SOLR-12660: Add outliers Stream Evaluator to support outlier detection

This commit is contained in:
Joel Bernstein 2018-08-13 15:21:16 -04:00
parent 8d3f59a47f
commit 9d57963f41
3 changed files with 196 additions and 0 deletions

View File

@ -248,6 +248,7 @@ public class Lang {
.withFunctionName("setValue", SetValueEvaluator.class)
.withFunctionName("knnRegress", KnnRegressionEvaluator.class)
.withFunctionName("gaussfit", GaussFitEvaluator.class)
.withFunctionName("outliers", OutliersEvaluator.class)
// Boolean Stream Evaluators

View File

@ -0,0 +1,142 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.solr.client.solrj.io.eval;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import org.apache.commons.math3.distribution.IntegerDistribution;
import org.apache.commons.math3.distribution.AbstractRealDistribution;
import org.apache.solr.client.solrj.io.stream.expr.StreamExpression;
import org.apache.solr.client.solrj.io.stream.expr.StreamFactory;
import org.apache.solr.client.solrj.io.Tuple;
public class OutliersEvaluator extends RecursiveObjectEvaluator implements ManyValueWorker {
protected static final long serialVersionUID = 1L;
public OutliersEvaluator(StreamExpression expression, StreamFactory factory) throws IOException{
super(expression, factory);
}
@Override
public Object doWork(Object... values) throws IOException{
if(values.length < 4) {
throw new IOException("The outliers function requires 4 parameters");
}
Object dist = values[0];
List<Number> vec = null;
if(values[1] instanceof List) {
vec = (List<Number>)values[1];
} else {
throw new IOException("The second parameter of the outliers function is the numeric array to be tested for outliers.");
}
double low = 0.0;
if(values[2] instanceof Number) {
low = ((Number)values[2]).doubleValue();
} else {
throw new IOException("The third parameter of the outliers function is a number for the low outlier threshold.");
}
double hi = 0.0;
if(values[3] instanceof Number) {
hi = ((Number)values[3]).doubleValue();
} else {
throw new IOException("The fourth parameter of the outliers function is a number for the high outlier threshold");
}
List<Tuple> tuples = null;
if(values.length ==5) {
if(values[4] instanceof List) {
tuples = (List<Tuple>) values[4];
} else {
throw new IOException("The optional fifth parameter of the outliers function is an array of Tuples that are paired with the numeric array of values to be tested.");
}
} else {
tuples = new ArrayList();
for(int i=0; i<vec.size(); i++) {
tuples.add(new Tuple(new HashMap()));
}
}
List<Tuple> outliers = new ArrayList();
if(dist instanceof IntegerDistribution) {
IntegerDistribution d = (IntegerDistribution) dist;
for(int i=0; i<vec.size(); i++) {
Number n = vec.get(i);
Tuple t = tuples.get(i);
double cumProb = d.cumulativeProbability(n.intValue());
if(low >= 0 && cumProb <= low) {
t.put("lowOutlier", true);
t.put("lowOutlierValue", n);
t.put("cumulativeProbablity", cumProb);
outliers.add(t);
}
if(hi >= 0 && cumProb >= hi) {
t.put("highOutlier", true);
t.put("highOutlierValue", n);
t.put("cumulativeProbablity", cumProb);
outliers.add(t);
}
}
return outliers;
} else if(dist instanceof AbstractRealDistribution) {
AbstractRealDistribution d = (AbstractRealDistribution)dist;
for(int i=0; i<vec.size(); i++) {
Number n = vec.get(i);
Tuple t = tuples.get(i);
double cumProb = d.cumulativeProbability(n.doubleValue());
if(low >= 0 && cumProb <= low) {
t.put("lowOutlier", true);
t.put("lowOutlierValue", n);
t.put("cumulativeProbablity", cumProb);
outliers.add(t);
}
if(hi >= 0 && cumProb >= hi) {
t.put("highOutlier", true);
t.put("highOutlierValue", n);
t.put("cumulativeProbablity", cumProb);
outliers.add(t);
}
}
return outliers;
} else {
throw new IOException("The first parameter of the outliers function must be a real or integer probability distribution");
}
}
}

View File

@ -3272,6 +3272,59 @@ public class MathExpressionTest extends SolrCloudTestCase {
assertEquals(out1.get(7).doubleValue(), 61.5, 0.0001);
}
@Test
public void testOutliers() throws Exception {
String cexpr = "let(echo=true," +
" a=list(tuple(id=0.0), tuple(id=1), tuple(id=2), tuple(id=3)), " +
" b=normalDistribution(100, 5)," +
" d=array(100, 110, 90, 99), " +
" e=outliers(b, d, .05, .95, a)," +
" f=outliers(b, d, .05, .95))";
ModifiableSolrParams paramsLoc = new ModifiableSolrParams();
paramsLoc.set("expr", cexpr);
paramsLoc.set("qt", "/stream");
String url = cluster.getJettySolrRunners().get(0).getBaseUrl().toString()+"/"+COLLECTIONORALIAS;
TupleStream solrStream = new SolrStream(url, paramsLoc);
StreamContext context = new StreamContext();
solrStream.setStreamContext(context);
List<Tuple> tuples = getTuples(solrStream);
assertTrue(tuples.size() == 1);
List<Map> out = (List<Map>)tuples.get(0).get("e");
assertEquals(out.size(), 2);
Map high = out.get(0);
assertEquals(((String)high.get("id")), "1");
assertEquals(((Number)high.get("cumulativeProbablity")).doubleValue(), 0.9772498680518208, 0.0 );
assertEquals(((Number)high.get("highOutlierValue")).doubleValue(), 110.0, 0.0);
assertEquals(((Boolean)high.get("highOutlier")).booleanValue(), true);
Map low = out.get(1);
assertEquals(((String)low.get("id")), "2");
assertEquals(((Number)low.get("cumulativeProbablity")).doubleValue(), 0.022750131948179167, 0.0 );
assertEquals(((Number)low.get("lowOutlierValue")).doubleValue(), 90, 0.0);
assertEquals(((Boolean)low.get("lowOutlier")).booleanValue(), true);
List<Map> out1 = (List<Map>)tuples.get(0).get("f");
assertEquals(out1.size(), 2);
Map high1 = out1.get(0);
assert(high1.get("id") == null);
assertEquals(((Number)high1.get("cumulativeProbablity")).doubleValue(), 0.9772498680518208, 0.0 );
assertEquals(((Number)high1.get("highOutlierValue")).doubleValue(), 110.0, 0.0);
assertEquals(((Boolean)high1.get("highOutlier")).booleanValue(), true);
Map low1 = out1.get(1);
assert(low1.get("id") == null);
assertEquals(((Number)low1.get("cumulativeProbablity")).doubleValue(), 0.022750131948179167, 0.0 );
assertEquals(((Number)low1.get("lowOutlierValue")).doubleValue(), 90, 0.0);
assertEquals(((Boolean)low1.get("lowOutlier")).booleanValue(), true);
}
@Test
public void testLerp() throws Exception {
String cexpr = "let(echo=true," +