mirror of https://github.com/apache/lucene.git
LUCENE-8223 - remove time dependent checks in performance test
This commit is contained in:
parent
ecb94ba442
commit
b3cf209f6f
|
@ -96,22 +96,15 @@ public class BM25NBClassifierTest extends ClassificationTestBase<BytesRef> {
|
|||
MockAnalyzer analyzer = new MockAnalyzer(random());
|
||||
LeafReader leafReader = getRandomIndex(analyzer, 100);
|
||||
try {
|
||||
long trainStart = System.currentTimeMillis();
|
||||
BM25NBClassifier classifier = new BM25NBClassifier(leafReader,
|
||||
analyzer, null, categoryFieldName, textFieldName);
|
||||
long trainEnd = System.currentTimeMillis();
|
||||
long trainTime = trainEnd - trainStart;
|
||||
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
|
||||
|
||||
long evaluationStart = System.currentTimeMillis();
|
||||
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
|
||||
classifier, categoryFieldName, textFieldName, -1);
|
||||
assertNotNull(confusionMatrix);
|
||||
long evaluationEnd = System.currentTimeMillis();
|
||||
long evaluationTime = evaluationEnd - evaluationStart;
|
||||
assertTrue("evaluation took more than 2m: " + evaluationTime / 1000 + "s", evaluationTime < 120000);
|
||||
|
||||
double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
|
||||
assertTrue("avg classification time: " + avgClassificationTime, 5000 > avgClassificationTime);
|
||||
assertTrue(avgClassificationTime >= 0);
|
||||
|
||||
double f1 = confusionMatrix.getF1Measure();
|
||||
assertTrue(f1 >= 0d);
|
||||
|
|
|
@ -86,21 +86,14 @@ public class BooleanPerceptronClassifierTest extends ClassificationTestBase<Bool
|
|||
MockAnalyzer analyzer = new MockAnalyzer(random());
|
||||
LeafReader leafReader = getRandomIndex(analyzer, 100);
|
||||
try {
|
||||
long trainStart = System.currentTimeMillis();
|
||||
BooleanPerceptronClassifier classifier = new BooleanPerceptronClassifier(leafReader, analyzer, null, 1, null, booleanFieldName, textFieldName);
|
||||
long trainEnd = System.currentTimeMillis();
|
||||
long trainTime = trainEnd - trainStart;
|
||||
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
|
||||
|
||||
long evaluationStart = System.currentTimeMillis();
|
||||
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
|
||||
classifier, booleanFieldName, textFieldName, -1);
|
||||
assertNotNull(confusionMatrix);
|
||||
long evaluationEnd = System.currentTimeMillis();
|
||||
long evaluationTime = evaluationEnd - evaluationStart;
|
||||
assertTrue("evaluation took more than 1m: " + evaluationTime / 1000 + "s", evaluationTime < 60000);
|
||||
|
||||
double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
|
||||
assertTrue(5000 > avgClassificationTime);
|
||||
assertTrue(avgClassificationTime >= 0);
|
||||
|
||||
double f1 = confusionMatrix.getF1Measure();
|
||||
assertTrue(f1 >= 0d);
|
||||
|
|
|
@ -95,22 +95,15 @@ public class CachingNaiveBayesClassifierTest extends ClassificationTestBase<Byte
|
|||
MockAnalyzer analyzer = new MockAnalyzer(random());
|
||||
LeafReader leafReader = getRandomIndex(analyzer, 100);
|
||||
try {
|
||||
long trainStart = System.currentTimeMillis();
|
||||
CachingNaiveBayesClassifier simpleNaiveBayesClassifier = new CachingNaiveBayesClassifier(leafReader,
|
||||
analyzer, null, categoryFieldName, textFieldName);
|
||||
long trainEnd = System.currentTimeMillis();
|
||||
long trainTime = trainEnd - trainStart;
|
||||
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
|
||||
|
||||
long evaluationStart = System.currentTimeMillis();
|
||||
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
|
||||
simpleNaiveBayesClassifier, categoryFieldName, textFieldName, -1);
|
||||
assertNotNull(confusionMatrix);
|
||||
long evaluationEnd = System.currentTimeMillis();
|
||||
long evaluationTime = evaluationEnd - evaluationStart;
|
||||
assertTrue("evaluation took more than 1m: " + evaluationTime / 1000 + "s", evaluationTime < 60000);
|
||||
|
||||
double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
|
||||
assertTrue(5000 > avgClassificationTime);
|
||||
assertTrue(avgClassificationTime >= 0);
|
||||
double accuracy = confusionMatrix.getAccuracy();
|
||||
assertTrue(accuracy >= 0d);
|
||||
assertTrue(accuracy <= 1d);
|
||||
|
|
|
@ -69,21 +69,15 @@ public class KNearestFuzzyClassifierTest extends ClassificationTestBase<BytesRef
|
|||
MockAnalyzer analyzer = new MockAnalyzer(random());
|
||||
LeafReader leafReader = getRandomIndex(analyzer, 100);
|
||||
try {
|
||||
long trainStart = System.currentTimeMillis();
|
||||
Classifier<BytesRef> classifier = new KNearestFuzzyClassifier(leafReader, null, analyzer, null, 3, categoryFieldName, textFieldName);
|
||||
long trainEnd = System.currentTimeMillis();
|
||||
long trainTime = trainEnd - trainStart;
|
||||
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
|
||||
|
||||
long evaluationStart = System.currentTimeMillis();
|
||||
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
|
||||
classifier, categoryFieldName, textFieldName, -1);
|
||||
assertNotNull(confusionMatrix);
|
||||
long evaluationEnd = System.currentTimeMillis();
|
||||
long evaluationTime = evaluationEnd - evaluationStart;
|
||||
assertTrue("evaluation took more than 2m: " + evaluationTime / 1000 + "s", evaluationTime < 120000);
|
||||
|
||||
double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
|
||||
assertTrue(5000 > avgClassificationTime);
|
||||
assertTrue(avgClassificationTime >= 0);
|
||||
|
||||
double accuracy = confusionMatrix.getAccuracy();
|
||||
assertTrue(accuracy >= 0d);
|
||||
assertTrue(accuracy <= 1d);
|
||||
|
|
|
@ -125,22 +125,16 @@ public class KNearestNeighborClassifierTest extends ClassificationTestBase<Bytes
|
|||
MockAnalyzer analyzer = new MockAnalyzer(random());
|
||||
LeafReader leafReader = getRandomIndex(analyzer, 100);
|
||||
try {
|
||||
long trainStart = System.currentTimeMillis();
|
||||
KNearestNeighborClassifier kNearestNeighborClassifier = new KNearestNeighborClassifier(leafReader, null,
|
||||
analyzer, null, 1, 1, 1, categoryFieldName, textFieldName);
|
||||
long trainEnd = System.currentTimeMillis();
|
||||
long trainTime = trainEnd - trainStart;
|
||||
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
|
||||
|
||||
long evaluationStart = System.currentTimeMillis();
|
||||
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
|
||||
kNearestNeighborClassifier, categoryFieldName, textFieldName, -1);
|
||||
assertNotNull(confusionMatrix);
|
||||
long evaluationEnd = System.currentTimeMillis();
|
||||
long evaluationTime = evaluationEnd - evaluationStart;
|
||||
assertTrue("evaluation took more than 2m: " + evaluationTime / 1000 + "s", evaluationTime < 120000);
|
||||
|
||||
double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
|
||||
assertTrue(5000 > avgClassificationTime);
|
||||
assertTrue(avgClassificationTime >= 0);
|
||||
|
||||
double accuracy = confusionMatrix.getAccuracy();
|
||||
assertTrue(accuracy >= 0d);
|
||||
assertTrue(accuracy <= 1d);
|
||||
|
|
|
@ -98,22 +98,15 @@ public class SimpleNaiveBayesClassifierTest extends ClassificationTestBase<Bytes
|
|||
MockAnalyzer analyzer = new MockAnalyzer(random());
|
||||
LeafReader leafReader = getRandomIndex(analyzer, 100);
|
||||
try {
|
||||
long trainStart = System.currentTimeMillis();
|
||||
SimpleNaiveBayesClassifier simpleNaiveBayesClassifier = new SimpleNaiveBayesClassifier(leafReader,
|
||||
analyzer, null, categoryFieldName, textFieldName);
|
||||
long trainEnd = System.currentTimeMillis();
|
||||
long trainTime = trainEnd - trainStart;
|
||||
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
|
||||
|
||||
long evaluationStart = System.currentTimeMillis();
|
||||
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
|
||||
simpleNaiveBayesClassifier, categoryFieldName, textFieldName, -1);
|
||||
assertNotNull(confusionMatrix);
|
||||
long evaluationEnd = System.currentTimeMillis();
|
||||
long evaluationTime = evaluationEnd - evaluationStart;
|
||||
assertTrue("evaluation took more than 2m: " + evaluationTime / 1000 + "s", evaluationTime < 120000);
|
||||
|
||||
double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
|
||||
assertTrue("avg classification time: " + avgClassificationTime, 5000 > avgClassificationTime);
|
||||
assertTrue(avgClassificationTime >= 0);
|
||||
|
||||
double f1 = confusionMatrix.getF1Measure();
|
||||
assertTrue(f1 >= 0d);
|
||||
|
|
Loading…
Reference in New Issue