LUCENE-8223 - remove time dependent checks in performance test

This commit is contained in:
Tommaso Teofili 2018-03-27 10:14:55 +02:00
parent ecb94ba442
commit b3cf209f6f
6 changed files with 14 additions and 54 deletions

View File

@ -96,22 +96,15 @@ public class BM25NBClassifierTest extends ClassificationTestBase<BytesRef> {
MockAnalyzer analyzer = new MockAnalyzer(random()); MockAnalyzer analyzer = new MockAnalyzer(random());
LeafReader leafReader = getRandomIndex(analyzer, 100); LeafReader leafReader = getRandomIndex(analyzer, 100);
try { try {
long trainStart = System.currentTimeMillis();
BM25NBClassifier classifier = new BM25NBClassifier(leafReader, BM25NBClassifier classifier = new BM25NBClassifier(leafReader,
analyzer, null, categoryFieldName, textFieldName); analyzer, null, categoryFieldName, textFieldName);
long trainEnd = System.currentTimeMillis();
long trainTime = trainEnd - trainStart;
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
long evaluationStart = System.currentTimeMillis();
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader, ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
classifier, categoryFieldName, textFieldName, -1); classifier, categoryFieldName, textFieldName, -1);
assertNotNull(confusionMatrix); assertNotNull(confusionMatrix);
long evaluationEnd = System.currentTimeMillis();
long evaluationTime = evaluationEnd - evaluationStart;
assertTrue("evaluation took more than 2m: " + evaluationTime / 1000 + "s", evaluationTime < 120000);
double avgClassificationTime = confusionMatrix.getAvgClassificationTime(); double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
assertTrue("avg classification time: " + avgClassificationTime, 5000 > avgClassificationTime); assertTrue(avgClassificationTime >= 0);
double f1 = confusionMatrix.getF1Measure(); double f1 = confusionMatrix.getF1Measure();
assertTrue(f1 >= 0d); assertTrue(f1 >= 0d);

View File

@ -86,21 +86,14 @@ public class BooleanPerceptronClassifierTest extends ClassificationTestBase<Bool
MockAnalyzer analyzer = new MockAnalyzer(random()); MockAnalyzer analyzer = new MockAnalyzer(random());
LeafReader leafReader = getRandomIndex(analyzer, 100); LeafReader leafReader = getRandomIndex(analyzer, 100);
try { try {
long trainStart = System.currentTimeMillis();
BooleanPerceptronClassifier classifier = new BooleanPerceptronClassifier(leafReader, analyzer, null, 1, null, booleanFieldName, textFieldName); BooleanPerceptronClassifier classifier = new BooleanPerceptronClassifier(leafReader, analyzer, null, 1, null, booleanFieldName, textFieldName);
long trainEnd = System.currentTimeMillis();
long trainTime = trainEnd - trainStart;
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
long evaluationStart = System.currentTimeMillis();
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader, ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
classifier, booleanFieldName, textFieldName, -1); classifier, booleanFieldName, textFieldName, -1);
assertNotNull(confusionMatrix); assertNotNull(confusionMatrix);
long evaluationEnd = System.currentTimeMillis();
long evaluationTime = evaluationEnd - evaluationStart;
assertTrue("evaluation took more than 1m: " + evaluationTime / 1000 + "s", evaluationTime < 60000);
double avgClassificationTime = confusionMatrix.getAvgClassificationTime(); double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
assertTrue(5000 > avgClassificationTime); assertTrue(avgClassificationTime >= 0);
double f1 = confusionMatrix.getF1Measure(); double f1 = confusionMatrix.getF1Measure();
assertTrue(f1 >= 0d); assertTrue(f1 >= 0d);

View File

@ -95,22 +95,15 @@ public class CachingNaiveBayesClassifierTest extends ClassificationTestBase<Byte
MockAnalyzer analyzer = new MockAnalyzer(random()); MockAnalyzer analyzer = new MockAnalyzer(random());
LeafReader leafReader = getRandomIndex(analyzer, 100); LeafReader leafReader = getRandomIndex(analyzer, 100);
try { try {
long trainStart = System.currentTimeMillis();
CachingNaiveBayesClassifier simpleNaiveBayesClassifier = new CachingNaiveBayesClassifier(leafReader, CachingNaiveBayesClassifier simpleNaiveBayesClassifier = new CachingNaiveBayesClassifier(leafReader,
analyzer, null, categoryFieldName, textFieldName); analyzer, null, categoryFieldName, textFieldName);
long trainEnd = System.currentTimeMillis();
long trainTime = trainEnd - trainStart;
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
long evaluationStart = System.currentTimeMillis();
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader, ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
simpleNaiveBayesClassifier, categoryFieldName, textFieldName, -1); simpleNaiveBayesClassifier, categoryFieldName, textFieldName, -1);
assertNotNull(confusionMatrix); assertNotNull(confusionMatrix);
long evaluationEnd = System.currentTimeMillis();
long evaluationTime = evaluationEnd - evaluationStart;
assertTrue("evaluation took more than 1m: " + evaluationTime / 1000 + "s", evaluationTime < 60000);
double avgClassificationTime = confusionMatrix.getAvgClassificationTime(); double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
assertTrue(5000 > avgClassificationTime); assertTrue(avgClassificationTime >= 0);
double accuracy = confusionMatrix.getAccuracy(); double accuracy = confusionMatrix.getAccuracy();
assertTrue(accuracy >= 0d); assertTrue(accuracy >= 0d);
assertTrue(accuracy <= 1d); assertTrue(accuracy <= 1d);

View File

@ -69,21 +69,15 @@ public class KNearestFuzzyClassifierTest extends ClassificationTestBase<BytesRef
MockAnalyzer analyzer = new MockAnalyzer(random()); MockAnalyzer analyzer = new MockAnalyzer(random());
LeafReader leafReader = getRandomIndex(analyzer, 100); LeafReader leafReader = getRandomIndex(analyzer, 100);
try { try {
long trainStart = System.currentTimeMillis();
Classifier<BytesRef> classifier = new KNearestFuzzyClassifier(leafReader, null, analyzer, null, 3, categoryFieldName, textFieldName); Classifier<BytesRef> classifier = new KNearestFuzzyClassifier(leafReader, null, analyzer, null, 3, categoryFieldName, textFieldName);
long trainEnd = System.currentTimeMillis();
long trainTime = trainEnd - trainStart;
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
long evaluationStart = System.currentTimeMillis();
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader, ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
classifier, categoryFieldName, textFieldName, -1); classifier, categoryFieldName, textFieldName, -1);
assertNotNull(confusionMatrix); assertNotNull(confusionMatrix);
long evaluationEnd = System.currentTimeMillis();
long evaluationTime = evaluationEnd - evaluationStart;
assertTrue("evaluation took more than 2m: " + evaluationTime / 1000 + "s", evaluationTime < 120000);
double avgClassificationTime = confusionMatrix.getAvgClassificationTime(); double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
assertTrue(5000 > avgClassificationTime); assertTrue(avgClassificationTime >= 0);
double accuracy = confusionMatrix.getAccuracy(); double accuracy = confusionMatrix.getAccuracy();
assertTrue(accuracy >= 0d); assertTrue(accuracy >= 0d);
assertTrue(accuracy <= 1d); assertTrue(accuracy <= 1d);

View File

@ -125,22 +125,16 @@ public class KNearestNeighborClassifierTest extends ClassificationTestBase<Bytes
MockAnalyzer analyzer = new MockAnalyzer(random()); MockAnalyzer analyzer = new MockAnalyzer(random());
LeafReader leafReader = getRandomIndex(analyzer, 100); LeafReader leafReader = getRandomIndex(analyzer, 100);
try { try {
long trainStart = System.currentTimeMillis();
KNearestNeighborClassifier kNearestNeighborClassifier = new KNearestNeighborClassifier(leafReader, null, KNearestNeighborClassifier kNearestNeighborClassifier = new KNearestNeighborClassifier(leafReader, null,
analyzer, null, 1, 1, 1, categoryFieldName, textFieldName); analyzer, null, 1, 1, 1, categoryFieldName, textFieldName);
long trainEnd = System.currentTimeMillis();
long trainTime = trainEnd - trainStart;
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
long evaluationStart = System.currentTimeMillis();
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader, ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
kNearestNeighborClassifier, categoryFieldName, textFieldName, -1); kNearestNeighborClassifier, categoryFieldName, textFieldName, -1);
assertNotNull(confusionMatrix); assertNotNull(confusionMatrix);
long evaluationEnd = System.currentTimeMillis();
long evaluationTime = evaluationEnd - evaluationStart;
assertTrue("evaluation took more than 2m: " + evaluationTime / 1000 + "s", evaluationTime < 120000);
double avgClassificationTime = confusionMatrix.getAvgClassificationTime(); double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
assertTrue(5000 > avgClassificationTime); assertTrue(avgClassificationTime >= 0);
double accuracy = confusionMatrix.getAccuracy(); double accuracy = confusionMatrix.getAccuracy();
assertTrue(accuracy >= 0d); assertTrue(accuracy >= 0d);
assertTrue(accuracy <= 1d); assertTrue(accuracy <= 1d);

View File

@ -98,22 +98,15 @@ public class SimpleNaiveBayesClassifierTest extends ClassificationTestBase<Bytes
MockAnalyzer analyzer = new MockAnalyzer(random()); MockAnalyzer analyzer = new MockAnalyzer(random());
LeafReader leafReader = getRandomIndex(analyzer, 100); LeafReader leafReader = getRandomIndex(analyzer, 100);
try { try {
long trainStart = System.currentTimeMillis();
SimpleNaiveBayesClassifier simpleNaiveBayesClassifier = new SimpleNaiveBayesClassifier(leafReader, SimpleNaiveBayesClassifier simpleNaiveBayesClassifier = new SimpleNaiveBayesClassifier(leafReader,
analyzer, null, categoryFieldName, textFieldName); analyzer, null, categoryFieldName, textFieldName);
long trainEnd = System.currentTimeMillis();
long trainTime = trainEnd - trainStart;
assertTrue("training took more than 10s: " + trainTime / 1000 + "s", trainTime < 10000);
long evaluationStart = System.currentTimeMillis();
ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader, ConfusionMatrixGenerator.ConfusionMatrix confusionMatrix = ConfusionMatrixGenerator.getConfusionMatrix(leafReader,
simpleNaiveBayesClassifier, categoryFieldName, textFieldName, -1); simpleNaiveBayesClassifier, categoryFieldName, textFieldName, -1);
assertNotNull(confusionMatrix); assertNotNull(confusionMatrix);
long evaluationEnd = System.currentTimeMillis();
long evaluationTime = evaluationEnd - evaluationStart;
assertTrue("evaluation took more than 2m: " + evaluationTime / 1000 + "s", evaluationTime < 120000);
double avgClassificationTime = confusionMatrix.getAvgClassificationTime(); double avgClassificationTime = confusionMatrix.getAvgClassificationTime();
assertTrue("avg classification time: " + avgClassificationTime, 5000 > avgClassificationTime); assertTrue(avgClassificationTime >= 0);
double f1 = confusionMatrix.getF1Measure(); double f1 = confusionMatrix.getF1Measure();
assertTrue(f1 >= 0d); assertTrue(f1 >= 0d);