LUCENE-5699 - patch from Gergő Törcsvári for normalized score and return lists in classification

git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1619053 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Tommaso Teofili 2014-08-20 08:56:42 +00:00
parent 7223a40b6d
commit a934cc7106
5 changed files with 233 additions and 81 deletions

View File

@ -42,6 +42,7 @@ import org.apache.lucene.util.fst.PositiveIntOutputs;
import org.apache.lucene.util.fst.Util;
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.SortedMap;
import java.util.TreeMap;
@ -131,9 +132,7 @@ public class BooleanPerceptronClassifier implements Classifier<Boolean> {
this.textTerms = MultiFields.getTerms(atomicReader, textFieldName);
if (textTerms == null) {
throw new IOException(new StringBuilder(
"term vectors need to be available for field ").append(textFieldName)
.toString());
throw new IOException("term vectors need to be available for field " + textFieldName);
}
this.analyzer = analyzer;
@ -246,4 +245,22 @@ public class BooleanPerceptronClassifier implements Classifier<Boolean> {
fst = fstBuilder.finish();
}
/**
* {@inheritDoc}
*/
@Override
public List<ClassificationResult<BytesRef>> getClasses(String text)
throws IOException {
return null;
}
/**
* {@inheritDoc}
*/
@Override
public List<ClassificationResult<BytesRef>> getClasses(String text, int max)
throws IOException {
return null;
}
}

View File

@ -20,10 +20,10 @@ package org.apache.lucene.classification;
* The result of a call to {@link Classifier#assignClass(String)} holding an assigned class of type <code>T</code> and a score.
* @lucene.experimental
*/
public class ClassificationResult<T> {
public class ClassificationResult<T> implements Comparable<ClassificationResult<T>>{
private final T assignedClass;
private final double score;
private double score;
/**
* Constructor
@ -50,4 +50,18 @@ public class ClassificationResult<T> {
public double getScore() {
return score;
}
/**
* set the score value
* @param score the score for the assignedClass as a <code>double</code>
*/
public void setScore(double score) {
this.score = score;
}
@Override
public int compareTo(ClassificationResult<T> o) {
return this.getScore() < o.getScore() ? 1 : this.getScore() > o.getScore() ? -1 : 0;
}
}

View File

@ -16,33 +16,57 @@
*/
package org.apache.lucene.classification;
import java.io.IOException;
import java.util.List;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.index.AtomicReader;
import org.apache.lucene.search.Query;
import java.io.IOException;
import org.apache.lucene.util.BytesRef;
/**
* A classifier, see <code>http://en.wikipedia.org/wiki/Classifier_(mathematics)</code>, which assign classes of type
* <code>T</code>
*
* @lucene.experimental
*/
public interface Classifier<T> {
/**
* Assign a class (with score) to the given text String
*
* @param text a String containing text to be classified
* @return a {@link ClassificationResult} holding assigned class of type <code>T</code> and score
* @throws IOException If there is a low-level I/O error.
*/
public ClassificationResult<T> assignClass(String text) throws IOException;
/**
* Get all the classes (sorted by score, descending) assigned to the given text String.
*
* @param text a String containing text to be classified
* @return the whole list of {@link ClassificationResult}, the classes and scores. Returns <code>null</code> if the classifier can't make lists.
* @throws IOException If there is a low-level I/O error.
*/
public List<ClassificationResult<BytesRef>> getClasses(String text) throws IOException;
/**
* Get the first <code>max</code> classes (sorted by score, descending) assigned to the given text String.
*
* @param text a String containing text to be classified
* @param max the number of return list elements
* @return the whole list of {@link ClassificationResult}, the classes and scores. Cut for "max" number of elements. Returns <code>null</code> if the classifier can't make lists.
* @throws IOException If there is a low-level I/O error.
*/
public List<ClassificationResult<BytesRef>> getClasses(String text, int max) throws IOException;
/**
* Train the classifier using the underlying Lucene index
* @param atomicReader the reader to use to access the Lucene index
* @param textFieldName the name of the field used to compare documents
*
* @param atomicReader the reader to use to access the Lucene index
* @param textFieldName the name of the field used to compare documents
* @param classFieldName the name of the field containing the class assigned to documents
* @param analyzer the analyzer used to tokenize / filter the unseen text
* @param analyzer the analyzer used to tokenize / filter the unseen text
* @throws IOException If there is a low-level I/O error.
*/
public void train(AtomicReader atomicReader, String textFieldName, String classFieldName, Analyzer analyzer)
@ -50,11 +74,12 @@ public interface Classifier<T> {
/**
* Train the classifier using the underlying Lucene index
* @param atomicReader the reader to use to access the Lucene index
* @param textFieldName the name of the field used to compare documents
*
* @param atomicReader the reader to use to access the Lucene index
* @param textFieldName the name of the field used to compare documents
* @param classFieldName the name of the field containing the class assigned to documents
* @param analyzer the analyzer used to tokenize / filter the unseen text
* @param query the query to filter which documents use for training
* @param analyzer the analyzer used to tokenize / filter the unseen text
* @param query the query to filter which documents use for training
* @throws IOException If there is a low-level I/O error.
*/
public void train(AtomicReader atomicReader, String textFieldName, String classFieldName, Analyzer analyzer, Query query)
@ -62,11 +87,12 @@ public interface Classifier<T> {
/**
* Train the classifier using the underlying Lucene index
* @param atomicReader the reader to use to access the Lucene index
*
* @param atomicReader the reader to use to access the Lucene index
* @param textFieldNames the names of the fields to be used to compare documents
* @param classFieldName the name of the field containing the class assigned to documents
* @param analyzer the analyzer used to tokenize / filter the unseen text
* @param query the query to filter which documents use for training
* @param analyzer the analyzer used to tokenize / filter the unseen text
* @param query the query to filter which documents use for training
* @throws IOException If there is a low-level I/O error.
*/
public void train(AtomicReader atomicReader, String[] textFieldNames, String classFieldName, Analyzer analyzer, Query query)

View File

@ -31,7 +31,10 @@ import org.apache.lucene.util.BytesRef;
import java.io.IOException;
import java.io.StringReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
@ -79,6 +82,42 @@ public class KNearestNeighborClassifier implements Classifier<BytesRef> {
*/
@Override
public ClassificationResult<BytesRef> assignClass(String text) throws IOException {
TopDocs topDocs=knnSearcher(text);
List<ClassificationResult<BytesRef>> doclist=buildListFromTopDocs(topDocs);
ClassificationResult<BytesRef> retval=null;
double maxscore=-Double.MAX_VALUE;
for(ClassificationResult<BytesRef> element:doclist){
if(element.getScore()>maxscore){
retval=element;
maxscore=element.getScore();
}
}
return retval;
}
/**
* {@inheritDoc}
*/
@Override
public List<ClassificationResult<BytesRef>> getClasses(String text) throws IOException {
TopDocs topDocs=knnSearcher(text);
List<ClassificationResult<BytesRef>> doclist=buildListFromTopDocs(topDocs);
Collections.sort(doclist);
return doclist;
}
/**
* {@inheritDoc}
*/
@Override
public List<ClassificationResult<BytesRef>> getClasses(String text, int max) throws IOException {
TopDocs topDocs=knnSearcher(text);
List<ClassificationResult<BytesRef>> doclist=buildListFromTopDocs(topDocs);
Collections.sort(doclist);
return doclist.subList(0, max);
}
private TopDocs knnSearcher(String text) throws IOException{
if (mlt == null) {
throw new IOException("You must first call Classifier#train");
}
@ -91,33 +130,36 @@ public class KNearestNeighborClassifier implements Classifier<BytesRef> {
if (query != null) {
mltQuery.add(query, BooleanClause.Occur.MUST);
}
TopDocs topDocs = indexSearcher.search(mltQuery, k);
return selectClassFromNeighbors(topDocs);
return indexSearcher.search(mltQuery, k);
}
private ClassificationResult<BytesRef> selectClassFromNeighbors(TopDocs topDocs) throws IOException {
// TODO : improve the nearest neighbor selection
private List<ClassificationResult<BytesRef>> buildListFromTopDocs(TopDocs topDocs) throws IOException {
Map<BytesRef, Integer> classCounts = new HashMap<>();
for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
BytesRef cl = new BytesRef(indexSearcher.doc(scoreDoc.doc).getField(classFieldName).stringValue());
Integer count = classCounts.get(cl);
if (count != null) {
classCounts.put(cl, count + 1);
} else {
classCounts.put(cl, 1);
}
BytesRef cl = new BytesRef(indexSearcher.doc(scoreDoc.doc).getField(classFieldName).stringValue());
Integer count = classCounts.get(cl);
if (count != null) {
classCounts.put(cl, count + 1);
} else {
classCounts.put(cl, 1);
}
}
double max = 0;
BytesRef assignedClass = new BytesRef();
List<ClassificationResult<BytesRef>> returnList = new ArrayList<>();
int sumdoc=0;
for (Map.Entry<BytesRef, Integer> entry : classCounts.entrySet()) {
Integer count = entry.getValue();
if (count > max) {
max = count;
assignedClass = entry.getKey().clone();
Integer count = entry.getValue();
returnList.add(new ClassificationResult<>(entry.getKey().clone(), count / (double) k));
sumdoc+=count;
}
//correction
if(sumdoc<k){
for(ClassificationResult<BytesRef> cr:returnList){
cr.setScore(cr.getScore()*(double)k/(double)sumdoc);
}
}
double score = max / (double) k;
return new ClassificationResult<>(assignedClass, score);
return returnList;
}
/**

View File

@ -16,6 +16,13 @@
*/
package org.apache.lucene.classification;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
@ -33,10 +40,6 @@ import org.apache.lucene.search.TotalHitCountCollector;
import org.apache.lucene.search.WildcardQuery;
import org.apache.lucene.util.BytesRef;
import java.io.IOException;
import java.util.Collection;
import java.util.LinkedList;
/**
* A simplistic Lucene based NaiveBayes classifier, see <code>http://en.wikipedia.org/wiki/Naive_Bayes_classifier</code>
*
@ -44,13 +47,12 @@ import java.util.LinkedList;
*/
public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
private AtomicReader atomicReader;
private String[] textFieldNames;
private String classFieldName;
private int docsWithClassSize;
private Analyzer analyzer;
private IndexSearcher indexSearcher;
private Query query;
protected AtomicReader atomicReader;
protected String[] textFieldNames;
protected String classFieldName;
protected Analyzer analyzer;
protected IndexSearcher indexSearcher;
protected Query query;
/**
* Creates a new NaiveBayes classifier.
@ -89,10 +91,88 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
this.classFieldName = classFieldName;
this.analyzer = analyzer;
this.query = query;
this.docsWithClassSize = countDocsWithClass();
}
private int countDocsWithClass() throws IOException {
/**
* {@inheritDoc}
*/
@Override
public ClassificationResult<BytesRef> assignClass(String inputDocument) throws IOException {
List<ClassificationResult<BytesRef>> doclist = assignClassNormalizedList(inputDocument);
ClassificationResult<BytesRef> retval = null;
double maxscore = -Double.MAX_VALUE;
for (ClassificationResult<BytesRef> element : doclist) {
if (element.getScore() > maxscore) {
retval = element;
maxscore = element.getScore();
}
}
return retval;
}
/**
* {@inheritDoc}
*/
@Override
public List<ClassificationResult<BytesRef>> getClasses(String text) throws IOException {
List<ClassificationResult<BytesRef>> doclist = assignClassNormalizedList(text);
Collections.sort(doclist);
return doclist;
}
/**
* {@inheritDoc}
*/
@Override
public List<ClassificationResult<BytesRef>> getClasses(String text, int max) throws IOException {
List<ClassificationResult<BytesRef>> doclist = assignClassNormalizedList(text);
Collections.sort(doclist);
return doclist.subList(0, max);
}
private List<ClassificationResult<BytesRef>> assignClassNormalizedList(String inputDocument) throws IOException {
if (atomicReader == null) {
throw new IOException("You must first call Classifier#train");
}
List<ClassificationResult<BytesRef>> dataList = new ArrayList<>();
Terms terms = MultiFields.getTerms(atomicReader, classFieldName);
TermsEnum termsEnum = terms.iterator(null);
BytesRef next;
String[] tokenizedDoc = tokenizeDoc(inputDocument);
int docsWithClassSize = countDocsWithClass();
while ((next = termsEnum.next()) != null) {
double clVal = calculateLogPrior(next, docsWithClassSize) + calculateLogLikelihood(tokenizedDoc, next, docsWithClassSize);
dataList.add(new ClassificationResult<>(BytesRef.deepCopyOf(next), clVal));
}
// normalization; the values transforms to a 0-1 range
ArrayList<ClassificationResult<BytesRef>> returnList = new ArrayList<>();
if (!dataList.isEmpty()) {
Collections.sort(dataList);
// this is a negative number closest to 0 = a
double smax = dataList.get(0).getScore();
double sumLog = 0;
// log(sum(exp(x_n-a)))
for (ClassificationResult<BytesRef> cr : dataList) {
// getScore-smax <=0 (both negative, smax is the smallest abs()
sumLog += Math.exp(cr.getScore() - smax);
}
// loga=a+log(sum(exp(x_n-a))) = log(sum(exp(x_n)))
double loga = smax;
loga += Math.log(sumLog);
// 1/sum*x = exp(log(x))*1/sum = exp(log(x)-log(sum))
for (ClassificationResult<BytesRef> cr : dataList) {
returnList.add(new ClassificationResult<>(cr.getAssignedClass(), Math.exp(cr.getScore() - loga)));
}
}
return returnList;
}
protected int countDocsWithClass() throws IOException {
int docCount = MultiFields.getTerms(this.atomicReader, this.classFieldName).getDocCount();
if (docCount == -1) { // in case codec doesn't support getDocCount
TotalHitCountCollector totalHitCountCollector = new TotalHitCountCollector();
@ -108,7 +188,7 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
return docCount;
}
private String[] tokenizeDoc(String doc) throws IOException {
protected String[] tokenizeDoc(String doc) throws IOException {
Collection<String> result = new LinkedList<>();
for (String textFieldName : textFieldNames) {
try (TokenStream tokenStream = analyzer.tokenStream(textFieldName, doc)) {
@ -123,34 +203,7 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
return result.toArray(new String[result.size()]);
}
/**
* {@inheritDoc}
*/
@Override
public ClassificationResult<BytesRef> assignClass(String inputDocument) throws IOException {
if (atomicReader == null) {
throw new IOException("You must first call Classifier#train");
}
double max = - Double.MAX_VALUE;
BytesRef foundClass = new BytesRef();
Terms terms = MultiFields.getTerms(atomicReader, classFieldName);
TermsEnum termsEnum = terms.iterator(null);
BytesRef next;
String[] tokenizedDoc = tokenizeDoc(inputDocument);
while ((next = termsEnum.next()) != null) {
double clVal = calculateLogPrior(next) + calculateLogLikelihood(tokenizedDoc, next);
if (clVal > max) {
max = clVal;
foundClass = BytesRef.deepCopyOf(next);
}
}
double score = 10 / Math.abs(max);
return new ClassificationResult<>(foundClass, score);
}
private double calculateLogLikelihood(String[] tokenizedDoc, BytesRef c) throws IOException {
private double calculateLogLikelihood(String[] tokenizedDoc, BytesRef c, int docsWithClassSize) throws IOException {
// for each word
double result = 0d;
for (String word : tokenizedDoc) {
@ -187,7 +240,7 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
BooleanQuery booleanQuery = new BooleanQuery();
BooleanQuery subQuery = new BooleanQuery();
for (String textFieldName : textFieldNames) {
subQuery.add(new BooleanClause(new TermQuery(new Term(textFieldName, word)), BooleanClause.Occur.SHOULD));
subQuery.add(new BooleanClause(new TermQuery(new Term(textFieldName, word)), BooleanClause.Occur.SHOULD));
}
booleanQuery.add(new BooleanClause(subQuery, BooleanClause.Occur.MUST));
booleanQuery.add(new BooleanClause(new TermQuery(new Term(classFieldName, c)), BooleanClause.Occur.MUST));
@ -199,7 +252,7 @@ public class SimpleNaiveBayesClassifier implements Classifier<BytesRef> {
return totalHitCountCollector.getTotalHits();
}
private double calculateLogPrior(BytesRef currentClass) throws IOException {
private double calculateLogPrior(BytesRef currentClass, int docsWithClassSize) throws IOException {
return Math.log((double) docCount(currentClass)) - Math.log(docsWithClassSize);
}