Add unit-of-least-precision float comparison (#13723)

This commit is contained in:
Stefan Vodita 2024-09-14 09:51:10 +01:00 committed by GitHub
parent 7c056ab88c
commit aa86a8119a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 236 additions and 2 deletions

View File

@ -468,7 +468,9 @@ Build
Other
--------------------
(No changes)
* GITHUB#13720: Add float comparison based on unit of least precision and use it to stop test failures caused by float
summation not being associative in IEEE 754. (Alex Herbert, Stefan Vodita)
======================== Lucene 9.11.1 =======================

View File

@ -653,7 +653,7 @@ public class TestTaxonomyFacetAssociations extends FacetTestCase {
assertEquals(expectedResult.dim, actualResult.dim);
assertArrayEquals(expectedResult.path, actualResult.path);
assertEquals((float) expectedResult.value, (float) actualResult.value, 2e-1);
assertFloatUlpEquals((float) expectedResult.value, (float) actualResult.value, (short) 2);
assertEquals(expectedResult.childCount, actualResult.childCount);
}
}

View File

@ -867,6 +867,18 @@ public abstract class LuceneTestCase extends Assert {
RandomizedTest.assumeNoException(msg, e);
}
public static void assertFloatUlpEquals(final float x, final float y, final short maxUlps) {
assertTrue(
x + " and " + y + " are not within " + maxUlps + " ULPs of each other",
TestUtil.floatUlpEquals(x, y, maxUlps));
}
public static void assertDoubleUlpEquals(final double x, final double y, final int maxUlps) {
assertTrue(
x + " and " + y + " are not within " + maxUlps + " ULPs of each other",
TestUtil.doubleUlpEquals(x, y, maxUlps));
}
/**
* Return <code>args</code> as a {@link Set} instance. The order of elements is not preserved in
* iterators.

View File

@ -464,6 +464,90 @@ public final class TestUtil {
}
}
/**
* Returns true if the arguments are equal or within the range of allowed error (inclusive).
* Returns {@code false} if either of the arguments is NaN.
*
* <p>Two float numbers are considered equal if there are {@code (maxUlps - 1)} (or fewer)
* floating point numbers between them, i.e. two adjacent floating point numbers are considered
* equal.
*
* <p>Adapted from org.apache.commons.numbers.core.Precision
*
* <p>github: https://github.com/apache/commons-numbers release 1.2
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x}
* and {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating point values between
* {@code x} and {@code y}.
*/
public static boolean floatUlpEquals(final float x, final float y, final short maxUlps) {
final int xInt = Float.floatToRawIntBits(x);
final int yInt = Float.floatToRawIntBits(y);
if ((xInt ^ yInt) < 0) {
// Numbers have opposite signs, take care of overflow.
// Remove the sign bit to obtain the absolute ULP above zero.
final int deltaPlus = xInt & Integer.MAX_VALUE;
final int deltaMinus = yInt & Integer.MAX_VALUE;
// Note:
// If either value is NaN, the exponent bits are set to (255 << 23) and the
// distance above 0.0 is always above a short ULP error. So omit the test
// for NaN and return directly.
// Avoid possible overflow from adding the deltas by splitting the comparison
return deltaPlus <= maxUlps && deltaMinus <= (maxUlps - deltaPlus);
}
// Numbers have same sign, there is no risk of overflow.
return Math.abs(xInt - yInt) <= maxUlps && !Float.isNaN(x) && !Float.isNaN(y);
}
/**
* Returns true if the arguments are equal or within the range of allowed error (inclusive).
* Returns {@code false} if either of the arguments is NaN.
*
* <p>Two double numbers are considered equal if there are {@code (maxUlps - 1)} (or fewer)
* floating point numbers between them, i.e. two adjacent floating point numbers are considered
* equal.
*
* <p>Adapted from org.apache.commons.numbers.core.Precision
*
* <p>github: https://github.com/apache/commons-numbers release 1.2
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x}
* and {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating point values between
* {@code x} and {@code y}.
*/
public static boolean doubleUlpEquals(final double x, final double y, final int maxUlps) {
final long xInt = Double.doubleToRawLongBits(x);
final long yInt = Double.doubleToRawLongBits(y);
if ((xInt ^ yInt) < 0) {
// Numbers have opposite signs, take care of overflow.
// Remove the sign bit to obtain the absolute ULP above zero.
final long deltaPlus = xInt & Long.MAX_VALUE;
final long deltaMinus = yInt & Long.MAX_VALUE;
// Note:
// If either value is NaN, the exponent bits are set to (2047L << 52) and the
// distance above 0.0 is always above an integer ULP error. So omit the test
// for NaN and return directly.
// Avoid possible overflow from adding the deltas by splitting the comparison
return deltaPlus <= maxUlps && deltaMinus <= (maxUlps - deltaPlus);
}
// Numbers have same sign, there is no risk of overflow.
return Math.abs(xInt - yInt) <= maxUlps && !Double.isNaN(x) && !Double.isNaN(y);
}
/** start and end are BOTH inclusive */
public static int nextInt(Random r, int start, int end) {
return RandomNumbers.randomIntBetween(r, start, end);

View File

@ -0,0 +1,136 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.tests.util;
import static org.apache.lucene.tests.util.TestUtil.doubleUlpEquals;
import static org.apache.lucene.tests.util.TestUtil.floatUlpEquals;
/**
* Tests for floating point equality utility methods.
*
* <p>Adapted from org.apache.commons.numbers.core.PrecisionTest
*
* <p>github: https://github.com/apache/commons-numbers release 1.2
*/
public class TestFloatingPointUlpEquality extends LuceneTestCase {
public static void testDoubleEqualsWithAllowedUlps() {
assertTrue(doubleUlpEquals(0.0, -0.0, 1));
assertTrue(doubleUlpEquals(Double.MIN_VALUE, -0.0, 1));
assertFalse(doubleUlpEquals(Double.MIN_VALUE, -Double.MIN_VALUE, 1));
assertTrue(doubleUlpEquals(1.0, 1 + Math.ulp(1d), 1));
assertFalse(doubleUlpEquals(1.0, 1 + 2 * Math.ulp(1d), 1));
for (double value : new double[] {153.0, -128.0, 0.0, 1.0}) {
assertTrue(doubleUlpEquals(value, value, 1));
assertTrue(doubleUlpEquals(value, Math.nextUp(value), 1));
assertFalse(doubleUlpEquals(value, Math.nextUp(Math.nextUp(value)), 1));
assertTrue(doubleUlpEquals(value, Math.nextDown(value), 1));
assertFalse(doubleUlpEquals(value, Math.nextDown(Math.nextDown(value)), 1));
assertFalse(doubleUlpEquals(value, value, -1));
assertFalse(doubleUlpEquals(value, Math.nextUp(value), 0));
assertTrue(doubleUlpEquals(value, Math.nextUp(Math.nextUp(value)), 2));
assertTrue(doubleUlpEquals(value, Math.nextDown(Math.nextDown(value)), 2));
}
assertTrue(doubleUlpEquals(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 1));
assertTrue(doubleUlpEquals(Double.MAX_VALUE, Double.POSITIVE_INFINITY, 1));
assertTrue(doubleUlpEquals(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 1));
assertTrue(doubleUlpEquals(-Double.MAX_VALUE, Double.NEGATIVE_INFINITY, 1));
assertFalse(doubleUlpEquals(Double.NaN, Double.NaN, 1));
assertFalse(doubleUlpEquals(Double.NaN, Double.NaN, 0));
assertFalse(doubleUlpEquals(Double.NaN, 0, 0));
assertFalse(doubleUlpEquals(0, Double.NaN, 0));
assertFalse(doubleUlpEquals(Double.NaN, Double.POSITIVE_INFINITY, 0));
assertFalse(doubleUlpEquals(Double.NaN, Double.NEGATIVE_INFINITY, 0));
// Create a NaN representation 1 ulp above infinity.
// This hits not equal coverage for binary representations within the ulp but using NaN.
final double nan =
Double.longBitsToDouble(Double.doubleToRawLongBits(Double.POSITIVE_INFINITY) + 1);
assertFalse(doubleUlpEquals(nan, Double.POSITIVE_INFINITY, 1));
assertFalse(doubleUlpEquals(Double.POSITIVE_INFINITY, nan, 1));
assertFalse(
doubleUlpEquals(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, Integer.MAX_VALUE));
assertFalse(doubleUlpEquals(0, Double.MAX_VALUE, Integer.MAX_VALUE));
// Here: f == 5.304989477E-315;
// it is used to test the maximum ULP distance between two opposite sign numbers.
final double f = Double.longBitsToDouble(1L << 30);
assertFalse(doubleUlpEquals(-f, f, Integer.MAX_VALUE));
assertTrue(doubleUlpEquals(-f, Math.nextDown(f), Integer.MAX_VALUE));
assertTrue(doubleUlpEquals(Math.nextUp(-f), f, Integer.MAX_VALUE));
// Maximum distance between same sign numbers.
final double f2 = Double.longBitsToDouble((1L << 30) + Integer.MAX_VALUE);
assertTrue(doubleUlpEquals(f, f2, Integer.MAX_VALUE));
assertFalse(doubleUlpEquals(f, Math.nextUp(f2), Integer.MAX_VALUE));
assertFalse(doubleUlpEquals(Math.nextDown(f), f2, Integer.MAX_VALUE));
}
public static void testFloatEqualsWithAllowedUlps() {
assertTrue(floatUlpEquals(0.0f, -0.0f, (short) 1));
assertTrue(floatUlpEquals(Float.MIN_VALUE, -0.0f, (short) 1));
assertFalse(floatUlpEquals(Float.MIN_VALUE, -Float.MIN_VALUE, (short) 1));
assertTrue(floatUlpEquals(1.0f, 1f + Math.ulp(1f), (short) 1));
assertFalse(floatUlpEquals(1.0f, 1f + 2 * Math.ulp(1f), (short) 1));
for (float value : new float[] {153.0f, -128.0f, 0.0f, 1.0f}) {
assertTrue(floatUlpEquals(value, value, (short) 1));
assertTrue(floatUlpEquals(value, Math.nextUp(value), (short) 1));
assertFalse(floatUlpEquals(value, Math.nextUp(Math.nextUp(value)), (short) 1));
assertTrue(floatUlpEquals(value, Math.nextDown(value), (short) 1));
assertFalse(floatUlpEquals(value, Math.nextDown(Math.nextDown(value)), (short) 1));
assertFalse(floatUlpEquals(value, value, (short) -1));
assertFalse(floatUlpEquals(value, Math.nextUp(value), (short) 0));
assertTrue(floatUlpEquals(value, Math.nextUp(Math.nextUp(value)), (short) 2));
assertTrue(floatUlpEquals(value, Math.nextDown(Math.nextDown(value)), (short) 2));
}
assertTrue(floatUlpEquals(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, (short) 1));
assertTrue(floatUlpEquals(Float.MAX_VALUE, Float.POSITIVE_INFINITY, (short) 1));
assertTrue(floatUlpEquals(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, (short) 1));
assertTrue(floatUlpEquals(-Float.MAX_VALUE, Float.NEGATIVE_INFINITY, (short) 1));
assertFalse(floatUlpEquals(Float.NaN, Float.NaN, (short) 1));
assertFalse(floatUlpEquals(Float.NaN, Float.NaN, (short) 0));
assertFalse(floatUlpEquals(Float.NaN, 0, (short) 0));
assertFalse(floatUlpEquals(0, Float.NaN, (short) 0));
assertFalse(floatUlpEquals(Float.NaN, Float.POSITIVE_INFINITY, (short) 0));
assertFalse(floatUlpEquals(Float.NaN, Float.NEGATIVE_INFINITY, (short) 0));
assertFalse(floatUlpEquals(Float.NEGATIVE_INFINITY, Float.POSITIVE_INFINITY, (short) 32767));
// The 31-bit integer specification of the max positive ULP allows an extremely
// large range of a 23-bit mantissa and 8-bit exponent
assertTrue(floatUlpEquals(0, Float.MAX_VALUE, (short) 32767));
// Here: f == 2;
// it is used to test the maximum ULP distance between two opposite sign numbers.
final float f = Float.intBitsToFloat(1 << 30);
assertFalse(floatUlpEquals(-f, f, (short) 32767));
assertTrue(floatUlpEquals(-f, Math.nextDown(f), (short) 32767));
assertTrue(floatUlpEquals(Math.nextUp(-f), f, (short) 32767));
// Maximum distance between same sign finite numbers is not possible as the upper
// limit is NaN. Check that it is not equal to anything.
final float f2 = Float.intBitsToFloat(Integer.MAX_VALUE);
assertEquals(Double.NaN, f2, 0);
assertFalse(floatUlpEquals(f2, Float.MAX_VALUE, (short) 32767));
assertFalse(floatUlpEquals(f2, 0, (short) 32767));
}
}