Merge remote-tracking branch 'origin/master'

This commit is contained in:
Noble Paul 2016-05-24 10:39:25 +05:30
commit ba46eb7be4
11 changed files with 915 additions and 159 deletions

View File

@ -61,8 +61,12 @@ def getGitRev():
status = os.popen('git status').read().strip()
if 'nothing to commit, working directory clean' not in status:
raise RuntimeError('git clone is dirty:\n\n%s' % status)
branch = os.popen('git rev-parse --abbrev-ref HEAD').read().strip()
command = 'git log origin/%s..' % branch
unpushedCommits = os.popen(command).read().strip()
if len(unpushedCommits) > 0:
raise RuntimeError('There are unpushed commits - "%s" output is:\n\n%s' % (command, unpushedCommits))
# TODO: we should also detect unpushed changes here? Something like "git cherry -v origin/branch_5_5"?
print(' git clone is clean')
return os.popen('git rev-parse HEAD').read().strip()
@ -115,47 +119,6 @@ def prepare(root, version, gpgKeyID, gpgPassword):
print()
return rev
def push(version, root, rev, rcNum, username):
print('Push...')
dir = 'lucene-solr-%s-RC%d-rev%s' % (version, rcNum, rev)
s = os.popen('ssh %s@people.apache.org "ls -ld public_html/staging_area/%s" 2>&1' % (username, dir)).read()
if 'no such file or directory' not in s.lower():
print(' Remove old dir...')
run('ssh %s@people.apache.org "chmod -R u+rwX public_html/staging_area/%s; rm -rf public_html/staging_area/%s"' %
(username, dir, dir))
run('ssh %s@people.apache.org "mkdir -p public_html/staging_area/%s/lucene public_html/staging_area/%s/solr"' % \
(username, dir, dir))
print(' Lucene')
os.chdir('%s/lucene/dist' % root)
print(' zip...')
if os.path.exists('lucene.tar.bz2'):
os.remove('lucene.tar.bz2')
run('tar cjf lucene.tar.bz2 *')
print(' copy...')
run('scp lucene.tar.bz2 %s@people.apache.org:public_html/staging_area/%s/lucene' % (username, dir))
print(' unzip...')
run('ssh %s@people.apache.org "cd public_html/staging_area/%s/lucene; tar xjf lucene.tar.bz2; rm -f lucene.tar.bz2"' % (username, dir))
os.remove('lucene.tar.bz2')
print(' Solr')
os.chdir('%s/solr/package' % root)
print(' zip...')
if os.path.exists('solr.tar.bz2'):
os.remove('solr.tar.bz2')
run('tar cjf solr.tar.bz2 *')
print(' copy...')
run('scp solr.tar.bz2 %s@people.apache.org:public_html/staging_area/%s/solr' % (username, dir))
print(' unzip...')
run('ssh %s@people.apache.org "cd public_html/staging_area/%s/solr; tar xjf solr.tar.bz2; rm -f solr.tar.bz2"' % (username, dir))
os.remove('solr.tar.bz2')
print(' chmod...')
run('ssh %s@people.apache.org "chmod -R a+rX-w public_html/staging_area/%s"' % (username, dir))
print(' done!')
url = 'http://people.apache.org/~%s/staging_area/%s' % (username, dir)
return url
def pushLocal(version, root, rev, rcNum, localDir):
print('Push local [%s]...' % localDir)
os.makedirs(localDir)
@ -206,29 +169,23 @@ def read_version(path):
def parse_config():
epilogue = textwrap.dedent('''
Example usage for a Release Manager:
python3.2 -u buildAndPushRelease.py --push-remote mikemccand --sign 6E68DA61 --rc-num 1 /path/to/lucene_solr_4_7
python3 -u dev-tools/scripts/buildAndPushRelease.py --push-local /tmp/releases/6.0.1 --sign 6E68DA61 --rc-num 1
''')
description = 'Utility to build, push, and test a release.'
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--no-prepare', dest='prepare', default=True, action='store_false',
help='Use the already built release in the provided checkout')
parser.add_argument('--push-remote', metavar='USERNAME',
help='Push the release to people.apache.org for the given user')
parser.add_argument('--push-local', metavar='PATH',
help='Push the release to the local path')
parser.add_argument('--sign', metavar='KEYID',
help='Sign the release with the given gpg key')
parser.add_argument('--rc-num', metavar='NUM', type=int, default=1,
help='Release Candidate number, required')
parser.add_argument('--smoke-test', metavar='PATH',
help='Run the smoker tester on the release in the given directory')
parser.add_argument('root', metavar='checkout_path',
help='Root of SVN checkout for lucene-solr')
help='Release Candidate number. Default: 1')
parser.add_argument('--root', metavar='PATH', default='.',
help='Root of Git working tree for lucene-solr. Default: "." (the current directory)')
config = parser.parse_args()
if config.push_remote is not None and config.push_local is not None:
parser.error('Cannot specify --push-remote and --push-local together')
if not config.prepare and config.sign:
parser.error('Cannot sign already built release')
if config.push_local is not None and os.path.exists(config.push_local):
@ -236,8 +193,13 @@ def parse_config():
if config.rc_num <= 0:
parser.error('Release Candidate number must be a positive integer')
if not os.path.isdir(config.root):
# TODO: add additional git check to ensure dir is a real lucene-solr checkout
parser.error('Root path is not a valid lucene-solr checkout')
parser.error('Root path "%s" is not a directory' % config.root)
cwd = os.getcwd()
os.chdir(config.root)
config.root = os.getcwd() # Absolutize root dir
if os.system('git rev-parse') or 3 != len([d for d in ('dev-tools','lucene','solr') if os.path.isdir(d)]):
parser.error('Root path "%s" is not a valid lucene-solr checkout' % config.root)
os.chdir(cwd)
config.version = read_version(config.root)
print('Building version: %s' % config.version)
@ -252,7 +214,16 @@ def parse_config():
return config
def check_cmdline_tools(): # Fail fast if there are cmdline tool problems
if os.system('git --version >/dev/null 2>/dev/null'):
raise RuntimeError('"git --version" returned a non-zero exit code.')
antVersion = os.popen('ant -version').read().strip()
if not antVersion.startswith('Apache Ant(TM) version 1.8'):
raise RuntimeError('ant version is not 1.8.X: "%s"' % antVersion)
def main():
check_cmdline_tools()
c = parse_config()
if c.prepare:
@ -261,19 +232,17 @@ def main():
os.chdir(root)
rev = open('rev.txt', encoding='UTF-8').read()
if c.push_remote:
url = push(c.version, c.root, rev, c.rc_num, c.push_remote)
elif c.push_local:
if c.push_local:
url = pushLocal(c.version, c.root, rev, c.rc_num, c.push_local)
else:
url = None
if url is not None:
print(' URL: %s' % url)
print('Next set the PYTHON_EXEC env var and you can run the smoker tester:')
p = re.compile("(.*)\/")
print('Next run the smoker tester:')
p = re.compile(".*/")
m = p.match(sys.argv[0])
print(' $PYTHON_EXEC %ssmokeTestRelease.py %s' % (m.group(), url))
print('%s -u %ssmokeTestRelease.py %s' % (sys.executable, m.group(), url))
if __name__ == '__main__':
try:

View File

@ -82,8 +82,9 @@ Optimizations
* LUCENE-7237: LRUQueryCache now prefers returning an uncached Scorer than
waiting on a lock. (Adrien Grand)
* LUCENE-7261, LUCENE-7262, LUCENE-7264: Speed up DocIdSetBuilder (which is used
by TermsQuery, multi-term queries and point queries). (Adrien Grand)
* LUCENE-7261, LUCENE-7262, LUCENE-7264, LUCENE-7258: Speed up DocIdSetBuilder
(which is used by TermsQuery, multi-term queries and several point queries).
(Adrien Grand, Jeff Wartes, David Smiley)
Bug Fixes

View File

@ -17,7 +17,9 @@
package org.apache.lucene.util;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.apache.lucene.index.PointValues;
import org.apache.lucene.index.Terms;
@ -56,13 +58,32 @@ public final class DocIdSetBuilder {
}
}
private class BufferAdder extends BulkAdder {
private static class Buffer {
int[] array;
int length;
Buffer(int length) {
this.array = new int[length];
this.length = 0;
}
Buffer(int[] array, int length) {
this.array = array;
this.length = length;
}
}
private static class BufferAdder extends BulkAdder {
final Buffer buffer;
BufferAdder(Buffer buffer) {
this.buffer = buffer;
}
@Override
public void add(int doc) {
buffer[bufferSize++] = doc;
buffer.array[buffer.length++] = doc;
}
}
private final int maxDoc;
@ -71,13 +92,13 @@ public final class DocIdSetBuilder {
final boolean multivalued;
final double numValuesPerDoc;
private int[] buffer;
private int bufferSize;
private List<Buffer> buffers = new ArrayList<>();
private int totalAllocated; // accumulated size of the allocated buffers
private FixedBitSet bitSet;
private long counter = -1;
private BulkAdder adder = new BufferAdder();
private BulkAdder adder;
/**
* Create a builder that can contain doc IDs between {@code 0} and {@code maxDoc}.
@ -118,67 +139,30 @@ public final class DocIdSetBuilder {
// of using a full bitset even for quite sparse data
this.threshold = maxDoc >>> 7;
this.buffer = new int[0];
this.bufferSize = 0;
this.bitSet = null;
}
private void upgradeToBitSet() {
assert bitSet == null;
bitSet = new FixedBitSet(maxDoc);
for (int i = 0; i < bufferSize; ++i) {
bitSet.set(buffer[i]);
}
counter = this.bufferSize;
this.buffer = null;
this.bufferSize = 0;
this.adder = new FixedBitSetAdder(bitSet);
}
/** Grows the buffer to at least minSize, but never larger than threshold. */
private void growBuffer(int minSize) {
assert minSize < threshold;
if (buffer.length < minSize) {
int nextSize = Math.min(threshold, ArrayUtil.oversize(minSize, Integer.BYTES));
buffer = Arrays.copyOf(buffer, nextSize);
}
}
/**
* Add the content of the provided {@link DocIdSetIterator} to this builder.
* NOTE: if you need to build a {@link DocIdSet} out of a single
* {@link DocIdSetIterator}, you should rather use {@link RoaringDocIdSet.Builder}.
*/
public void add(DocIdSetIterator iter) throws IOException {
grow((int) Math.min(Integer.MAX_VALUE, iter.cost()));
if (bitSet != null) {
bitSet.or(iter);
} else {
while (true) {
assert buffer.length <= threshold;
final int end = buffer.length;
for (int i = bufferSize; i < end; ++i) {
final int doc = iter.nextDoc();
if (doc == DocIdSetIterator.NO_MORE_DOCS) {
bufferSize = i;
return;
}
buffer[bufferSize++] = doc;
int cost = (int) Math.min(Integer.MAX_VALUE, iter.cost());
BulkAdder adder = grow(cost);
for (int i = 0; i < cost; ++i) {
int doc = iter.nextDoc();
if (doc == DocIdSetIterator.NO_MORE_DOCS) {
return;
}
bufferSize = end;
if (bufferSize + 1 >= threshold) {
break;
adder.add(doc);
}
growBuffer(bufferSize+1);
}
upgradeToBitSet();
for (int doc = iter.nextDoc(); doc != DocIdSetIterator.NO_MORE_DOCS; doc = iter.nextDoc()) {
bitSet.set(doc);
}
grow(1).add(doc);
}
}
@ -188,9 +172,8 @@ public final class DocIdSetBuilder {
*/
public BulkAdder grow(int numDocs) {
if (bitSet == null) {
final long newLength = (long) bufferSize + numDocs;
if (newLength < threshold) {
growBuffer((int) newLength);
if ((long) totalAllocated + numDocs <= threshold) {
ensureBufferCapacity(numDocs);
} else {
upgradeToBitSet();
counter += numDocs;
@ -201,6 +184,131 @@ public final class DocIdSetBuilder {
return adder;
}
private void ensureBufferCapacity(int numDocs) {
if (buffers.isEmpty()) {
addBuffer(additionalCapacity(numDocs));
return;
}
Buffer current = buffers.get(buffers.size() - 1);
if (current.array.length - current.length >= numDocs) {
// current buffer is large enough
return;
}
if (current.length < current.array.length - (current.array.length >>> 3)) {
// current buffer is less than 7/8 full, resize rather than waste space
growBuffer(current, additionalCapacity(numDocs));
} else {
addBuffer(additionalCapacity(numDocs));
}
}
private int additionalCapacity(int numDocs) {
// exponential growth: the new array has a size equal to the sum of what
// has been allocated so far
int c = totalAllocated;
// but is also >= numDocs + 1 so that we can store the next batch of docs
// (plus an empty slot so that we are more likely to reuse the array in build())
c = Math.max(numDocs + 1, c);
// avoid cold starts
c = Math.max(32, c);
// do not go beyond the threshold
c = Math.min(threshold - totalAllocated, c);
return c;
}
private Buffer addBuffer(int len) {
Buffer buffer = new Buffer(len);
buffers.add(buffer);
adder = new BufferAdder(buffer);
totalAllocated += buffer.array.length;
return buffer;
}
private void growBuffer(Buffer buffer, int additionalCapacity) {
buffer.array = Arrays.copyOf(buffer.array, buffer.array.length + additionalCapacity);
totalAllocated += additionalCapacity;
}
private void upgradeToBitSet() {
assert bitSet == null;
FixedBitSet bitSet = new FixedBitSet(maxDoc);
long counter = 0;
for (Buffer buffer : buffers) {
int[] array = buffer.array;
int length = buffer.length;
counter += length;
for (int i = 0; i < length; ++i) {
bitSet.set(array[i]);
}
}
this.bitSet = bitSet;
this.counter = counter;
this.buffers = null;
this.adder = new FixedBitSetAdder(bitSet);
}
/**
* Build a {@link DocIdSet} from the accumulated doc IDs.
*/
public DocIdSet build() {
try {
if (bitSet != null) {
assert counter >= 0;
final long cost = Math.round(counter / numValuesPerDoc);
return new BitDocIdSet(bitSet, cost);
} else {
Buffer concatenated = concat(buffers);
LSBRadixSorter sorter = new LSBRadixSorter();
sorter.sort(PackedInts.bitsRequired(maxDoc - 1), concatenated.array, concatenated.length);
final int l;
if (multivalued) {
l = dedup(concatenated.array, concatenated.length);
} else {
assert noDups(concatenated.array, concatenated.length);
l = concatenated.length;
}
assert l <= concatenated.length;
concatenated.array[l] = DocIdSetIterator.NO_MORE_DOCS;
return new IntArrayDocIdSet(concatenated.array, l);
}
} finally {
this.buffers = null;
this.bitSet = null;
}
}
/**
* Concatenate the buffers in any order, leaving at least one empty slot in
* the end
* NOTE: this method might reuse one of the arrays
*/
private static Buffer concat(List<Buffer> buffers) {
int totalLength = 0;
Buffer largestBuffer = null;
for (Buffer buffer : buffers) {
totalLength += buffer.length;
if (largestBuffer == null || buffer.array.length > largestBuffer.array.length) {
largestBuffer = buffer;
}
}
if (largestBuffer == null) {
return new Buffer(1);
}
int[] docs = largestBuffer.array;
if (docs.length < totalLength + 1) {
docs = Arrays.copyOf(docs, totalLength + 1);
}
totalLength = largestBuffer.length;
for (Buffer buffer : buffers) {
if (buffer != largestBuffer) {
System.arraycopy(buffer.array, 0, docs, totalLength, buffer.length);
totalLength += buffer.length;
}
}
return new Buffer(docs, totalLength);
}
private static int dedup(int[] arr, int length) {
if (length == 0) {
return 0;
@ -225,35 +333,4 @@ public final class DocIdSetBuilder {
return true;
}
/**
* Build a {@link DocIdSet} from the accumulated doc IDs.
*/
public DocIdSet build() {
try {
if (bitSet != null) {
assert counter >= 0;
final long cost = Math.round(counter / numValuesPerDoc);
return new BitDocIdSet(bitSet, cost);
} else {
LSBRadixSorter sorter = new LSBRadixSorter();
sorter.sort(PackedInts.bitsRequired(maxDoc - 1), buffer, bufferSize);
final int l;
if (multivalued) {
l = dedup(buffer, bufferSize);
} else {
assert noDups(buffer, bufferSize);
l = bufferSize;
}
assert l <= bufferSize;
buffer = ArrayUtil.grow(buffer, l + 1);
buffer[l] = DocIdSetIterator.NO_MORE_DOCS;
return new IntArrayDocIdSet(buffer, l);
}
} finally {
this.buffer = null;
this.bufferSize = 0;
this.bitSet = null;
}
}
}

View File

@ -0,0 +1,425 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.document;
import java.util.Arrays;
import java.util.Collection;
import org.apache.lucene.index.PointValues;
import org.apache.lucene.search.PointInSetQuery;
import org.apache.lucene.search.PointRangeQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.util.BytesRef;
/**
* An indexed {@code half-float} field for fast range filters. If you also
* need to store the value, you should add a separate {@link StoredField} instance.
* If you need doc values, you can store them in a {@link NumericDocValuesField}
* and use {@link #halfFloatToSortableShort} and
* {@link #sortableShortToHalfFloat} for encoding/decoding.
* <p>
* The API takes floats, but they will be encoded to half-floats before being
* indexed. In case the provided floats cannot be represented accurately as a
* half float, they will be rounded to the closest value that can be
* represented as a half float. In case of tie, values will be rounded to the
* value that has a zero as its least significant bit.
* <p>
* Finding all documents within an N-dimensional at search time is
* efficient. Multiple values for the same field in one document
* is allowed.
* <p>
* This field defines static factory methods for creating common queries:
* <ul>
* <li>{@link #newExactQuery(String, float)} for matching an exact 1D point.
* <li>{@link #newSetQuery(String, float...)} for matching a set of 1D values.
* <li>{@link #newRangeQuery(String, float, float)} for matching a 1D range.
* <li>{@link #newRangeQuery(String, float[], float[])} for matching points/ranges in n-dimensional space.
* </ul>
* @see PointValues
*/
public final class HalfFloatPoint extends Field {
/** The number of bytes used to represent a half-float value. */
public static final int BYTES = 2;
/**
* Return the first half float which is immediately greater than {@code v}.
* If the argument is {@link Float#NaN} then the return value is
* {@link Float#NaN}. If the argument is {@link Float#POSITIVE_INFINITY}
* then the return value is {@link Float#POSITIVE_INFINITY}.
*/
public static float nextUp(float v) {
if (Float.isNaN(v) || v == Float.POSITIVE_INFINITY) {
return v;
}
short s = halfFloatToSortableShort(v);
// if the float does not represent a half float accurately then just
// converting back might give us the value we are looking for
float r = sortableShortToHalfFloat(s);
if (r <= v) {
r = sortableShortToHalfFloat((short) (s + 1));
}
return r;
}
/**
* Return the first half float which is immediately smaller than {@code v}.
* If the argument is {@link Float#NaN} then the return value is
* {@link Float#NaN}. If the argument is {@link Float#NEGATIVE_INFINITY}
* then the return value is {@link Float#NEGATIVE_INFINITY}.
*/
public static float nextDown(float v) {
if (Float.isNaN(v) || v == Float.NEGATIVE_INFINITY) {
return v;
}
short s = halfFloatToSortableShort(v);
// if the float does not represent a half float accurately then just
// converting back might give us the value we are looking for
float r = sortableShortToHalfFloat(s);
if (r >= v) {
r = sortableShortToHalfFloat((short) (s - 1));
}
return r;
}
/** Convert a half-float to a short value that maintains ordering. */
public static short halfFloatToSortableShort(float v) {
return sortableShortBits(halfFloatToShortBits(v));
}
/** Convert short bits to a half-float value that maintains ordering. */
public static float sortableShortToHalfFloat(short bits) {
return shortBitsToHalfFloat(sortableShortBits(bits));
}
private static short sortableShortBits(short s) {
return (short) (s ^ (s >> 15) & 0x7fff);
}
static short halfFloatToShortBits(float v) {
int floatBits = Float.floatToIntBits(v);
int sign = floatBits >>> 31;
int exp = (floatBits >>> 23) & 0xff;
int mantissa = floatBits & 0x7fffff;
if (exp == 0xff) {
// preserve NaN and Infinity
exp = 0x1f;
mantissa >>>= (23 - 10);
} else if (exp == 0x00) {
// denormal float rounded to zero since even the largest denormal float
// cannot be represented as a half float
mantissa = 0;
} else {
exp = exp - 127 + 15;
if (exp >= 0x1f) {
// too large, make it infinity
exp = 0x1f;
mantissa = 0;
} else if (exp <= 0) {
// we need to convert to a denormal representation
int shift = 23 - 10 - exp + 1;
if (shift >= 32) {
// need a special case since shifts are mod 32...
exp = 0;
mantissa = 0;
} else {
// add the implicit bit
mantissa |= 0x800000;
mantissa = roundShift(mantissa, shift);
exp = mantissa >>> 10;
mantissa &= 0x3ff;
}
} else {
mantissa = roundShift((exp << 23) | mantissa, 23 - 10);
exp = mantissa >>> 10;
mantissa &= 0x3ff;
}
}
return (short) ((sign << 15) | (exp << 10) | mantissa);
}
// divide by 2^shift and round to the closest int
// round to even in case of tie
static int roundShift(int i, int shift) {
assert shift > 0;
i += 1 << (shift - 1); // add 2^(shift-1) so that we round rather than truncate
i -= (i >>> shift) & 1; // and subtract the shift-th bit so that we round to even in case of tie
return i >>> shift;
}
static float shortBitsToHalfFloat(short s) {
int sign = s >>> 15;
int exp = (s >>> 10) & 0x1f;
int mantissa = s & 0x3ff;
if (exp == 0x1f) {
// NaN or infinities
exp = 0xff;
mantissa <<= (23 - 10);
} else if (mantissa == 0 && exp == 0) {
// zero
} else {
if (exp == 0) {
// denormal half float becomes a normal float
int shift = Integer.numberOfLeadingZeros(mantissa) - (32 - 11);
mantissa = (mantissa << shift) & 0x3ff; // clear the implicit bit
exp = exp - shift + 1;
}
exp = exp + 127 - 15;
mantissa <<= (23 - 10);
}
return Float.intBitsToFloat((sign << 31) | (exp << 23) | mantissa);
}
static void shortToSortableBytes(short value, byte[] result, int offset) {
// Flip the sign bit, so negative shorts sort before positive shorts correctly:
value ^= 0x8000;
result[offset] = (byte) (value >> 8);
result[offset+1] = (byte) value;
}
static short sortableBytesToShort(byte[] encoded, int offset) {
short x = (short) (((encoded[offset] & 0xFF) << 8) | (encoded[offset+1] & 0xFF));
// Re-flip the sign bit to restore the original value:
return (short) (x ^ 0x8000);
}
private static FieldType getType(int numDims) {
FieldType type = new FieldType();
type.setDimensions(numDims, BYTES);
type.freeze();
return type;
}
@Override
public void setFloatValue(float value) {
setFloatValues(value);
}
/** Change the values of this field */
public void setFloatValues(float... point) {
if (type.pointDimensionCount() != point.length) {
throw new IllegalArgumentException("this field (name=" + name + ") uses " + type.pointDimensionCount() + " dimensions; cannot change to (incoming) " + point.length + " dimensions");
}
fieldsData = pack(point);
}
@Override
public void setBytesValue(BytesRef bytes) {
throw new IllegalArgumentException("cannot change value type from float to BytesRef");
}
@Override
public Number numericValue() {
if (type.pointDimensionCount() != 1) {
throw new IllegalStateException("this field (name=" + name + ") uses " + type.pointDimensionCount() + " dimensions; cannot convert to a single numeric value");
}
BytesRef bytes = (BytesRef) fieldsData;
assert bytes.length == BYTES;
return decodeDimension(bytes.bytes, bytes.offset);
}
private static BytesRef pack(float... point) {
if (point == null) {
throw new IllegalArgumentException("point must not be null");
}
if (point.length == 0) {
throw new IllegalArgumentException("point must not be 0 dimensions");
}
byte[] packed = new byte[point.length * BYTES];
for (int dim = 0; dim < point.length; dim++) {
encodeDimension(point[dim], packed, dim * BYTES);
}
return new BytesRef(packed);
}
/** Creates a new FloatPoint, indexing the
* provided N-dimensional float point.
*
* @param name field name
* @param point float[] value
* @throws IllegalArgumentException if the field name or value is null.
*/
public HalfFloatPoint(String name, float... point) {
super(name, pack(point), getType(point.length));
}
@Override
public String toString() {
StringBuilder result = new StringBuilder();
result.append(getClass().getSimpleName());
result.append(" <");
result.append(name);
result.append(':');
BytesRef bytes = (BytesRef) fieldsData;
for (int dim = 0; dim < type.pointDimensionCount(); dim++) {
if (dim > 0) {
result.append(',');
}
result.append(decodeDimension(bytes.bytes, bytes.offset + dim * BYTES));
}
result.append('>');
return result.toString();
}
// public helper methods (e.g. for queries)
/** Encode single float dimension */
public static void encodeDimension(float value, byte dest[], int offset) {
shortToSortableBytes(halfFloatToSortableShort(value), dest, offset);
}
/** Decode single float dimension */
public static float decodeDimension(byte value[], int offset) {
return sortableShortToHalfFloat(sortableBytesToShort(value, offset));
}
// static methods for generating queries
/**
* Create a query for matching an exact half-float value. It will be rounded
* to the closest half-float if {@code value} cannot be represented accurately
* as a half-float.
* <p>
* This is for simple one-dimension points, for multidimensional points use
* {@link #newRangeQuery(String, float[], float[])} instead.
*
* @param field field name. must not be {@code null}.
* @param value half-float value
* @throws IllegalArgumentException if {@code field} is null.
* @return a query matching documents with this exact value
*/
public static Query newExactQuery(String field, float value) {
return newRangeQuery(field, value, value);
}
/**
* Create a range query for half-float values. Bounds will be rounded to the
* closest half-float if they cannot be represented accurately as a
* half-float.
* <p>
* This is for simple one-dimension ranges, for multidimensional ranges use
* {@link #newRangeQuery(String, float[], float[])} instead.
* <p>
* You can have half-open ranges (which are in fact &lt;/&le; or &gt;/&ge; queries)
* by setting {@code lowerValue = Float.NEGATIVE_INFINITY} or {@code upperValue = Float.POSITIVE_INFINITY}.
* <p> Ranges are inclusive. For exclusive ranges, pass {@code nextUp(lowerValue)}
* or {@code nextDown(upperValue)}.
* <p>
* Range comparisons are consistent with {@link Float#compareTo(Float)}.
*
* @param field field name. must not be {@code null}.
* @param lowerValue lower portion of the range (inclusive).
* @param upperValue upper portion of the range (inclusive).
* @throws IllegalArgumentException if {@code field} is null.
* @return a query matching documents within this range.
*/
public static Query newRangeQuery(String field, float lowerValue, float upperValue) {
return newRangeQuery(field, new float[] { lowerValue }, new float[] { upperValue });
}
/**
* Create a range query for n-dimensional half-float values. Bounds will be
* rounded to the closest half-float if they cannot be represented accurately
* as a half-float.
* <p>
* You can have half-open ranges (which are in fact &lt;/&le; or &gt;/&ge; queries)
* by setting {@code lowerValue[i] = Float.NEGATIVE_INFINITY} or {@code upperValue[i] = Float.POSITIVE_INFINITY}.
* <p> Ranges are inclusive. For exclusive ranges, pass {@code nextUp(lowerValue[i])}
* or {@code nextDown(upperValue[i])}.
* <p>
* Range comparisons are consistent with {@link Float#compareTo(Float)}.
*
* @param field field name. must not be {@code null}.
* @param lowerValue lower portion of the range (inclusive). must not be {@code null}.
* @param upperValue upper portion of the range (inclusive). must not be {@code null}.
* @throws IllegalArgumentException if {@code field} is null, if {@code lowerValue} is null, if {@code upperValue} is null,
* or if {@code lowerValue.length != upperValue.length}
* @return a query matching documents within this range.
*/
public static Query newRangeQuery(String field, float[] lowerValue, float[] upperValue) {
PointRangeQuery.checkArgs(field, lowerValue, upperValue);
return new PointRangeQuery(field, pack(lowerValue).bytes, pack(upperValue).bytes, lowerValue.length) {
@Override
protected String toString(int dimension, byte[] value) {
return Float.toString(decodeDimension(value, 0));
}
};
}
/**
* Create a query matching any of the specified 1D values.
* This is the points equivalent of {@code TermsQuery}.
* Values will be rounded to the closest half-float if they
* cannot be represented accurately as a half-float.
*
* @param field field name. must not be {@code null}.
* @param values all values to match
*/
public static Query newSetQuery(String field, float... values) {
// Don't unexpectedly change the user's incoming values array:
float[] sortedValues = values.clone();
Arrays.sort(sortedValues);
final BytesRef encoded = new BytesRef(new byte[BYTES]);
return new PointInSetQuery(field, 1, BYTES,
new PointInSetQuery.Stream() {
int upto;
@Override
public BytesRef next() {
if (upto == sortedValues.length) {
return null;
} else {
encodeDimension(sortedValues[upto], encoded.bytes, 0);
upto++;
return encoded;
}
}
}) {
@Override
protected String toString(byte[] value) {
assert value.length == BYTES;
return Float.toString(decodeDimension(value, 0));
}
};
}
/**
* Create a query matching any of the specified 1D values. This is the points equivalent of {@code TermsQuery}.
*
* @param field field name. must not be {@code null}.
* @param values all values to match
*/
public static Query newSetQuery(String field, Collection<Float> values) {
Float[] boxed = values.toArray(new Float[0]);
float[] unboxed = new float[boxed.length];
for (int i = 0; i < boxed.length; i++) {
unboxed[i] = boxed[i];
}
return newSetQuery(field, unboxed);
}
}

View File

@ -0,0 +1,243 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.document;
import java.util.Arrays;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.RandomIndexWriter;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.store.Directory;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.LuceneTestCase;
import org.apache.lucene.util.StringHelper;
import org.apache.lucene.util.TestUtil;
public class TestHalfFloatPoint extends LuceneTestCase {
private void testHalfFloat(String sbits, float value) {
short bits = (short) Integer.parseInt(sbits, 2);
float converted = HalfFloatPoint.shortBitsToHalfFloat(bits);
assertEquals(value, converted, 0f);
short bits2 = HalfFloatPoint.halfFloatToShortBits(converted);
assertEquals(bits, bits2);
}
public void testHalfFloatConversion() {
assertEquals(0, HalfFloatPoint.halfFloatToShortBits(0f));
assertEquals((short)(1 << 15), HalfFloatPoint.halfFloatToShortBits(-0f));
assertEquals(0, HalfFloatPoint.halfFloatToShortBits(Float.MIN_VALUE)); // rounded to zero
testHalfFloat("0011110000000000", 1);
testHalfFloat("0011110000000001", 1.0009765625f);
testHalfFloat("1100000000000000", -2);
testHalfFloat("0111101111111111", 65504); // max value
testHalfFloat("0000010000000000", (float) Math.pow(2, -14)); // minimum positive normal
testHalfFloat("0000001111111111", (float) (Math.pow(2, -14) - Math.pow(2, -24))); // maximum subnormal
testHalfFloat("0000000000000001", (float) Math.pow(2, -24)); // minimum positive subnormal
testHalfFloat("0000000000000000", 0f);
testHalfFloat("1000000000000000", -0f);
testHalfFloat("0111110000000000", Float.POSITIVE_INFINITY);
testHalfFloat("1111110000000000", Float.NEGATIVE_INFINITY);
testHalfFloat("0111111000000000", Float.NaN);
testHalfFloat("0011010101010101", 0.333251953125f);
}
public void testRoundShift() {
assertEquals(0, HalfFloatPoint.roundShift(0, 2));
assertEquals(0, HalfFloatPoint.roundShift(1, 2));
assertEquals(0, HalfFloatPoint.roundShift(2, 2)); // tie so round to 0 since it ends with a 0
assertEquals(1, HalfFloatPoint.roundShift(3, 2));
assertEquals(1, HalfFloatPoint.roundShift(4, 2));
assertEquals(1, HalfFloatPoint.roundShift(5, 2));
assertEquals(2, HalfFloatPoint.roundShift(6, 2)); // tie so round to 2 since it ends with a 0
assertEquals(2, HalfFloatPoint.roundShift(7, 2));
assertEquals(2, HalfFloatPoint.roundShift(8, 2));
assertEquals(2, HalfFloatPoint.roundShift(9, 2));
assertEquals(2, HalfFloatPoint.roundShift(10, 2)); // tie so round to 2 since it ends with a 0
assertEquals(3, HalfFloatPoint.roundShift(11, 2));
assertEquals(3, HalfFloatPoint.roundShift(12, 2));
assertEquals(3, HalfFloatPoint.roundShift(13, 2));
assertEquals(4, HalfFloatPoint.roundShift(14, 2)); // tie so round to 4 since it ends with a 0
assertEquals(4, HalfFloatPoint.roundShift(15, 2));
assertEquals(4, HalfFloatPoint.roundShift(16, 2));
}
public void testRounding() {
float[] values = new float[0];
int o = 0;
for (int i = Short.MIN_VALUE; i <= Short.MAX_VALUE; ++i) {
float v = HalfFloatPoint.sortableShortToHalfFloat((short) i);
if (Float.isFinite(v)) {
if (o == values.length) {
values = ArrayUtil.grow(values);
}
values[o++] = v;
}
}
values = Arrays.copyOf(values, o);
int iters = atLeast(1000000);
for (int iter = 0; iter < iters; ++iter) {
float f;
if (random().nextBoolean()) {
int floatBits = random().nextInt();
f = Float.intBitsToFloat(floatBits);
} else {
f = (float) ((2 * random().nextFloat() - 1) * Math.pow(2, TestUtil.nextInt(random(), -16, 16)));
}
float rounded = HalfFloatPoint.shortBitsToHalfFloat(HalfFloatPoint.halfFloatToShortBits(f));
if (Float.isFinite(f) == false) {
assertEquals(Float.floatToIntBits(f), Float.floatToIntBits(rounded), 0f);
} else if (Float.isFinite(rounded) == false) {
assertFalse(Float.isNaN(rounded));
assertTrue(Math.abs(f) > 65520);
} else {
int index = Arrays.binarySearch(values, f);
float closest;
if (index >= 0) {
closest = values[index];
} else {
index = -1 - index;
closest = Float.POSITIVE_INFINITY;
if (index < values.length) {
closest = values[index];
}
if (index - 1 >= 0) {
if (f - values[index - 1] < closest - f) {
closest = values[index - 1];
} else if (f - values[index - 1] == closest - f
&& Integer.numberOfTrailingZeros(Float.floatToIntBits(values[index - 1])) > Integer.numberOfTrailingZeros(Float.floatToIntBits(closest))) {
// in case of tie, round to even
closest = values[index - 1];
}
}
}
assertEquals(closest, rounded, 0f);
}
}
}
public void testSortableBits() {
int low = Short.MIN_VALUE;
int high = Short.MAX_VALUE;
while (Float.isNaN(HalfFloatPoint.sortableShortToHalfFloat((short) low))) {
++low;
}
while (HalfFloatPoint.sortableShortToHalfFloat((short) low) == Float.NEGATIVE_INFINITY) {
++low;
}
while (Float.isNaN(HalfFloatPoint.sortableShortToHalfFloat((short) high))) {
--high;
}
while (HalfFloatPoint.sortableShortToHalfFloat((short) high) == Float.POSITIVE_INFINITY) {
--high;
}
for (int i = low; i <= high + 1; ++i) {
float previous = HalfFloatPoint.sortableShortToHalfFloat((short) (i - 1));
float current = HalfFloatPoint.sortableShortToHalfFloat((short) i);
assertEquals(i, HalfFloatPoint.halfFloatToSortableShort(current));
assertTrue(Float.compare(previous, current) < 0);
}
}
public void testSortableBytes() {
for (int i = Short.MIN_VALUE + 1; i <= Short.MAX_VALUE; ++i) {
byte[] previous = new byte[HalfFloatPoint.BYTES];
HalfFloatPoint.shortToSortableBytes((short) (i - 1), previous, 0);
byte[] current = new byte[HalfFloatPoint.BYTES];
HalfFloatPoint.shortToSortableBytes((short) i, current, 0);
assertTrue(StringHelper.compare(HalfFloatPoint.BYTES, previous, 0, current, 0) < 0);
assertEquals(i, HalfFloatPoint.sortableBytesToShort(current, 0));
}
}
/** Add a single value and search for it */
public void testBasics() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), dir);
// add a doc with an single dimension
Document document = new Document();
document.add(new HalfFloatPoint("field", 1.25f));
writer.addDocument(document);
// search and verify we found our doc
IndexReader reader = writer.getReader();
IndexSearcher searcher = newSearcher(reader);
assertEquals(1, searcher.count(HalfFloatPoint.newExactQuery("field", 1.25f)));
assertEquals(0, searcher.count(HalfFloatPoint.newExactQuery("field", 1f)));
assertEquals(0, searcher.count(HalfFloatPoint.newExactQuery("field", 2f)));
assertEquals(1, searcher.count(HalfFloatPoint.newRangeQuery("field", 1f, 2f)));
assertEquals(0, searcher.count(HalfFloatPoint.newRangeQuery("field", 0f, 1f)));
assertEquals(0, searcher.count(HalfFloatPoint.newRangeQuery("field", 1.5f, 2f)));
assertEquals(1, searcher.count(HalfFloatPoint.newSetQuery("field", 1.25f)));
assertEquals(1, searcher.count(HalfFloatPoint.newSetQuery("field", 1f, 1.25f)));
assertEquals(0, searcher.count(HalfFloatPoint.newSetQuery("field", 1f)));
assertEquals(0, searcher.count(HalfFloatPoint.newSetQuery("field")));
reader.close();
writer.close();
dir.close();
}
/** Add a single multi-dimensional value and search for it */
public void testBasicsMultiDims() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter writer = new RandomIndexWriter(random(), dir);
// add a doc with two dimensions
Document document = new Document();
document.add(new HalfFloatPoint("field", 1.25f, -2f));
writer.addDocument(document);
// search and verify we found our doc
IndexReader reader = writer.getReader();
IndexSearcher searcher = newSearcher(reader);
assertEquals(1, searcher.count(HalfFloatPoint.newRangeQuery("field",
new float[]{0, -5}, new float[]{1.25f, -1})));
assertEquals(0, searcher.count(HalfFloatPoint.newRangeQuery("field",
new float[]{0, 0}, new float[]{2, 2})));
assertEquals(0, searcher.count(HalfFloatPoint.newRangeQuery("field",
new float[]{-10, -10}, new float[]{1, 2})));
reader.close();
writer.close();
dir.close();
}
public void testNextUp() {
assertEquals(Float.NaN, HalfFloatPoint.nextUp(Float.NaN), 0f);
assertEquals(Float.POSITIVE_INFINITY, HalfFloatPoint.nextUp(Float.POSITIVE_INFINITY), 0f);
assertEquals(-65504, HalfFloatPoint.nextUp(Float.NEGATIVE_INFINITY), 0f);
assertEquals(HalfFloatPoint.shortBitsToHalfFloat((short) 0), HalfFloatPoint.nextUp(-0f), 0f);
assertEquals(HalfFloatPoint.shortBitsToHalfFloat((short) 1), HalfFloatPoint.nextUp(0f), 0f);
// values that cannot be exactly represented as a half float
assertEquals(HalfFloatPoint.nextUp(0f), HalfFloatPoint.nextUp(Float.MIN_VALUE), 0f);
assertEquals(Float.floatToIntBits(-0f), Float.floatToIntBits(HalfFloatPoint.nextUp(-Float.MIN_VALUE)));
}
public void testNextDown() {
assertEquals(Float.NaN, HalfFloatPoint.nextDown(Float.NaN), 0f);
assertEquals(Float.NEGATIVE_INFINITY, HalfFloatPoint.nextDown(Float.NEGATIVE_INFINITY), 0f);
assertEquals(65504, HalfFloatPoint.nextDown(Float.POSITIVE_INFINITY), 0f);
assertEquals(Float.floatToIntBits(-0f), Float.floatToIntBits(HalfFloatPoint.nextDown(0f)));
// values that cannot be exactly represented as a half float
assertEquals(Float.floatToIntBits(0f), Float.floatToIntBits(HalfFloatPoint.nextDown(Float.MIN_VALUE)));
assertEquals(HalfFloatPoint.nextDown(-0f), HalfFloatPoint.nextDown(-Float.MIN_VALUE), 0f);
}
}

View File

@ -142,6 +142,9 @@ New Features
* SOLR-8323, SOLR-9113: Add CollectionStateWatcher API (Alan Woodward, Scott Blum)
* SOLR-8988: Adds query option facet.distrib.mco which when set to true allows the use of facet.mincount=1 in cloud mode.
(Keith Laban, Dennis Gove)
Bug Fixes
----------------------
@ -229,6 +232,8 @@ Bug Fixes
* SOLR-8801: /bin/solr create script always returns exit code 0 when a collection/core already exists.
(Khalid Alharbi, Marius Grama via Steve Rowe)
* SOLR-9134: Fix RestManager.addManagedResource return value. (Christine Poerschke)
Optimizations
----------------------
* SOLR-8722: Don't force a full ZkStateReader refresh on every Overseer operation.

View File

@ -563,9 +563,16 @@ public class FacetComponent extends SearchComponent {
// set the initial limit higher to increase accuracy
dff.initialLimit = doOverRequestMath(dff.initialLimit, dff.overrequestRatio,
dff.overrequestCount);
dff.initialMincount = 0; // TODO: we could change this to 1, but would
// then need more refinement for small facet
// result sets?
// If option FACET_DISTRIB_MCO is turned on then we will use 1 as the initial
// minCount (unless the user explicitly set it to something less than 1). If
// option FACET_DISTRIB_MCO is turned off then we will use 0 as the initial
// minCount regardless of what the user might have provided (prior to the
// addition of the FACET_DISTRIB_MCO option the default logic was to use 0).
// As described in issues SOLR-8559 and SOLR-8988 the use of 1 provides a
// significant performance boost.
dff.initialMincount = dff.mco ? Math.min(dff.minCount, 1) : 0;
} else {
// if limit==-1, then no need to artificially lower mincount to 0 if
// it's 1
@ -1415,6 +1422,7 @@ public class FacetComponent extends SearchComponent {
public int initialLimit; // how many terms requested in first phase
public int initialMincount; // mincount param sent to each shard
public boolean mco;
public double overrequestRatio;
public int overrequestCount;
public boolean needRefinements;
@ -1434,6 +1442,8 @@ public class FacetComponent extends SearchComponent {
this.overrequestCount
= params.getFieldInt(field, FacetParams.FACET_OVERREQUEST_COUNT, 10);
this.mco
= params.getFieldBool(field, FacetParams.FACET_DISTRIB_MCO, false);
}
void add(int shardNum, NamedList shardCounts, int numRequested) {

View File

@ -647,11 +647,11 @@ public class RestManager {
* Restlet router. Returns the corresponding instance.
*/
public synchronized ManagedResource addManagedResource(String resourceId, Class<? extends ManagedResource> clazz) {
ManagedResource res = null;
ManagedResourceRegistration existingReg = registry.registered.get(resourceId);
final ManagedResource res;
final ManagedResourceRegistration existingReg = registry.registered.get(resourceId);
if (existingReg == null) {
registry.registerManagedResource(resourceId, clazz, null);
addRegisteredResource(registry.registered.get(resourceId));
res = addRegisteredResource(registry.registered.get(resourceId));
} else {
res = getManagedResource(resourceId);
}

View File

@ -149,7 +149,7 @@ public class ConnectionReuseTest extends SolrCloudTestCase {
// we try and make sure the connection we get has handled all of the requests in this test
if (client instanceof ConcurrentUpdateSolrClient) {
// we can't fully control queue polling breaking up requests - allow a bit of leeway
int exp = cnt1 + queueBreaks + 2;
int exp = queueBreaks + 3;
assertTrue(
"We expected all communication via streaming client to use one connection! expected=" + exp + " got="
+ metrics.getRequestCount(),

View File

@ -53,6 +53,7 @@ import static org.apache.solr.common.params.FacetParams.FACET_OVERREQUEST_RATIO;
import static org.apache.solr.common.params.FacetParams.FACET_PIVOT;
import static org.apache.solr.common.params.FacetParams.FACET_PIVOT_MINCOUNT;
import static org.apache.solr.common.params.FacetParams.FACET_SORT;
import static org.apache.solr.common.params.FacetParams.FACET_DISTRIB_MCO;
/**
* <p>
@ -84,6 +85,8 @@ public class TestCloudPivotFacet extends AbstractFullDistribZkTestBase {
// param used by test purely for tracing & validation
private static String TRACE_MIN = "_test_min";
// param used by test purely for tracing & validation
private static String TRACE_DISTRIB_MIN = "_test_distrib_min";
// param used by test purely for tracing & validation
private static String TRACE_MISS = "_test_miss";
// param used by test purely for tracing & validation
private static String TRACE_SORT = "_test_sort";
@ -191,6 +194,12 @@ public class TestCloudPivotFacet extends AbstractFullDistribZkTestBase {
baseP.add(TRACE_MIN, min);
}
if (random().nextBoolean()) {
pivotP.add(FACET_DISTRIB_MCO, "true");
// trace param for validation
baseP.add(TRACE_DISTRIB_MIN, "true");
}
if (random().nextBoolean()) {
String missing = ""+random().nextBoolean();
pivotP.add(FACET_MISSING, missing);

View File

@ -122,6 +122,23 @@ public interface FacetParams {
public static final String FACET_OVERREQUEST_COUNT = FACET_OVERREQUEST + ".count";
public static final String FACET_DISTRIB = FACET + ".distrib";
/**
* If we are returning facet field counts, are sorting those facets by their count, and the minimum count to return is &gt; 0,
* then allow the use of facet.mincount = 1 in cloud mode. To enable this use facet.distrib.mco=true.
*
* i.e. If the following three conditions are met in cloud mode: facet.sort=count, facet.limit &gt; 0, facet.mincount &gt; 0.
* Then use facet.mincount=1.
*
* Previously and by default facet.mincount will be explicitly set to 0 when in cloud mode for this condition.
* In SOLR-8599 and SOLR-8988, significant performance increase has been seen when enabling this optimization.
*
* Note: enabling this flag has no effect when the conditions above are not met. For those other cases the default behavior is sufficient.
*/
public static final String FACET_DISTRIB_MCO = FACET_DISTRIB + ".mco";
/**
* Comma separated list of fields to pivot
*