(classFieldName, c));
|
||||
int docsWithC = leafReader.docFreq(term);
|
||||
return avgNumberOfUniqueTerms * docsWithC; // avg # of unique terms in text fields per doc * # docs with c
|
||||
}
|
||||
|
||||
|
@ -251,18 +249,18 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
|
|||
* Returns the number of documents of the input class ( from the whole index or from a subset)
|
||||
* that contains the word ( in a specific field or in all the fields if no one selected)
|
||||
* @param word the token produced by the analyzer
|
||||
* @param c the class
|
||||
* @param term the term representing the class
|
||||
* @return the number of documents of the input class
|
||||
* @throws IOException if a low level I/O problem happens
|
||||
*/
|
||||
private int getWordFreqForClass(String word, BytesRef c) throws IOException {
|
||||
private int getWordFreqForClass(String word, Term term) throws IOException {
|
||||
BooleanQuery.Builder booleanQuery = new BooleanQuery.Builder();
|
||||
BooleanQuery.Builder subQuery = new BooleanQuery.Builder();
|
||||
for (String textFieldName : textFieldNames) {
|
||||
subQuery.add(new BooleanClause(new TermQuery(new Term(textFieldName, word)), BooleanClause.Occur.SHOULD));
|
||||
}
|
||||
booleanQuery.add(new BooleanClause(subQuery.build(), BooleanClause.Occur.MUST));
|
||||
booleanQuery.add(new BooleanClause(new TermQuery(new Term(classFieldName, c)), BooleanClause.Occur.MUST));
|
||||
booleanQuery.add(new BooleanClause(new TermQuery(term), BooleanClause.Occur.MUST));
|
||||
if (query != null) {
|
||||
booleanQuery.add(query, BooleanClause.Occur.MUST);
|
||||
}
|
||||
|
@ -271,12 +269,12 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
|
|||
return totalHitCountCollector.getTotalHits();
|
||||
}
|
||||
|
||||
private double calculateLogPrior(BytesRef currentClass, int docsWithClassSize) throws IOException {
|
||||
return Math.log((double) docCount(currentClass)) - Math.log(docsWithClassSize);
|
||||
private double calculateLogPrior(Term term, int docsWithClassSize) throws IOException {
|
||||
return Math.log((double) docCount(term)) - Math.log(docsWithClassSize);
|
||||
}
|
||||
|
||||
private int docCount(BytesRef countedClass) throws IOException {
|
||||
return leafReader.docFreq(new Term(classFieldName, countedClass));
|
||||
private int docCount(Term term) throws IOException {
|
||||
return leafReader.docFreq(term);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -122,18 +122,18 @@ public class SimpleNaiveBayesDocumentClassifier extends SimpleNaiveBayesClassifi
|
|||
int docsWithClassSize = countDocsWithClass();
|
||||
while ((c = classesEnum.next()) != null) {
|
||||
double classScore = 0;
|
||||
Term term = new Term(this.classFieldName, c);
|
||||
for (String fieldName : textFieldNames) {
|
||||
List<String[]> tokensArrays = fieldName2tokensArray.get(fieldName);
|
||||
double fieldScore = 0;
|
||||
for (String[] fieldTokensArray : tokensArrays) {
|
||||
fieldScore += calculateLogPrior(c, docsWithClassSize) + calculateLogLikelihood(fieldTokensArray, fieldName, c, docsWithClassSize) * fieldName2boost.get(fieldName);
|
||||
fieldScore += calculateLogPrior(term, docsWithClassSize) + calculateLogLikelihood(fieldTokensArray, fieldName, term, docsWithClassSize) * fieldName2boost.get(fieldName);
|
||||
}
|
||||
classScore += fieldScore;
|
||||
}
|
||||
assignedClasses.add(new ClassificationResult<>(BytesRef.deepCopyOf(c), classScore));
|
||||
assignedClasses.add(new ClassificationResult<>(term.bytes(), classScore));
|
||||
}
|
||||
ArrayList<ClassificationResult<BytesRef>> assignedClassesNorm = normClassificationResults(assignedClasses);
|
||||
return assignedClassesNorm;
|
||||
return normClassificationResults(assignedClasses);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -211,23 +211,23 @@ public class SimpleNaiveBayesDocumentClassifier extends SimpleNaiveBayesClassifi
|
|||
/**
|
||||
* @param tokenizedText the tokenized content of a field
|
||||
* @param fieldName the input field name
|
||||
* @param c the class to calculate the score of
|
||||
* @param term the {@link Term} referring to the class to calculate the score of
|
||||
* @param docsWithClass the total number of docs that have a class
|
||||
* @return a normalized score for the class
|
||||
* @throws IOException If there is a low-level I/O error
|
||||
*/
|
||||
private double calculateLogLikelihood(String[] tokenizedText, String fieldName, BytesRef c, int docsWithClass) throws IOException {
|
||||
private double calculateLogLikelihood(String[] tokenizedText, String fieldName, Term term, int docsWithClass) throws IOException {
|
||||
// for each word
|
||||
double result = 0d;
|
||||
for (String word : tokenizedText) {
|
||||
// search with text:word AND class:c
|
||||
int hits = getWordFreqForClass(word, fieldName, c);
|
||||
int hits = getWordFreqForClass(word, fieldName, term);
|
||||
|
||||
// num : count the no of times the word appears in documents of class c (+1)
|
||||
double num = hits + 1; // +1 is added because of add 1 smoothing
|
||||
|
||||
// den : for the whole dictionary, count the no of times a word appears in documents of class c (+|V|)
|
||||
double den = getTextTermFreqForClass(c, fieldName) + docsWithClass;
|
||||
double den = getTextTermFreqForClass(term, fieldName) + docsWithClass;
|
||||
|
||||
// P(w|c) = num/den
|
||||
double wordProbability = num / den;
|
||||
|
@ -242,16 +242,16 @@ public class SimpleNaiveBayesDocumentClassifier extends SimpleNaiveBayesClassifi
|
|||
/**
|
||||
* Returns the average number of unique terms times the number of docs belonging to the input class
|
||||
*
|
||||
* @param c the class
|
||||
* @param term the class term
|
||||
* @return the average number of unique terms
|
||||
* @throws java.io.IOException If there is a low-level I/O error
|
||||
*/
|
||||
private double getTextTermFreqForClass(BytesRef c, String fieldName) throws IOException {
|
||||
private double getTextTermFreqForClass(Term term, String fieldName) throws IOException {
|
||||
double avgNumberOfUniqueTerms;
|
||||
Terms terms = MultiFields.getTerms(leafReader, fieldName);
|
||||
long numPostings = terms.getSumDocFreq(); // number of term/doc pairs
|
||||
avgNumberOfUniqueTerms = numPostings / (double) terms.getDocCount(); // avg # of unique terms per doc
|
||||
int docsWithC = leafReader.docFreq(new Term(classFieldName, c));
|
||||
int docsWithC = leafReader.docFreq(term);
|
||||
return avgNumberOfUniqueTerms * docsWithC; // avg # of unique terms in text fields per doc * # docs with c
|
||||
}
|
||||
|
||||
|
@ -261,16 +261,16 @@ public class SimpleNaiveBayesDocumentClassifier extends SimpleNaiveBayesClassifi
|
|||
*
|
||||
* @param word the token produced by the analyzer
|
||||
* @param fieldName the field the word is coming from
|
||||
* @param c the class
|
||||
* @param term the class term
|
||||
* @return number of documents of the input class
|
||||
* @throws java.io.IOException If there is a low-level I/O error
|
||||
*/
|
||||
private int getWordFreqForClass(String word, String fieldName, BytesRef c) throws IOException {
|
||||
private int getWordFreqForClass(String word, String fieldName, Term term) throws IOException {
|
||||
BooleanQuery.Builder booleanQuery = new BooleanQuery.Builder();
|
||||
BooleanQuery.Builder subQuery = new BooleanQuery.Builder();
|
||||
subQuery.add(new BooleanClause(new TermQuery(new Term(fieldName, word)), BooleanClause.Occur.SHOULD));
|
||||
booleanQuery.add(new BooleanClause(subQuery.build(), BooleanClause.Occur.MUST));
|
||||
booleanQuery.add(new BooleanClause(new TermQuery(new Term(classFieldName, c)), BooleanClause.Occur.MUST));
|
||||
booleanQuery.add(new BooleanClause(new TermQuery(term), BooleanClause.Occur.MUST));
|
||||
if (query != null) {
|
||||
booleanQuery.add(query, BooleanClause.Occur.MUST);
|
||||
}
|
||||
|
@ -279,11 +279,11 @@ public class SimpleNaiveBayesDocumentClassifier extends SimpleNaiveBayesClassifi
|
|||
return totalHitCountCollector.getTotalHits();
|
||||
}
|
||||
|
||||
private double calculateLogPrior(BytesRef currentClass, int docsWithClassSize) throws IOException {
|
||||
return Math.log((double) docCount(currentClass)) - Math.log(docsWithClassSize);
|
||||
private double calculateLogPrior(Term term, int docsWithClassSize) throws IOException {
|
||||
return Math.log((double) docCount(term)) - Math.log(docsWithClassSize);
|
||||
}
|
||||
|
||||
private int docCount(BytesRef countedClass) throws IOException {
|
||||
return leafReader.docFreq(new Term(classFieldName, countedClass));
|
||||
private int docCount(Term term) throws IOException {
|
||||
return leafReader.docFreq(term);
|
||||
}
|
||||
}
|
|
@ -24,6 +24,7 @@ import java.nio.charset.CodingErrorAction;
|
|||
import java.nio.charset.StandardCharsets;
|
||||
|
||||
import org.apache.lucene.util.BytesRef;
|
||||
import org.apache.lucene.util.BytesRefBuilder;
|
||||
|
||||
/**
|
||||
A Term represents a word from text. This is the unit of search. It is
|
||||
|
@ -41,14 +42,20 @@ public final class Term implements Comparable<Term> {
|
|||
* <p>Note that a null field or null bytes value results in undefined
|
||||
* behavior for most Lucene APIs that accept a Term parameter.
|
||||
*
|
||||
* <p>WARNING: the provided BytesRef is not copied, but used directly.
|
||||
* Therefore the bytes should not be modified after construction, for
|
||||
* example, you should clone a copy by {@link BytesRef#deepCopyOf}
|
||||
* rather than pass reused bytes from a TermsEnum.
|
||||
* <p>The provided BytesRef is copied when it is non null.
|
||||
*/
|
||||
public Term(String fld, BytesRef bytes) {
|
||||
field = fld;
|
||||
this.bytes = bytes;
|
||||
this.bytes = bytes == null ? null : BytesRef.deepCopyOf(bytes);
|
||||
}
|
||||
|
||||
/** Constructs a Term with the given field and the bytes from a builder.
|
||||
* <p>Note that a null field value results in undefined
|
||||
* behavior for most Lucene APIs that accept a Term parameter.
|
||||
*/
|
||||
public Term(String fld, BytesRefBuilder bytesBuilder) {
|
||||
field = fld;
|
||||
this.bytes = bytesBuilder.toBytesRef();
|
||||
}
|
||||
|
||||
/** Constructs a Term with the given field and text.
|
||||
|
@ -93,7 +100,7 @@ public final class Term implements Comparable<Term> {
|
|||
}
|
||||
}
|
||||
|
||||
/** Returns the bytes of this term. */
|
||||
/** Returns the bytes of this term, these should not be modified. */
|
||||
public final BytesRef bytes() { return bytes; }
|
||||
|
||||
@Override
|
||||
|
|
|
@ -92,7 +92,7 @@ public final class BlendedTermQuery extends Query {
|
|||
terms = ArrayUtil.grow(terms, numTerms + 1);
|
||||
boosts = ArrayUtil.grow(boosts, numTerms + 1);
|
||||
contexts = ArrayUtil.grow(contexts, numTerms + 1);
|
||||
terms[numTerms] = new Term(term.field(), BytesRef.deepCopyOf(term.bytes()));
|
||||
terms[numTerms] = term;
|
||||
boosts[numTerms] = boost;
|
||||
contexts[numTerms] = context;
|
||||
numTerms += 1;
|
||||
|
|
|
@ -101,7 +101,6 @@ public class PhraseQuery extends Query {
|
|||
*
|
||||
*/
|
||||
public Builder add(Term term, int position) {
|
||||
term = new Term(term.field(), BytesRef.deepCopyOf(term.bytes())); // be defensive
|
||||
if (position < 0) {
|
||||
throw new IllegalArgumentException("Positions must be >= 0, got " + position);
|
||||
}
|
||||
|
@ -186,7 +185,7 @@ public class PhraseQuery extends Query {
|
|||
private static Term[] toTerms(String field, BytesRef... termBytes) {
|
||||
Term[] terms = new Term[termBytes.length];
|
||||
for (int i = 0; i < terms.length; ++i) {
|
||||
terms[i] = new Term(field, BytesRef.deepCopyOf(termBytes[i]));
|
||||
terms[i] = new Term(field, termBytes[i]);
|
||||
}
|
||||
return terms;
|
||||
}
|
||||
|
|
|
@ -274,7 +274,7 @@ public class QueryBuilder {
|
|||
throw new AssertionError();
|
||||
}
|
||||
|
||||
return newTermQuery(new Term(field, BytesRef.deepCopyOf(termAtt.getBytesRef())));
|
||||
return newTermQuery(new Term(field, termAtt.getBytesRef()));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -286,7 +286,7 @@ public class QueryBuilder {
|
|||
stream.reset();
|
||||
List<Term> terms = new ArrayList<>();
|
||||
while (stream.incrementToken()) {
|
||||
terms.add(new Term(field, BytesRef.deepCopyOf(termAtt.getBytesRef())));
|
||||
terms.add(new Term(field, termAtt.getBytesRef()));
|
||||
}
|
||||
|
||||
return newSynonymQuery(terms.toArray(new Term[terms.size()]));
|
||||
|
@ -319,7 +319,7 @@ public class QueryBuilder {
|
|||
add(q, currentQuery, operator);
|
||||
currentQuery.clear();
|
||||
}
|
||||
currentQuery.add(new Term(field, BytesRef.deepCopyOf(termAtt.getBytesRef())));
|
||||
currentQuery.add(new Term(field, termAtt.getBytesRef()));
|
||||
}
|
||||
add(q, currentQuery, operator);
|
||||
|
||||
|
@ -376,7 +376,7 @@ public class QueryBuilder {
|
|||
multiTerms.clear();
|
||||
}
|
||||
position += positionIncrement;
|
||||
multiTerms.add(new Term(field, BytesRef.deepCopyOf(termAtt.getBytesRef())));
|
||||
multiTerms.add(new Term(field, termAtt.getBytesRef()));
|
||||
}
|
||||
|
||||
if (enablePositionIncrements) {
|
||||
|
|
|
@ -745,7 +745,7 @@ public abstract class FieldType extends FieldProperties {
|
|||
// match-only
|
||||
return getRangeQuery(parser, field, externalVal, externalVal, true, true);
|
||||
} else {
|
||||
return new TermQuery(new Term(field.getName(), br.toBytesRef()));
|
||||
return new TermQuery(new Term(field.getName(), br));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1194,7 +1194,7 @@ public class SolrIndexSearcher extends IndexSearcher implements Closeable,SolrIn
|
|||
TermQuery key = null;
|
||||
|
||||
if (useCache) {
|
||||
key = new TermQuery(new Term(deState.fieldName, BytesRef.deepCopyOf(deState.termsEnum.term())));
|
||||
key = new TermQuery(new Term(deState.fieldName, deState.termsEnum.term()));
|
||||
DocSet result = filterCache.get(key);
|
||||
if (result != null) return result;
|
||||
}
|
||||
|
|
|
@ -653,7 +653,7 @@ abstract class FacetFieldProcessorFCBase extends FacetFieldProcessor {
|
|||
|
||||
bucket.add("val", val);
|
||||
|
||||
TermQuery filter = needFilter ? new TermQuery(new Term(sf.getName(), BytesRef.deepCopyOf(br))) : null;
|
||||
TermQuery filter = needFilter ? new TermQuery(new Term(sf.getName(), br)) : null;
|
||||
fillBucket(bucket, countAcc.getCount(slotNum), slotNum, null, filter);
|
||||
|
||||
bucketList.add(bucket);
|
||||
|
|
|
@ -133,7 +133,7 @@ public class SimpleMLTQParser extends QParser {
|
|||
BytesRefBuilder bytesRefBuilder = new BytesRefBuilder();
|
||||
bytesRefBuilder.grow(NumericUtils.BUF_SIZE_INT);
|
||||
NumericUtils.intToPrefixCoded(Integer.parseInt(uniqueValue), 0, bytesRefBuilder);
|
||||
return new Term(field, bytesRefBuilder.toBytesRef());
|
||||
return new Term(field, bytesRefBuilder);
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue