mirror of https://github.com/apache/lucene.git
LUCENE-1183: add back fuzzy improvements that were inadvertently lost in flex merge
git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@983298 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
b4c599c77a
commit
a6478136df
|
@ -251,14 +251,6 @@ public final class FuzzyTermsEnum extends TermsEnum {
|
|||
return actualEnum.term();
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds and returns the smallest of three integers
|
||||
*/
|
||||
private static final int min(int a, int b, int c) {
|
||||
final int t = (a < b) ? a : b;
|
||||
return (t < c) ? t : c;
|
||||
}
|
||||
|
||||
/**
|
||||
* Implement fuzzy enumeration with automaton.
|
||||
* <p>
|
||||
|
@ -326,23 +318,15 @@ public final class FuzzyTermsEnum extends TermsEnum {
|
|||
* Implement fuzzy enumeration with linear brute force.
|
||||
*/
|
||||
private class LinearFuzzyTermsEnum extends FilteredTermsEnum {
|
||||
|
||||
/* This should be somewhere around the average long word.
|
||||
* If it is longer, we waste time and space. If it is shorter, we waste a
|
||||
* little bit of time growing the array as we encounter longer words.
|
||||
*/
|
||||
private static final int TYPICAL_LONGEST_WORD_IN_INDEX = 19;
|
||||
|
||||
/* Allows us save time required to create a new array
|
||||
* every time similarity is called.
|
||||
*/
|
||||
private int[][] d;
|
||||
private int[] d;
|
||||
private int[] p;
|
||||
|
||||
// this is the text, minus the prefix
|
||||
private final int[] text;
|
||||
|
||||
private final int[] maxDistances = new int[TYPICAL_LONGEST_WORD_IN_INDEX];
|
||||
|
||||
private final MultiTermQuery.BoostAttribute boostAtt =
|
||||
attributes().addAttribute(MultiTermQuery.BoostAttribute.class);
|
||||
|
||||
|
@ -367,15 +351,15 @@ public final class FuzzyTermsEnum extends TermsEnum {
|
|||
System.arraycopy(termText, realPrefixLength, text, 0, text.length);
|
||||
final String prefix = UnicodeUtil.newString(termText, 0, realPrefixLength);
|
||||
prefixBytesRef = new BytesRef(prefix);
|
||||
initializeMaxDistances();
|
||||
this.d = initDistanceArray();
|
||||
this.d = new int[this.text.length + 1];
|
||||
this.p = new int[this.text.length + 1];
|
||||
|
||||
setInitialSeekTerm(prefixBytesRef);
|
||||
}
|
||||
|
||||
private final BytesRef prefixBytesRef;
|
||||
// used for unicode conversion from BytesRef byte[] to int[]
|
||||
private final IntsRef utf32 = new IntsRef(TYPICAL_LONGEST_WORD_IN_INDEX);
|
||||
private final IntsRef utf32 = new IntsRef(20);
|
||||
|
||||
/**
|
||||
* The termCompare method in FuzzyTermEnum uses Levenshtein distance to
|
||||
|
@ -399,10 +383,6 @@ public final class FuzzyTermsEnum extends TermsEnum {
|
|||
* Compute Levenshtein distance
|
||||
******************************/
|
||||
|
||||
private final int[][] initDistanceArray(){
|
||||
return new int[this.text.length + 1][TYPICAL_LONGEST_WORD_IN_INDEX];
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Similarity returns a number that is 1.0f or less (including negative numbers)
|
||||
* based on how similar the Term is compared to a target term. It returns
|
||||
|
@ -452,7 +432,7 @@ public final class FuzzyTermsEnum extends TermsEnum {
|
|||
return realPrefixLength == 0 ? 0.0f : 1.0f - ((float) n / realPrefixLength);
|
||||
}
|
||||
|
||||
final int maxDistance = getMaxDistance(m);
|
||||
final int maxDistance = calculateMaxDistance(m);
|
||||
|
||||
if (maxDistance < Math.abs(m-n)) {
|
||||
//just adding the characters of m to n or vice-versa results in
|
||||
|
@ -465,56 +445,52 @@ public final class FuzzyTermsEnum extends TermsEnum {
|
|||
return 0.0f;
|
||||
}
|
||||
|
||||
//let's make sure we have enough room in our array to do the distance calculations.
|
||||
if (d[0].length <= m) {
|
||||
growDistanceArray(m);
|
||||
}
|
||||
|
||||
// init matrix d
|
||||
for (int i = 0; i <= n; i++) d[i][0] = i;
|
||||
for (int j = 0; j <= m; j++) d[0][j] = j;
|
||||
for (int i = 0; i <=n; ++i) {
|
||||
p[i] = i;
|
||||
}
|
||||
|
||||
// start computing edit distance
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int j = 1; j<=m; ++j) { // iterates through target
|
||||
int bestPossibleEditDistance = m;
|
||||
final int s_i = text[i - 1];
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (s_i != target[offset+j-1]) {
|
||||
d[i][j] = min(d[i-1][j], d[i][j-1], d[i-1][j-1])+1;
|
||||
final int t_j = target[offset+j-1]; // jth character of t
|
||||
d[0] = j;
|
||||
|
||||
for (int i=1; i<=n; ++i) { // iterates through text
|
||||
// minimum of cell to the left+1, to the top+1, diagonally left and up +(0|1)
|
||||
if (t_j != text[i-1]) {
|
||||
d[i] = Math.min(Math.min(d[i-1], p[i]), p[i-1]) + 1;
|
||||
} else {
|
||||
d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1), p[i-1]);
|
||||
}
|
||||
else {
|
||||
d[i][j] = min(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]);
|
||||
}
|
||||
bestPossibleEditDistance = Math.min(bestPossibleEditDistance, d[i][j]);
|
||||
bestPossibleEditDistance = Math.min(bestPossibleEditDistance, d[i]);
|
||||
}
|
||||
|
||||
//After calculating row i, the best possible edit distance
|
||||
//can be found by found by finding the smallest value in a given column.
|
||||
//If the bestPossibleEditDistance is greater than the max distance, abort.
|
||||
|
||||
if (i > maxDistance && bestPossibleEditDistance > maxDistance) { //equal is okay, but not greater
|
||||
if (j > maxDistance && bestPossibleEditDistance > maxDistance) { //equal is okay, but not greater
|
||||
//the closest the target can be to the text is just too far away.
|
||||
//this target is leaving the party early.
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
// copy current distance counts to 'previous row' distance counts: swap p and d
|
||||
int _d[] = p;
|
||||
p = d;
|
||||
d = _d;
|
||||
}
|
||||
|
||||
// our last action in the above loop was to switch d and p, so p now
|
||||
// actually has the most recent cost counts
|
||||
|
||||
// this will return less than 0.0 when the edit distance is
|
||||
// greater than the number of characters in the shorter word.
|
||||
// but this was the formula that was previously used in FuzzyTermEnum,
|
||||
// so it has not been changed (even though minimumSimilarity must be
|
||||
// greater than 0.0)
|
||||
return 1.0f - ((float)d[n][m] / (float) (realPrefixLength + Math.min(n, m)));
|
||||
}
|
||||
|
||||
/**
|
||||
* Grow the second dimension of the array, so that we can calculate the
|
||||
* Levenshtein difference.
|
||||
*/
|
||||
private void growDistanceArray(int m) {
|
||||
for (int i = 0; i < d.length; i++) {
|
||||
d[i] = new int[m+1];
|
||||
}
|
||||
return 1.0f - ((float)p[n] / (float) (realPrefixLength + Math.min(n, m)));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -524,16 +500,6 @@ public final class FuzzyTermsEnum extends TermsEnum {
|
|||
* @param m the length of the "other value"
|
||||
* @return the maximum levenshtein distance that we care about
|
||||
*/
|
||||
private final int getMaxDistance(int m) {
|
||||
return (m < maxDistances.length) ? maxDistances[m] : calculateMaxDistance(m);
|
||||
}
|
||||
|
||||
private void initializeMaxDistances() {
|
||||
for (int i = 0; i < maxDistances.length; i++) {
|
||||
maxDistances[i] = calculateMaxDistance(i);
|
||||
}
|
||||
}
|
||||
|
||||
private int calculateMaxDistance(int m) {
|
||||
return (int) ((1-minSimilarity) * (Math.min(text.length, m) + realPrefixLength));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue