SOLR-11785: Add multiVariateNormalDistribution Stream Evaluator

This commit is contained in:
Joel Bernstein 2017-12-20 13:51:34 -05:00
parent d9695cca55
commit 960a5fd793
4 changed files with 128 additions and 4 deletions

View File

@ -283,7 +283,7 @@ public class StreamHandler extends RequestHandlerBase implements SolrCoreAware,
.withFunctionName("spline", SplineEvaluator.class) .withFunctionName("spline", SplineEvaluator.class)
.withFunctionName("ttest", TTestEvaluator.class) .withFunctionName("ttest", TTestEvaluator.class)
.withFunctionName("pairedTtest", PairedTTestEvaluator.class) .withFunctionName("pairedTtest", PairedTTestEvaluator.class)
.withFunctionName("multiVariateNormalDistribution", MultiVariateNormalDistributionEvaluator.class)
// Boolean Stream Evaluators // Boolean Stream Evaluators

View File

@ -0,0 +1,54 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.solr.client.solrj.io.eval;
import java.io.IOException;
import java.util.Locale;
import java.util.List;
import org.apache.commons.math3.distribution.MultivariateNormalDistribution;
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
public class MultiVariateNormalDistributionEvaluator extends RecursiveObjectEvaluator implements TwoValueWorker {
private static final long serialVersionUID = 1;
public MultiVariateNormalDistributionEvaluator(StreamExpression expression, StreamFactory factory) throws IOException {
super(expression, factory);
}
@Override
public Object doWork(Object first, Object second) throws IOException{
if(null == first){
throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the first value",toExpression(constructingFactory)));
}
if(null == second){
throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - null found for the second value",toExpression(constructingFactory)));
}
List<Number> means = (List<Number>)first;
Matrix covar = (Matrix)second;
double[] m = new double[means.size()];
for(int i=0; i< m.length; i++) {
m[i] = means.get(i).doubleValue();
}
return new MultivariateNormalDistribution(m, covar.getData());
}
}

View File

@ -18,12 +18,16 @@
package org.apache.solr.client.solrj.io.eval; package org.apache.solr.client.solrj.io.eval;
import java.io.IOException; import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays; import java.util.Arrays;
import java.util.Locale; import java.util.Locale;
import java.util.stream.Collectors; import java.util.stream.Collectors;
import java.util.List;
import org.apache.commons.math3.distribution.IntegerDistribution; import org.apache.commons.math3.distribution.IntegerDistribution;
import org.apache.commons.math3.distribution.MultivariateRealDistribution;
import org.apache.commons.math3.distribution.RealDistribution; import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.distribution.MultivariateNormalDistribution;
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression; import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory; import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
@ -43,7 +47,7 @@ public class SampleEvaluator extends RecursiveObjectEvaluator implements ManyVal
Object first = objects[0]; Object first = objects[0];
if(!(first instanceof RealDistribution) && !(first instanceof IntegerDistribution) && !(first instanceof MarkovChainEvaluator.MarkovChain)){ if(!(first instanceof MultivariateRealDistribution) && !(first instanceof RealDistribution) && !(first instanceof IntegerDistribution) && !(first instanceof MarkovChainEvaluator.MarkovChain)){
throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - found type %s for the first value, expecting a Markov Chain, Real or Integer Distribution",toExpression(constructingFactory), first.getClass().getSimpleName())); throw new IOException(String.format(Locale.ROOT,"Invalid expression %s - found type %s for the first value, expecting a Markov Chain, Real or Integer Distribution",toExpression(constructingFactory), first.getClass().getSimpleName()));
} }
@ -61,11 +65,30 @@ public class SampleEvaluator extends RecursiveObjectEvaluator implements ManyVal
} }
} else if (first instanceof RealDistribution) { } else if (first instanceof RealDistribution) {
RealDistribution realDistribution = (RealDistribution) first; RealDistribution realDistribution = (RealDistribution) first;
if(second != null) { if (second != null) {
return Arrays.stream(realDistribution.sample(((Number) second).intValue())).mapToObj(item -> item).collect(Collectors.toList()); return Arrays.stream(realDistribution.sample(((Number) second).intValue())).mapToObj(item -> item).collect(Collectors.toList());
} else { } else {
return realDistribution.sample(); return realDistribution.sample();
} }
}else if(first instanceof MultivariateNormalDistribution) {
if(second != null) {
MultivariateNormalDistribution multivariateNormalDistribution = (MultivariateNormalDistribution)first;
int size = ((Number)second).intValue();
double[][] samples = new double[size][];
for(int i=0; i<size; ++i) {
samples[i] = multivariateNormalDistribution.sample();
}
return new Matrix(samples);
} else {
MultivariateNormalDistribution multivariateNormalDistribution = (MultivariateNormalDistribution)first;
double[] sample = multivariateNormalDistribution.sample();
List<Number> sampleList = new ArrayList(sample.length);
for(int i=0; i<sample.length; i++) {
sampleList.add(sample[i]);
}
return sampleList;
}
} else { } else {
IntegerDistribution integerDistribution = (IntegerDistribution) first; IntegerDistribution integerDistribution = (IntegerDistribution) first;
if(second != null) { if(second != null) {

View File

@ -7179,6 +7179,53 @@ public class StreamExpressionTest extends SolrCloudTestCase {
assertEquals(pval3.doubleValue(), 0.0404907407662755, .0001); assertEquals(pval3.doubleValue(), 0.0404907407662755, .0001);
} }
@Test
public void testMultiVariateNormalDistribution() throws Exception {
String cexpr = "let(echo=true," +
" a=array(1,2,3,4,5,6,7)," +
" b=array(100, 110, 120, 130,140,150,180)," +
" c=transpose(matrix(a, b))," +
" d=array(mean(a), mean(b))," +
" e=cov(c)," +
" f=multiVariateNormalDistribution(d, e)," +
" g=sample(f, 10000)," +
" h=cov(g)," +
" i=sample(f))";
ModifiableSolrParams paramsLoc = new ModifiableSolrParams();
paramsLoc.set("expr", cexpr);
paramsLoc.set("qt", "/stream");
String url = cluster.getJettySolrRunners().get(0).getBaseUrl().toString()+"/"+COLLECTIONORALIAS;
TupleStream solrStream = new SolrStream(url, paramsLoc);
StreamContext context = new StreamContext();
solrStream.setStreamContext(context);
List<Tuple> tuples = getTuples(solrStream);
assertTrue(tuples.size() == 1);
List<List<Number>> cov = (List<List<Number>>)tuples.get(0).get("h");
assertEquals(cov.size(), 2);
List<Number> row1 = cov.get(0);
assertEquals(row1.size(), 2);
double a = row1.get(0).doubleValue();
double b = row1.get(1).doubleValue();
assertEquals(a, 4.666666666666667, 2.5);
assertEquals(b, 56.66666666666667, 7);
List<Number> row2 = cov.get(1);
double c = row2.get(0).doubleValue();
double d = row2.get(1).doubleValue();
assertEquals(c, 56.66666666666667, 7);
assertEquals(d, 723.8095238095239, 50);
List<Number> sample = (List<Number>)tuples.get(0).get("i");
assertEquals(sample.size(), 2);
Number sample1 = sample.get(0);
Number sample2 = sample.get(1);
assertTrue(sample1.doubleValue() > -30 && sample1.doubleValue() < 30);
assertTrue(sample2.doubleValue() > 50 && sample2.doubleValue() < 250);
}
@Test @Test
public void testLoess() throws Exception { public void testLoess() throws Exception {