LUCENE-7974: Add N-dimensional FloatPoint K-nearest-neighbor implementation

This commit is contained in:
Steve Rowe 2017-10-01 18:50:06 -04:00
parent 472d52022f
commit d52564c079
3 changed files with 624 additions and 0 deletions

View File

@ -34,6 +34,9 @@ New Features
* LUCENE-7973: Update dictionary version for Ukrainian analyzer to 3.9.0 (Andriy
Rysin via Dawid Weiss)
* LUCENE-7974: Add FloatPointNearestNeighbor, an N-dimensional FloatPoint
K-nearest-neighbor search implementation. (Steve Rowe)
Optimizations

View File

@ -0,0 +1,382 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.document;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.PriorityQueue;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.PointValues;
import org.apache.lucene.search.FieldDoc;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopFieldDocs;
import org.apache.lucene.util.Bits;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.bkd.BKDReader;
/**
* KNN search on top of N dimensional indexed float points.
*
* @lucene.experimental
*/
public class FloatPointNearestNeighbor {
static class Cell implements Comparable<Cell> {
final int readerIndex;
final byte[] minPacked;
final byte[] maxPacked;
final BKDReader.IndexTree index;
/** The closest possible distance^2 of all points in this cell */
final double distanceSquared;
Cell(BKDReader.IndexTree index, int readerIndex, byte[] minPacked, byte[] maxPacked, double distanceSquared) {
this.index = index;
this.readerIndex = readerIndex;
this.minPacked = minPacked.clone();
this.maxPacked = maxPacked.clone();
this.distanceSquared = distanceSquared;
}
public int compareTo(Cell other) {
return Double.compare(distanceSquared, other.distanceSquared);
}
@Override
public String toString() {
return "Cell(readerIndex=" + readerIndex + " nodeID=" + index.getNodeID()
+ " isLeaf=" + index.isLeafNode() + " distanceSquared=" + distanceSquared + ")";
}
}
private static class NearestVisitor implements PointValues.IntersectVisitor {
int curDocBase;
Bits curLiveDocs;
final int topN;
final PriorityQueue<NearestHit> hitQueue;
final float[] origin;
private int dims;
private int updateMinMaxCounter;
private float[] min;
private float[] max;
public NearestVisitor(PriorityQueue<NearestHit> hitQueue, int topN, float[] origin) {
this.hitQueue = hitQueue;
this.topN = topN;
this.origin = origin;
dims = origin.length;
min = new float[dims];
max = new float[dims];
Arrays.fill(min, Float.NEGATIVE_INFINITY);
Arrays.fill(max, Float.POSITIVE_INFINITY);
}
@Override
public void visit(int docID) {
throw new AssertionError();
}
private static final int MANTISSA_BITS = 23;
/**
* Returns the minimum value that will change the given distance when added to it.
*
* This value is calculated from the distance exponent reduced by (at most) 23,
* the number of bits in a float mantissa. This is necessary when the result of
* subtracting/adding the distance in a single dimension has an exponent that
* differs significantly from that of the distance value. Without this fudge
* factor (i.e. only subtracting/adding the distance), cells and values can be
* inappropriately judged as outside the search radius.
*/
private float getMinDelta(float distance) {
int exponent = Float.floatToIntBits(distance) >> MANTISSA_BITS; // extract biased exponent (distance is positive)
if (exponent == 0) {
return Float.MIN_VALUE;
} else {
exponent = exponent <= MANTISSA_BITS ? 1 : exponent - MANTISSA_BITS; // Avoid underflow
return Float.intBitsToFloat(exponent << MANTISSA_BITS);
}
}
private void maybeUpdateMinMax() {
if (updateMinMaxCounter < 1024 || (updateMinMaxCounter & 0x3F) == 0x3F) {
NearestHit hit = hitQueue.peek();
float distance = (float)Math.sqrt(hit.distanceSquared);
float minDelta = getMinDelta(distance);
// String oldMin = Arrays.toString(min);
// String oldMax = Arrays.toString(max);
for (int d = 0 ; d < dims ; ++d) {
min[d] = (origin[d] - distance) - minDelta;
max[d] = (origin[d] + distance) + minDelta;
// System.out.println("origin[" + d + "] (" + origin[d] + ") - distance (" + distance + ") - minDelta (" + minDelta + ") = min[" + d + "] (" + min[d] + ")");
// System.out.println("origin[" + d + "] (" + origin[d] + ") + distance (" + distance + ") + minDelta (" + minDelta + ") = max[" + d + "] (" + max[d] + ")");
}
// System.out.println("maybeUpdateMinMax: min: " + oldMin + " -> " + Arrays.toString(min) + " max: " + oldMax + " -> " + Arrays.toString(max));
}
++updateMinMaxCounter;
}
@Override
public void visit(int docID, byte[] packedValue) {
// System.out.println("visit docID=" + docID + " liveDocs=" + curLiveDocs);
if (curLiveDocs != null && curLiveDocs.get(docID) == false) {
return;
}
float[] docPoint = new float[dims];
for (int d = 0, offset = 0 ; d < dims ; ++d, offset += Float.BYTES) {
docPoint[d] = FloatPoint.decodeDimension(packedValue, offset);
if (docPoint[d] > max[d] || docPoint[d] < min[d]) {
// if (docPoint[d] > max[d]) {
// System.out.println(" skipped because docPoint[" + d + "] (" + docPoint[d] + ") > max[" + d + "] (" + max[d] + ")");
// } else {
// System.out.println(" skipped because docPoint[" + d + "] (" + docPoint[d] + ") < min[" + d + "] (" + min[d] + ")");
// }
return;
}
}
double distanceSquared = euclideanDistanceSquared(origin, docPoint);
// System.out.println(" visit docID=" + docID + " distanceSquared=" + distanceSquared + " value: " + Arrays.toString(docPoint));
int fullDocID = curDocBase + docID;
if (hitQueue.size() == topN) { // queue already full
NearestHit bottom = hitQueue.peek();
// System.out.println(" bottom distanceSquared=" + bottom.distanceSquared);
if (distanceSquared < bottom.distanceSquared
// we don't collect docs in order here, so we must also test the tie-break case ourselves:
|| (distanceSquared == bottom.distanceSquared && fullDocID < bottom.docID)) {
hitQueue.poll();
bottom.docID = fullDocID;
bottom.distanceSquared = distanceSquared;
hitQueue.offer(bottom);
// System.out.println(" ** keep1, now bottom=" + bottom);
maybeUpdateMinMax();
}
} else {
NearestHit hit = new NearestHit();
hit.docID = fullDocID;
hit.distanceSquared = distanceSquared;
hitQueue.offer(hit);
// System.out.println(" ** keep2, new addition=" + hit);
}
}
@Override
public PointValues.Relation compare(byte[] minPackedValue, byte[] maxPackedValue) {
throw new AssertionError();
}
}
static class NearestHit {
public int docID;
public double distanceSquared;
@Override
public String toString() {
return "NearestHit(docID=" + docID + " distanceSquared=" + distanceSquared + ")";
}
}
public static NearestHit[] nearest(List<BKDReader> readers, List<Bits> liveDocs, List<Integer> docBases, final int topN, float[] origin) throws IOException {
// System.out.println("NEAREST: readers=" + readers + " liveDocs=" + liveDocs + " origin: " + Arrays.toString(origin));
// Holds closest collected points seen so far:
// TODO: if we used lucene's PQ we could just updateTop instead of poll/offer:
final PriorityQueue<NearestHit> hitQueue = new PriorityQueue<>(topN, (a, b) -> {
// sort by opposite distance natural order
int cmp = Double.compare(a.distanceSquared, b.distanceSquared);
return cmp != 0 ? -cmp : b.docID - a.docID; // tie-break by higher docID
});
// Holds all cells, sorted by closest to the point:
PriorityQueue<Cell> cellQueue = new PriorityQueue<>();
NearestVisitor visitor = new NearestVisitor(hitQueue, topN, origin);
List<BKDReader.IntersectState> states = new ArrayList<>();
// Add root cell for each reader into the queue:
int bytesPerDim = -1;
for (int i = 0 ; i < readers.size() ; ++i) {
BKDReader reader = readers.get(i);
if (bytesPerDim == -1) {
bytesPerDim = reader.getBytesPerDimension();
} else if (bytesPerDim != reader.getBytesPerDimension()) {
throw new IllegalStateException("bytesPerDim changed from " + bytesPerDim
+ " to " + reader.getBytesPerDimension() + " across readers");
}
byte[] minPackedValue = reader.getMinPackedValue();
byte[] maxPackedValue = reader.getMaxPackedValue();
BKDReader.IntersectState state = reader.getIntersectState(visitor);
states.add(state);
cellQueue.offer(new Cell(state.index, i, reader.getMinPackedValue(), reader.getMaxPackedValue(),
approxBestDistanceSquared(minPackedValue, maxPackedValue, origin)));
}
LOOP_OVER_CELLS: while (cellQueue.size() > 0) {
Cell cell = cellQueue.poll();
// System.out.println(" visit " + cell);
// TODO: if we replace approxBestDistance with actualBestDistance, we can put an opto here to break once this "best" cell is fully outside of the hitQueue bottom's radius:
BKDReader reader = readers.get(cell.readerIndex);
if (cell.index.isLeafNode()) {
// System.out.println(" leaf");
// Leaf block: visit all points and possibly collect them:
visitor.curDocBase = docBases.get(cell.readerIndex);
visitor.curLiveDocs = liveDocs.get(cell.readerIndex);
reader.visitLeafBlockValues(cell.index, states.get(cell.readerIndex));
// System.out.println(" now " + hitQueue.size() + " hits");
} else {
// System.out.println(" non-leaf");
// Non-leaf block: split into two cells and put them back into the queue:
if (hitQueue.size() == topN) {
for (int d = 0, offset = 0; d < visitor.dims; ++d, offset += Float.BYTES) {
float cellMaxAtDim = FloatPoint.decodeDimension(cell.maxPacked, offset);
float cellMinAtDim = FloatPoint.decodeDimension(cell.minPacked, offset);
if (cellMaxAtDim < visitor.min[d] || cellMinAtDim > visitor.max[d]) {
// this cell is outside our search radius; don't bother exploring any more
// if (cellMaxAtDim < visitor.min[d]) {
// System.out.println(" skipped because cell max at " + d + " (" + cellMaxAtDim + ") < visitor.min[" + d + "] (" + visitor.min[d] + ")");
// } else {
// System.out.println(" skipped because cell min at " + d + " (" + cellMinAtDim + ") > visitor.max[" + d + "] (" + visitor.max[d] + ")");
// }
continue LOOP_OVER_CELLS;
}
}
}
BytesRef splitValue = BytesRef.deepCopyOf(cell.index.getSplitDimValue());
int splitDim = cell.index.getSplitDim();
// we must clone the index so that we we can recurse left and right "concurrently":
BKDReader.IndexTree newIndex = cell.index.clone();
byte[] splitPackedValue = cell.maxPacked.clone();
System.arraycopy(splitValue.bytes, splitValue.offset, splitPackedValue, splitDim * bytesPerDim, bytesPerDim);
cell.index.pushLeft();
cellQueue.offer(new Cell(cell.index, cell.readerIndex, cell.minPacked, splitPackedValue,
approxBestDistanceSquared(cell.minPacked, splitPackedValue, origin)));
splitPackedValue = cell.minPacked.clone();
System.arraycopy(splitValue.bytes, splitValue.offset, splitPackedValue, splitDim * bytesPerDim, bytesPerDim);
newIndex.pushRight();
cellQueue.offer(new Cell(newIndex, cell.readerIndex, splitPackedValue, cell.maxPacked,
approxBestDistanceSquared(splitPackedValue, cell.maxPacked, origin)));
}
}
NearestHit[] hits = new NearestHit[hitQueue.size()];
int downTo = hitQueue.size()-1;
while (hitQueue.size() != 0) {
hits[downTo] = hitQueue.poll();
downTo--;
}
return hits;
}
private static double approxBestDistanceSquared(byte[] minPackedValue, byte[] maxPackedValue, float[] value) {
boolean insideCell = true;
float[] min = new float[value.length];
float[] max = new float[value.length];
double[] closest = new double[value.length];
for (int i = 0, offset = 0 ; i < value.length ; ++i, offset += Float.BYTES) {
min[i] = FloatPoint.decodeDimension(minPackedValue, offset);
max[i] = FloatPoint.decodeDimension(maxPackedValue, offset);
if (insideCell) {
if (value[i] < min[i] || value[i] > max[i]) {
insideCell = false;
}
}
double minDiff = Math.abs((double)value[i] - (double)min[i]);
double maxDiff = Math.abs((double)value[i] - (double)max[i]);
closest[i] = minDiff < maxDiff ? minDiff : maxDiff;
}
if (insideCell) {
return 0.0f;
}
double sumOfSquaredDiffs = 0.0d;
for (int d = 0 ; d < value.length ; ++d) {
sumOfSquaredDiffs += closest[d] * closest[d];
}
return sumOfSquaredDiffs;
}
static double euclideanDistanceSquared(float[] a, float[] b) {
double sumOfSquaredDifferences = 0.0d;
for (int d = 0 ; d < a.length ; ++d) {
double diff = (double)a[d] - (double)b[d];
sumOfSquaredDifferences += diff * diff;
}
return sumOfSquaredDifferences;
}
public static TopFieldDocs nearest(IndexSearcher searcher, String field, int topN, float... origin) throws IOException {
if (topN < 1) {
throw new IllegalArgumentException("topN must be at least 1; got " + topN);
}
if (field == null) {
throw new IllegalArgumentException("field must not be null");
}
if (searcher == null) {
throw new IllegalArgumentException("searcher must not be null");
}
List<BKDReader> readers = new ArrayList<>();
List<Integer> docBases = new ArrayList<>();
List<Bits> liveDocs = new ArrayList<>();
int totalHits = 0;
for (LeafReaderContext leaf : searcher.getIndexReader().leaves()) {
PointValues points = leaf.reader().getPointValues(field);
if (points != null) {
if (points instanceof BKDReader == false) {
throw new IllegalArgumentException("can only run on Lucene60PointsReader points implementation, but got " + points);
}
totalHits += points.getDocCount();
readers.add((BKDReader)points);
docBases.add(leaf.docBase);
liveDocs.add(leaf.reader().getLiveDocs());
}
}
NearestHit[] hits = nearest(readers, liveDocs, docBases, topN, origin);
// Convert to TopFieldDocs:
ScoreDoc[] scoreDocs = new ScoreDoc[hits.length];
for(int i=0;i<hits.length;i++) {
NearestHit hit = hits[i];
scoreDocs[i] = new FieldDoc(hit.docID, 0.0f, new Object[] { (float)Math.sqrt(hit.distanceSquared) });
}
return new TopFieldDocs(totalHits, scoreDocs, null, 0.0f);
}
}

View File

@ -0,0 +1,239 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.document;
import java.util.Arrays;
import org.apache.lucene.codecs.Codec;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.PointValues;
import org.apache.lucene.index.RandomIndexWriter;
import org.apache.lucene.index.SerialMergeScheduler;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.FieldDoc;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.store.Directory;
import org.apache.lucene.util.LuceneTestCase;
import org.apache.lucene.util.TestUtil;
public class TestFloatPointNearestNeighbor extends LuceneTestCase {
public void testNearestNeighborWithDeletedDocs() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter w = new RandomIndexWriter(random(), dir, getIndexWriterConfig());
Document doc = new Document();
doc.add(new FloatPoint("point", 40.0f, 50.0f));
doc.add(new StringField("id", "0", Field.Store.YES));
w.addDocument(doc);
doc = new Document();
doc.add(new FloatPoint("point", 45.0f, 55.0f));
doc.add(new StringField("id", "1", Field.Store.YES));
w.addDocument(doc);
DirectoryReader r = w.getReader();
// can't wrap because we require Lucene60PointsFormat directly but e.g. ParallelReader wraps with its own points impl:
IndexSearcher s = newSearcher(r, false);
FieldDoc hit = (FieldDoc)FloatPointNearestNeighbor.nearest(s, "point", 1, 40.0f, 50.0f).scoreDocs[0];
assertEquals("0", r.document(hit.doc).getField("id").stringValue());
r.close();
w.deleteDocuments(new Term("id", "0"));
r = w.getReader();
// can't wrap because we require Lucene60PointsFormat directly but e.g. ParallelReader wraps with its own points impl:
s = newSearcher(r, false);
hit = (FieldDoc)LatLonPoint.nearest(s, "point", 40.0, 50.0, 1).scoreDocs[0];
assertEquals("1", r.document(hit.doc).getField("id").stringValue());
r.close();
w.close();
dir.close();
}
public void testNearestNeighborWithAllDeletedDocs() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter w = new RandomIndexWriter(random(), dir, getIndexWriterConfig());
Document doc = new Document();
doc.add(new FloatPoint("point", 40.0f, 50.0f));
doc.add(new StringField("id", "0", Field.Store.YES));
w.addDocument(doc);
doc = new Document();
doc.add(new FloatPoint("point", 45.0f, 55.0f));
doc.add(new StringField("id", "1", Field.Store.YES));
w.addDocument(doc);
DirectoryReader r = w.getReader();
// can't wrap because we require Lucene60PointsFormat directly but e.g. ParallelReader wraps with its own points impl:
IndexSearcher s = newSearcher(r, false);
FieldDoc hit = (FieldDoc)FloatPointNearestNeighbor.nearest(s, "point", 1, 40.0f, 50.0f).scoreDocs[0];
assertEquals("0", r.document(hit.doc).getField("id").stringValue());
r.close();
w.deleteDocuments(new Term("id", "0"));
w.deleteDocuments(new Term("id", "1"));
r = w.getReader();
// can't wrap because we require Lucene60PointsFormat directly but e.g. ParallelReader wraps with its own points impl:
s = newSearcher(r, false);
assertEquals(0, FloatPointNearestNeighbor.nearest(s, "point", 1, 40.0f, 50.0f).scoreDocs.length);
r.close();
w.close();
dir.close();
}
public void testTieBreakByDocID() throws Exception {
Directory dir = newDirectory();
IndexWriter w = new IndexWriter(dir, getIndexWriterConfig());
Document doc = new Document();
doc.add(new FloatPoint("point", 40.0f, 50.0f));
doc.add(new StringField("id", "0", Field.Store.YES));
w.addDocument(doc);
doc = new Document();
doc.add(new FloatPoint("point", 40.0f, 50.0f));
doc.add(new StringField("id", "1", Field.Store.YES));
w.addDocument(doc);
DirectoryReader r = DirectoryReader.open(w);
// can't wrap because we require Lucene60PointsFormat directly but e.g. ParallelReader wraps with its own points impl:
ScoreDoc[] hits = FloatPointNearestNeighbor.nearest(newSearcher(r, false), "point", 2, 45.0f, 50.0f).scoreDocs;
assertEquals("0", r.document(hits[0].doc).getField("id").stringValue());
assertEquals("1", r.document(hits[1].doc).getField("id").stringValue());
r.close();
w.close();
dir.close();
}
public void testNearestNeighborWithNoDocs() throws Exception {
Directory dir = newDirectory();
RandomIndexWriter w = new RandomIndexWriter(random(), dir, getIndexWriterConfig());
DirectoryReader r = w.getReader();
// can't wrap because we require Lucene60PointsFormat directly but e.g. ParallelReader wraps with its own points impl:
assertEquals(0, FloatPointNearestNeighbor.nearest(newSearcher(r, false), "point", 1, 40.0f, 50.0f).scoreDocs.length);
r.close();
w.close();
dir.close();
}
public void testNearestNeighborRandom() throws Exception {
Directory dir;
int numPoints = atLeast(5000);
if (numPoints > 100000) {
dir = newFSDirectory(createTempDir(getClass().getSimpleName()));
} else {
dir = newDirectory();
}
IndexWriterConfig iwc = getIndexWriterConfig();
iwc.setMergePolicy(newLogMergePolicy());
iwc.setMergeScheduler(new SerialMergeScheduler());
RandomIndexWriter w = new RandomIndexWriter(random(), dir, iwc);
int dims = TestUtil.nextInt(random(), 1, PointValues.MAX_DIMENSIONS);
float[][] values = new float[numPoints][dims];
for (int id = 0 ; id < numPoints ; ++id) {
for (int dim = 0 ; dim < dims ; ++dim) {
Float f = Float.NaN;
while (f.isNaN()) {
f = Float.intBitsToFloat(random().nextInt());
}
values[id][dim] = f;
}
Document doc = new Document();
doc.add(new FloatPoint("point", values[id]));
doc.add(new StoredField("id", id));
w.addDocument(doc);
}
if (random().nextBoolean()) {
w.forceMerge(1);
}
DirectoryReader r = w.getReader();
if (VERBOSE) {
System.out.println("TEST: reader=" + r);
}
// can't wrap because we require Lucene60PointsFormat directly but e.g. ParallelReader wraps with its own points impl:
IndexSearcher s = newSearcher(r, false);
int iters = atLeast(100);
for (int iter = 0 ; iter < iters ; ++iter) {
if (VERBOSE) {
System.out.println("\nTEST: iter=" + iter);
}
float[] origin = new float[dims];
for (int dim = 0 ; dim < dims ; ++dim) {
Float f = Float.NaN;
while (f.isNaN()) {
f = Float.intBitsToFloat(random().nextInt());
}
origin[dim] = f;
}
// dumb brute force search to get the expected result:
FloatPointNearestNeighbor.NearestHit[] expectedHits = new FloatPointNearestNeighbor.NearestHit[numPoints];
for (int id = 0 ; id < numPoints ; ++id) {
FloatPointNearestNeighbor.NearestHit hit = new FloatPointNearestNeighbor.NearestHit();
hit.distanceSquared = FloatPointNearestNeighbor.euclideanDistanceSquared(origin, values[id]);
hit.docID = id;
expectedHits[id] = hit;
}
Arrays.sort(expectedHits, (a, b) -> {
int cmp = Double.compare(a.distanceSquared, b.distanceSquared);
return cmp != 0 ? cmp : a.docID - b.docID; // tie break by smaller id
});
int topK = TestUtil.nextInt(random(), 1, numPoints);
if (VERBOSE) {
System.out.println("\nhits for origin=" + Arrays.toString(origin));
}
ScoreDoc[] hits = FloatPointNearestNeighbor.nearest(s, "point", topK, origin).scoreDocs;
assertEquals("fewer than expected hits: ", topK, hits.length);
if (VERBOSE) {
for (int i = 0 ; i < topK ; ++i) {
FloatPointNearestNeighbor.NearestHit expected = expectedHits[i];
FieldDoc actual = (FieldDoc)hits[i];
Document actualDoc = r.document(actual.doc);
System.out.println("hit " + i);
System.out.println(" expected id=" + expected.docID + " " + Arrays.toString(values[expected.docID])
+ " distance=" + (float)Math.sqrt(expected.distanceSquared) + " distanceSquared=" + expected.distanceSquared);
System.out.println(" actual id=" + actualDoc.getField("id") + " distance=" + actual.fields[0]);
}
}
for (int i = 0 ; i < topK ; ++i) {
FloatPointNearestNeighbor.NearestHit expected = expectedHits[i];
FieldDoc actual = (FieldDoc)hits[i];
assertEquals("hit " + i + ":", expected.docID, actual.doc);
assertEquals("hit " + i + ":", (float)Math.sqrt(expected.distanceSquared), (Float)actual.fields[0], 0.000001);
}
}
r.close();
w.close();
dir.close();
}
private IndexWriterConfig getIndexWriterConfig() {
IndexWriterConfig iwc = newIndexWriterConfig();
iwc.setCodec(Codec.forName("Lucene70"));
return iwc;
}
}