mirror of https://github.com/apache/lucene.git
SOLR-11785: Add multiVariateNormalDistribution Stream Evaluator
This commit is contained in:
parent
d9695cca55
commit
960a5fd793
|
@ -283,11 +283,11 @@ public class StreamHandler extends RequestHandlerBase implements SolrCoreAware,
|
|||
.withFunctionName("spline", SplineEvaluator.class)
|
||||
.withFunctionName("ttest", TTestEvaluator.class)
|
||||
.withFunctionName("pairedTtest", PairedTTestEvaluator.class)
|
||||
|
||||
.withFunctionName("multiVariateNormalDistribution", MultiVariateNormalDistributionEvaluator.class)
|
||||
|
||||
// Boolean Stream Evaluators
|
||||
|
||||
.withFunctionName("and", AndEvaluator.class)
|
||||
.withFunctionName("and", AndEvaluator.class)
|
||||
.withFunctionName("eor", ExclusiveOrEvaluator.class)
|
||||
.withFunctionName("eq", EqualToEvaluator.class)
|
||||
.withFunctionName("gt", GreaterThanEvaluator.class)
|
||||
|
|
|
@ -0,0 +1,54 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.solr.client.solrj.io.eval;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Locale;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math3.distribution.MultivariateNormalDistribution;
|
||||
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
|
||||
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
|
||||
|
||||
public class MultiVariateNormalDistributionEvaluator extends RecursiveObjectEvaluator implements TwoValueWorker {
|
||||
|
||||
private static final long serialVersionUID = 1;
|
||||
|
||||
public MultiVariateNormalDistributionEvaluator(StreamExpression expression, StreamFactory factory) throws IOException {
|
||||
super(expression, factory);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Object doWork(Object first, Object second) throws IOException{
|
||||
if(null == first){
|
||||
throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the first value",toExpression(constructingFactory)));
|
||||
}
|
||||
if(null == second){
|
||||
throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the second value",toExpression(constructingFactory)));
|
||||
}
|
||||
|
||||
List<Number> means = (List<Number>)first;
|
||||
Matrix covar = (Matrix)second;
|
||||
|
||||
double[] m = new double[means.size()];
|
||||
for(int i=0; i< m.length; i++) {
|
||||
m[i] = means.get(i).doubleValue();
|
||||
}
|
||||
|
||||
return new MultivariateNormalDistribution(m, covar.getData());
|
||||
}
|
||||
}
|
|
@ -18,12 +18,16 @@
|
|||
package org.apache.solr.client.solrj.io.eval;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Locale;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math3.distribution.IntegerDistribution;
|
||||
import org.apache.commons.math3.distribution.MultivariateRealDistribution;
|
||||
import org.apache.commons.math3.distribution.RealDistribution;
|
||||
import org.apache.commons.math3.distribution.MultivariateNormalDistribution;
|
||||
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
|
||||
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
|
||||
|
||||
|
@ -43,7 +47,7 @@ public class SampleEvaluator extends RecursiveObjectEvaluator implements ManyVal
|
|||
|
||||
Object first = objects[0];
|
||||
|
||||
if(!(first instanceof RealDistribution) && !(first instanceof IntegerDistribution) && !(first instanceof MarkovChainEvaluator.MarkovChain)){
|
||||
if(!(first instanceof MultivariateRealDistribution) && !(first instanceof RealDistribution) && !(first instanceof IntegerDistribution) && !(first instanceof MarkovChainEvaluator.MarkovChain)){
|
||||
throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - found type %s for the first value, expecting a Markov Chain, Real or Integer Distribution",toExpression(constructingFactory), first.getClass().getSimpleName()));
|
||||
}
|
||||
|
||||
|
@ -61,11 +65,30 @@ public class SampleEvaluator extends RecursiveObjectEvaluator implements ManyVal
|
|||
}
|
||||
} else if (first instanceof RealDistribution) {
|
||||
RealDistribution realDistribution = (RealDistribution) first;
|
||||
if(second != null) {
|
||||
if (second != null) {
|
||||
return Arrays.stream(realDistribution.sample(((Number) second).intValue())).mapToObj(item -> item).collect(Collectors.toList());
|
||||
} else {
|
||||
return realDistribution.sample();
|
||||
}
|
||||
}else if(first instanceof MultivariateNormalDistribution) {
|
||||
if(second != null) {
|
||||
MultivariateNormalDistribution multivariateNormalDistribution = (MultivariateNormalDistribution)first;
|
||||
int size = ((Number)second).intValue();
|
||||
double[][] samples = new double[size][];
|
||||
for(int i=0; i<size; ++i) {
|
||||
samples[i] = multivariateNormalDistribution.sample();
|
||||
}
|
||||
|
||||
return new Matrix(samples);
|
||||
} else {
|
||||
MultivariateNormalDistribution multivariateNormalDistribution = (MultivariateNormalDistribution)first;
|
||||
double[] sample = multivariateNormalDistribution.sample();
|
||||
List<Number> sampleList = new ArrayList(sample.length);
|
||||
for(int i=0; i<sample.length; i++) {
|
||||
sampleList.add(sample[i]);
|
||||
}
|
||||
return sampleList;
|
||||
}
|
||||
} else {
|
||||
IntegerDistribution integerDistribution = (IntegerDistribution) first;
|
||||
if(second != null) {
|
||||
|
|
|
@ -7179,6 +7179,53 @@ public class StreamExpressionTest extends SolrCloudTestCase {
|
|||
assertEquals(pval3.doubleValue(), 0.0404907407662755, .0001);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMultiVariateNormalDistribution() throws Exception {
|
||||
String cexpr = "let(echo=true," +
|
||||
" a=array(1,2,3,4,5,6,7)," +
|
||||
" b=array(100, 110, 120, 130,140,150,180)," +
|
||||
" c=transpose(matrix(a, b))," +
|
||||
" d=array(mean(a), mean(b))," +
|
||||
" e=cov(c)," +
|
||||
" f=multiVariateNormalDistribution(d, e)," +
|
||||
" g=sample(f, 10000)," +
|
||||
" h=cov(g)," +
|
||||
" i=sample(f))";
|
||||
|
||||
ModifiableSolrParams paramsLoc = new ModifiableSolrParams();
|
||||
paramsLoc.set("expr", cexpr);
|
||||
paramsLoc.set("qt", "/stream");
|
||||
String url = cluster.getJettySolrRunners().get(0).getBaseUrl().toString()+"/"+COLLECTIONORALIAS;
|
||||
TupleStream solrStream = new SolrStream(url, paramsLoc);
|
||||
StreamContext context = new StreamContext();
|
||||
solrStream.setStreamContext(context);
|
||||
List<Tuple> tuples = getTuples(solrStream);
|
||||
assertTrue(tuples.size() == 1);
|
||||
List<List<Number>> cov = (List<List<Number>>)tuples.get(0).get("h");
|
||||
assertEquals(cov.size(), 2);
|
||||
List<Number> row1 = cov.get(0);
|
||||
assertEquals(row1.size(), 2);
|
||||
|
||||
double a = row1.get(0).doubleValue();
|
||||
double b = row1.get(1).doubleValue();
|
||||
assertEquals(a, 4.666666666666667, 2.5);
|
||||
assertEquals(b, 56.66666666666667, 7);
|
||||
|
||||
List<Number> row2 = cov.get(1);
|
||||
|
||||
double c = row2.get(0).doubleValue();
|
||||
double d = row2.get(1).doubleValue();
|
||||
assertEquals(c, 56.66666666666667, 7);
|
||||
assertEquals(d, 723.8095238095239, 50);
|
||||
|
||||
List<Number> sample = (List<Number>)tuples.get(0).get("i");
|
||||
assertEquals(sample.size(), 2);
|
||||
Number sample1 = sample.get(0);
|
||||
Number sample2 = sample.get(1);
|
||||
assertTrue(sample1.doubleValue() > -30 && sample1.doubleValue() < 30);
|
||||
assertTrue(sample2.doubleValue() > 50 && sample2.doubleValue() < 250);
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
public void testLoess() throws Exception {
|
||||
|
|
Loading…
Reference in New Issue