SOLR-2092: use native long PQ to order facet results

git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@992382 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Yonik Seeley 2010-09-03 17:12:26 +00:00
parent 4e74f34002
commit ccc91689b2
5 changed files with 360 additions and 43 deletions

View File

@ -288,6 +288,12 @@ Optimizations
* SOLR-2046: Simplify legacy replication scripts by adding common functions
to scripts-util. (koji)
* SOLR-2092: Speed up single-valued and multi-valued "fc" faceting. Typical
improvement is 5%, but can be much greater (up to 10x faster) when facet.offset
is very large (deep paging). (yonik)
Bug Fixes
----------------------

View File

@ -44,6 +44,7 @@ import org.apache.solr.util.BoundedTreeSet;
import org.apache.solr.util.ByteUtils;
import org.apache.solr.util.DateMathParser;
import org.apache.solr.handler.component.ResponseBuilder;
import org.apache.solr.util.LongPriorityQueue;
import java.io.IOException;
import java.util.*;
@ -416,9 +417,9 @@ public class SimpleFacets {
}
final int nTerms=endTermIndex-startTermIndex;
int missingCount = -1;
CharArr spare = new CharArr();
if (nTerms>0 && docs.size() >= mincount) {
// count collection array only needs to be as big as the number of terms we are
@ -475,6 +476,10 @@ public class SimpleFacets {
}
}
if (startTermIndex == 0) {
missingCount = counts[0];
}
// IDEA: we could also maintain a count of "other"... everything that fell outside
// of the top 'N'
@ -484,7 +489,8 @@ public class SimpleFacets {
if (sort.equals(FacetParams.FACET_SORT_COUNT) || sort.equals(FacetParams.FACET_SORT_COUNT_LEGACY)) {
int maxsize = limit>0 ? offset+limit : Integer.MAX_VALUE-1;
maxsize = Math.min(maxsize, nTerms);
final BoundedTreeSet<CountPair<BytesRef,Integer>> queue = new BoundedTreeSet<CountPair<BytesRef,Integer>>(maxsize);
LongPriorityQueue queue = new LongPriorityQueue(Math.min(maxsize,1000), maxsize, Long.MIN_VALUE);
int min=mincount-1; // the smallest value in the top 'N' values
for (int i=(startTermIndex==0)?1:0; i<nTerms; i++) {
int c = counts[i];
@ -492,18 +498,33 @@ public class SimpleFacets {
// NOTE: we use c>min rather than c>=min as an optimization because we are going in
// index order, so we already know that the keys are ordered. This can be very
// important if a lot of the counts are repeated (like zero counts would be).
queue.add(new CountPair<BytesRef,Integer>(si.lookup(startTermIndex+i, new BytesRef()), c));
if (queue.size()>=maxsize) min=queue.last().val;
// smaller term numbers sort higher, so subtract the term number instead
long pair = (((long)c)<<32) + (Integer.MAX_VALUE - i);
boolean displaced = queue.insert(pair);
if (displaced) min=(int)(queue.top() >>> 32);
}
}
// now select the right page from the results
for (CountPair<BytesRef,Integer> p : queue) {
if (--off>=0) continue;
if (--lim<0) break;
// if we are deep paging, we don't have to order the highest "offset" counts.
int collectCount = Math.max(0, queue.size() - off);
assert collectCount < lim;
// the start and end indexes of our list "sorted" (starting with the highest value)
int sortedIdxStart = queue.size() - (collectCount - 1);
int sortedIdxEnd = queue.size() + 1;
final long[] sorted = queue.sort(collectCount);
for (int i=sortedIdxStart; i<sortedIdxEnd; i++) {
long pair = sorted[i];
int c = (int)(pair >>> 32);
int tnum = Integer.MAX_VALUE - (int)pair;
spare.reset();
ft.indexedToReadable(p.key, spare);
res.add(spare.toString(), p.val);
ft.indexedToReadable(si.lookup(startTermIndex+tnum, br), spare);
res.add(spare.toString(), c);
}
} else {
// add results in index order
int i=(startTermIndex==0)?1:0;
@ -526,7 +547,10 @@ public class SimpleFacets {
}
if (missing) {
res.add(null, getFieldMissingCount(searcher,docs,fieldName));
if (missingCount < 0) {
missingCount = getFieldMissingCount(searcher,docs,fieldName);
}
res.add(null, missingCount);
}
return res;

View File

@ -37,6 +37,7 @@ import org.apache.solr.core.SolrCore;
import org.apache.solr.schema.FieldType;
import org.apache.solr.schema.TrieField;
import org.apache.solr.search.*;
import org.apache.solr.util.LongPriorityQueue;
import org.apache.solr.util.PrimUtils;
import org.apache.solr.util.BoundedTreeSet;
import org.apache.solr.handler.component.StatsValues;
@ -470,7 +471,9 @@ public class UnInvertedField {
if (baseSize >= mincount) {
final int[] index = this.index;
final int[] counts = new int[numTermsInField];
// tricky: we add more more element than we need because we will reuse this array later
// for ordering term ords before converting to term labels.
final int[] counts = new int[numTermsInField + 1];
//
// If there is prefix, find it's start and end term numbers
@ -575,7 +578,8 @@ public class UnInvertedField {
if (sort.equals(FacetParams.FACET_SORT_COUNT) || sort.equals(FacetParams.FACET_SORT_COUNT_LEGACY)) {
int maxsize = limit>0 ? offset+limit : Integer.MAX_VALUE-1;
maxsize = Math.min(maxsize, numTermsInField);
final BoundedTreeSet<Long> queue = new BoundedTreeSet<Long>(maxsize);
LongPriorityQueue queue = new LongPriorityQueue(Math.min(maxsize,1000), maxsize, Long.MIN_VALUE);
int min=mincount-1; // the smallest value in the top 'N' values
for (int i=startTerm; i<endTerm; i++) {
int c = doNegative ? maxTermCounts[i] - counts[i] : counts[i];
@ -584,55 +588,63 @@ public class UnInvertedField {
// index order, so we already know that the keys are ordered. This can be very
// important if a lot of the counts are repeated (like zero counts would be).
// minimize object creation and speed comparison by creating a long that
// encompasses both count and term number.
// Since smaller values are kept in the TreeSet, make higher counts smaller.
//
// for equal counts, lower term numbers
// should come first and hence be "greater"
//long pair = (((long)c)<<32) | (0x7fffffff-i) ; // use if priority queue
long pair = (((long)-c)<<32) | i;
queue.add(new Long(pair));
if (queue.size()>=maxsize) min=-(int)(queue.last().longValue() >>> 32);
// smaller term numbers sort higher, so subtract the term number instead
long pair = (((long)c)<<32) + (Integer.MAX_VALUE - i);
boolean displaced = queue.insert(pair);
if (displaced) min=(int)(queue.top() >>> 32);
}
}
// now select the right page from the results
// if we are deep paging, we don't have to order the highest "offset" counts.
int collectCount = Math.max(0, queue.size() - off);
assert collectCount < lim;
// the start and end indexes of our list "sorted" (starting with the highest value)
int sortedIdxStart = queue.size() - (collectCount - 1);
int sortedIdxEnd = queue.size() + 1;
final long[] sorted = queue.sort(collectCount);
final int[] tnums = new int[Math.min(Math.max(0, queue.size()-off), lim)];
final int[] indirect = counts; // reuse the counts array for the index into the tnums array
assert indirect.length >= tnums.length;
int tnumCount = 0;
assert indirect.length >= sortedIdxEnd;
for (int i=sortedIdxStart; i<sortedIdxEnd; i++) {
long pair = sorted[i];
int c = (int)(pair >>> 32);
int tnum = Integer.MAX_VALUE - (int)pair;
indirect[i] = i; // store the index for indirect sorting
sorted[i] = tnum; // reuse the "sorted" array to store the term numbers for indirect sorting
for (Long p : queue) {
if (--off>=0) continue;
if (--lim<0) break;
int c = -(int)(p.longValue() >>> 32);
//int tnum = 0x7fffffff - (int)p.longValue(); // use if priority queue
int tnum = (int)p.longValue();
indirect[tnumCount] = tnumCount;
tnums[tnumCount++] = tnum;
// String label = ft.indexedToReadable(getTermText(te, tnum));
// add a null label for now... we'll fill it in later.
res.add(null, c);
}
// now sort the indexes by the term numbers
PrimUtils.sort(0, tnumCount, indirect, new PrimUtils.IntComparator() {
PrimUtils.sort(sortedIdxStart, sortedIdxEnd, indirect, new PrimUtils.IntComparator() {
@Override
public int compare(int a, int b) {
return tnums[a] - tnums[b];
return (int)sorted[a] - (int)sorted[b];
}
@Override
public boolean lessThan(int a, int b) {
return sorted[a] < sorted[b];
}
@Override
public boolean equals(int a, int b) {
return sorted[a] == sorted[b];
}
});
// convert the term numbers to term values and set as the label
for (int i=0; i<tnumCount; i++) {
for (int i=sortedIdxStart; i<sortedIdxEnd; i++) {
int idx = indirect[i];
int tnum = tnums[idx];
String label = getReadableValue(getTermValue(te, tnum), ft, spare);
res.setName(idx, label);
int tnum = (int)sorted[idx];
String label = getReadableValue(getTermValue(te, tnum), ft, spare);
res.setName(idx - sortedIdxStart, label);
}
} else {

View File

@ -0,0 +1,235 @@
package org.apache.solr.util;
import java.util.Arrays;
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** A native long priority queue.
*
* @lucene.internal
*/
public class LongPriorityQueue {
protected int size; // number of elements currently in the queue
protected int currentCapacity; // number of elements the queue can hold w/o expanding
protected int maxSize; // max number of elements allowed in the queue
protected long[] heap;
protected final long sentinel; // represents a null return value
public LongPriorityQueue(int initialSize, int maxSize, long sentinel) {
this.maxSize = maxSize;
this.sentinel = sentinel;
initialize(initialSize);
}
protected void initialize(int sz) {
int heapSize;
if (0 == sz)
// We allocate 1 extra to avoid if statement in top()
heapSize = 2;
else {
// NOTE: we add +1 because all access to heap is
// 1-based not 0-based. heap[0] is unused.
heapSize = Math.max(sz, sz + 1); // handle overflow
}
heap = new long[heapSize];
currentCapacity = sz;
}
public int getCurrentCapacity() {
return currentCapacity;
}
public void resize(int sz) {
int heapSize;
if (sz > maxSize) {
maxSize = sz;
}
if (0 == sz)
// We allocate 1 extra to avoid if statement in top()
heapSize = 2;
else {
heapSize = Math.max(sz, sz + 1); // handle overflow
}
heap = Arrays.copyOf(heap, heapSize);
currentCapacity = sz;
}
/**
* Adds an object to a PriorityQueue in log(size) time. If one tries to add
* more objects than maxSize from initialize an
* {@link ArrayIndexOutOfBoundsException} is thrown.
*
* @return the new 'top' element in the queue.
*/
public long add(long element) {
if (size >= currentCapacity) {
int newSize = Math.min(currentCapacity <<1, maxSize);
if (newSize < currentCapacity) newSize = Integer.MAX_VALUE; // handle overflow
resize(newSize);
}
size++;
heap[size] = element;
upHeap();
return heap[1];
}
/**
* Adds an object to a PriorityQueue in log(size) time. If one tries to add
* more objects than the current capacity, an
* {@link ArrayIndexOutOfBoundsException} is thrown.
*/
public void addNoCheck(long element) {
++size;
heap[size] = element;
upHeap();
}
/**
* Adds an object to a PriorityQueue in log(size) time.
* It returns the smallest object (if any) that was
* dropped off the heap because it was full, or
* the sentinel value.
*
* This can be
* the given parameter (in case it is smaller than the
* full heap's minimum, and couldn't be added), or another
* object that was previously the smallest value in the
* heap and now has been replaced by a larger one, or null
* if the queue wasn't yet full with maxSize elements.
*/
public long insertWithOverflow(long element) {
if (size < maxSize) {
add(element);
return sentinel;
} else if (element > heap[1]) {
long ret = heap[1];
heap[1] = element;
updateTop();
return ret;
} else {
return element;
}
}
/** inserts the element and returns true if this element caused another element
* to be dropped from the queue. */
public boolean insert(long element) {
if (size < maxSize) {
add(element);
return false;
} else if (element > heap[1]) {
// long ret = heap[1];
heap[1] = element;
updateTop();
return true;
} else {
return false;
}
}
/** Returns the least element of the PriorityQueue in constant time. */
public long top() {
return heap[1];
}
/** Removes and returns the least element of the PriorityQueue in log(size)
time. Only valid if size() > 0.
*/
public long pop() {
long result = heap[1]; // save first value
heap[1] = heap[size]; // move last to first
size--;
downHeap(); // adjust heap
return result;
}
/**
* Should be called when the Object at top changes values.
* @return the new 'top' element.
*/
public long updateTop() {
downHeap();
return heap[1];
}
/** Returns the number of elements currently stored in the PriorityQueue. */
public int size() {
return size;
}
/** Returns the array used to hold the heap, with the smallest item at array[1]
* and the last (but not necessarily largest) at array[size()]. This is *not*
* fully sorted.
*/
public long[] getInternalArray() {
return heap;
}
/** Pops the smallest n items from the heap, placing them in the internal array at
* arr[size] through arr[size-(n-1)] with the smallest (first element popped)
* being at arr[size]. The internal array is returned.
*/
public long[] sort(int n) {
while (--n >= 0) {
long result = heap[1]; // save first value
heap[1] = heap[size]; // move last to first
heap[size] = result; // place it last
size--;
downHeap(); // adjust heap
}
return heap;
}
/** Removes all entries from the PriorityQueue. */
public void clear() {
size = 0;
}
private void upHeap() {
int i = size;
long node = heap[i]; // save bottom node
int j = i >>> 1;
while (j > 0 && node < heap[j]) {
heap[i] = heap[j]; // shift parents down
i = j;
j = j >>> 1;
}
heap[i] = node; // install saved node
}
private void downHeap() {
int i = 1;
long node = heap[i]; // save top node
int j = i << 1; // find smaller child
int k = j + 1;
if (k <= size && heap[k] < heap[j]) {
j = k;
}
while (j <= size && heap[j] < node) {
heap[i] = heap[j]; // shift up child
i = j;
j = i << 1;
k = j + 1;
if (k <= size && heap[k] < heap[j]) {
j = k;
}
}
heap[i] = node; // install saved node
}
}

View File

@ -51,4 +51,44 @@ public class PrimUtilsTest extends LuceneTestCase {
}
}
public void testLongPriorityQueue() {
int maxSize = 100;
long[] a = new long[maxSize];
long[] discards = new long[maxSize];
for (int iter=0; iter<100; iter++) {
int discardCount = 0;
int startSize = r.nextInt(maxSize) + 1;
int endSize = startSize==maxSize ? maxSize : startSize + r.nextInt(maxSize-startSize);
int adds = r.nextInt(maxSize+1);
// System.out.println("startSize=" + startSize + " endSize=" + endSize + " adds="+adds);
LongPriorityQueue pq = new LongPriorityQueue(startSize, endSize, Long.MIN_VALUE);
for (int i=0; i<adds; i++) {
long v = r.nextLong();
a[i] = v;
long out = pq.insertWithOverflow(v);
if (i < endSize) {
assertEquals(out, Long.MIN_VALUE);
} else {
discards[discardCount++] = out;
}
}
assertEquals(Math.min(adds,endSize), pq.size());
assertEquals(adds, pq.size() + discardCount);
Arrays.sort(a, 0, adds);
Arrays.sort(discards, 0, discardCount);
for (int i=0; i<discardCount; i++) {
assertEquals(a[i], discards[i]);
}
for (int i=discardCount; i<adds; i++) {
assertEquals(a[i], pq.pop());
}
assertEquals(0, pq.size());
}
}
}