Revert "LUCENE-8956: QueryRescorer now only sorts the first topN hits instead of all initial hits."

This reverts commit 42fc9690bf.
This commit is contained in:
Adrien Grand 2019-09-05 17:00:04 +02:00
parent 5c0255bac3
commit bc4a84e913
4 changed files with 25 additions and 131 deletions

View File

@ -74,9 +74,6 @@ the total hits is not requested.
* LUCENE-8755: spatial-extras quad and packed quad prefix trees now index points faster.
(Chongchen Chen, David Smiley)
* LUCENE-8956: QueryRescorer now only sorts the first topN hits instead of all
initial hits. (Paul Sanwald via Adrien Grand)
Bug Fixes
* LUCENE-8755: spatial-extras quad and packed quad prefix trees could throw a

View File

@ -23,7 +23,6 @@ import java.util.Comparator;
import java.util.List;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.util.ArrayUtil;
/** A {@link Rescorer} that uses a provided Query to assign
* scores to the first-pass hits.
@ -51,7 +50,6 @@ public abstract class QueryRescorer extends Rescorer {
@Override
public TopDocs rescore(IndexSearcher searcher, TopDocs firstPassTopDocs, int topN) throws IOException {
ScoreDoc[] hits = firstPassTopDocs.scoreDocs.clone();
Arrays.sort(hits,
new Comparator<ScoreDoc>() {
@Override
@ -111,7 +109,11 @@ public abstract class QueryRescorer extends Rescorer {
hitUpto++;
}
Comparator<ScoreDoc> sortDocComparator = new Comparator<ScoreDoc>() {
// TODO: we should do a partial sort (of only topN)
// instead, but typically the number of hits is
// smallish:
Arrays.sort(hits,
new Comparator<ScoreDoc>() {
@Override
public int compare(ScoreDoc a, ScoreDoc b) {
// Sort by score descending, then docID ascending:
@ -125,17 +127,14 @@ public abstract class QueryRescorer extends Rescorer {
return a.doc - b.doc;
}
}
};
});
if (topN < hits.length) {
ArrayUtil.select(hits, 0, hits.length, topN, sortDocComparator);
ScoreDoc[] subset = new ScoreDoc[topN];
System.arraycopy(hits, 0, subset, 0, topN);
hits = subset;
}
Arrays.sort(hits, sortDocComparator);
return new TopDocs(firstPassTopDocs.totalHits, hits);
}

View File

@ -479,23 +479,12 @@ public final class ArrayUtil {
timSort(a, 0, a.length);
}
/**
* Reorganize {@code arr[from:to[} so that the element at offset k is at the
* same position as if {@code arr[from:to]} was sorted, and all elements on
/** Reorganize {@code arr[from:to[} so that the element at offset k is at the
* same position as if {@code arr[from:to[} was sorted, and all elements on
* its left are less than or equal to it, and all elements on its right are
* greater than or equal to it.
*
* This runs in linear time on average and in {@code n log(n)} time in the
* worst case.
*
* @param arr Array to be re-organized.
* @param from Starting index for re-organization. Elements before this index
* will be left as is.
* @param to Ending index. Elements after this index will be left as is.
* @param k Index of element to sort from. Value must be less than 'to' and greater than or equal to 'from'.
* @param comparator Comparator to use for sorting
*
*/
* worst case.*/
public static <T> void select(T[] arr, int from, int to, int k, Comparator<? super T> comparator) {
new IntroSelector() {

View File

@ -21,9 +21,7 @@ import java.io.IOException;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.List;
import com.carrotsearch.randomizedtesting.generators.RandomPicks;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.NumericDocValuesField;
@ -33,13 +31,11 @@ import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.RandomIndexWriter;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.BooleanClause.Occur;
import org.apache.lucene.search.similarities.BM25Similarity;
import org.apache.lucene.search.similarities.ClassicSimilarity;
import org.apache.lucene.search.spans.SpanNearQuery;
import org.apache.lucene.search.spans.SpanQuery;
import org.apache.lucene.search.spans.SpanTermQuery;
import org.apache.lucene.store.Directory;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.LuceneTestCase;
import org.apache.lucene.util.TestUtil;
@ -59,93 +55,6 @@ public class TestQueryRescorer extends LuceneTestCase {
return LuceneTestCase.newIndexWriterConfig().setSimilarity(new ClassicSimilarity());
}
static List<String> dictionary = Arrays.asList("river","quick","brown","fox","jumped","lazy","fence");
String randomSentence() {
final int length = random().nextInt(10);
StringBuilder sentence = new StringBuilder(dictionary.get(0)+" ");
for (int i = 0; i < length; i++) {
sentence.append(dictionary.get(random().nextInt(dictionary.size()-1))+" ");
}
return sentence.toString();
}
private IndexReader publishDocs(int numDocs, String fieldName, Directory dir) throws Exception {
RandomIndexWriter w = new RandomIndexWriter(random(), dir, newIndexWriterConfig());
for (int i = 0; i < numDocs; i++) {
Document d = new Document();
d.add(newStringField("id", Integer.toString(i), Field.Store.YES));
d.add(newTextField(fieldName, randomSentence(), Field.Store.NO));
w.addDocument(d);
}
IndexReader reader = w.getReader();
w.close();
return reader;
}
public void testRescoreOfASubsetOfHits() throws Exception {
Directory dir = newDirectory();
int numDocs = 100;
String fieldName = "field";
IndexReader reader = publishDocs(numDocs, fieldName, dir);
// Construct a query that will get numDocs hits.
String wordOne = dictionary.get(0);
TermQuery termQuery = new TermQuery(new Term(fieldName, wordOne));
IndexSearcher searcher = getSearcher(reader);
searcher.setSimilarity(new BM25Similarity());
TopDocs hits = searcher.search(termQuery, numDocs);
// Next, use a more specific phrase query that will return different scores
// from the above term query
String wordTwo = RandomPicks.randomFrom(random(), dictionary);
PhraseQuery phraseQuery = new PhraseQuery(1, fieldName, wordOne, wordTwo);
// rescore, requesting a smaller topN
int topN = random().nextInt(numDocs-1);
TopDocs phraseQueryHits = QueryRescorer.rescore(searcher, hits, phraseQuery, 2.0, topN);
assertEquals(topN, phraseQueryHits.scoreDocs.length);
for (int i = 1; i < phraseQueryHits.scoreDocs.length; i++) {
assertTrue(phraseQueryHits.scoreDocs[i].score <= phraseQueryHits.scoreDocs[i-1].score);
}
reader.close();
dir.close();
}
public void testRescoreIsIdempotent() throws Exception {
Directory dir = newDirectory();
int numDocs = 100;
String fieldName = "field";
IndexReader reader = publishDocs(numDocs, fieldName, dir);
// Construct a query that will get numDocs hits.
String wordOne = dictionary.get(0);
TermQuery termQuery = new TermQuery(new Term(fieldName, wordOne));
IndexSearcher searcher = getSearcher(reader);
searcher.setSimilarity(new BM25Similarity());
TopDocs hits = searcher.search(termQuery, numDocs);
// Next, use a more specific phrase query that will return different scores
// from the above term query
String wordTwo = RandomPicks.randomFrom(random(), dictionary);
PhraseQuery phraseQuery = new PhraseQuery(1, fieldName, wordOne, wordTwo);
// rescore, requesting the same hits as topN
int topN = numDocs;
TopDocs firstRescoreHits = QueryRescorer.rescore(searcher, hits, phraseQuery, 2.0, topN);
// now rescore again, where topN is less than numDocs
topN = random().nextInt(numDocs-1);
ScoreDoc[] secondRescoreHits = QueryRescorer.rescore(searcher, hits, phraseQuery, 2.0, topN).scoreDocs;
ScoreDoc[] expectedTopNScoreDocs = ArrayUtil.copyOfSubArray(firstRescoreHits.scoreDocs, 0, topN);
CheckHits.checkEqual(phraseQuery, expectedTopNScoreDocs, secondRescoreHits);
reader.close();
dir.close();
}
public void testBasic() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter w = new RandomIndexWriter(random(), dir, newIndexWriterConfig());