LUCENE-7970: Add surface point on bearing method to PlanetModel. Committed on behalf of Ignacio Vera.

This commit is contained in:
Karl Wright 2017-09-22 02:01:00 -04:00
parent fc8d7ee1b0
commit d84beb415c
1 changed files with 59 additions and 0 deletions

View File

@ -322,6 +322,65 @@ public class PlanetModel implements SerializableObject {
return c * A * (sigma - deltaSigma); return c * A * (sigma - deltaSigma);
} }
/** Compute new point given original point, a bearing direction, and an adjusted angle (as would be computed by
* the surfaceDistance() method above). The original point can be anywhere on the globe. The bearing direction
* ranges from 0 (due east at the equator) to pi/2 (due north) to pi (due west at the equator) to 3 pi/4 (due south)
* to 2 pi.
* @param from is the starting point.
* @param dist is the adjusted angle.
* @param bearing is the direction to proceed.
* @return the new point, consistent with the bearing direction and distance.
*/
public GeoPoint surfacePointOnBearing(final GeoPoint from, final double dist, final double bearing) {
// Algorithm using Vincenty's formulae (https://en.wikipedia.org/wiki/Vincenty%27s_formulae)
// which takes into account that planets may not be spherical.
//Code adaptation from http://www.movable-type.co.uk/scripts/latlong-vincenty.html
double lat = from.getLatitude();
double lon = from.getLongitude();
double sinα1 = Math.sin(bearing);
double cosα1 = Math.cos(bearing);
double tanU1 = (1.0 - flattening) * Math.tan(lat);
double cosU1 = 1.0 / Math.sqrt((1.0 + tanU1 * tanU1));
double sinU1 = tanU1 * cosU1;
double σ1 = Math.atan2(tanU1, cosα1);
double sinα = cosU1 * sinα1;
double cosSqα = 1.0 - sinα * sinα;
double uSq = cosSqα * squareRatio;
double A = 1.0 + uSq / 16384.0 * (4096.0 + uSq * (-768.0 + uSq * (320.0 - 175.0 * uSq)));
double B = uSq / 1024.0 * (256.0 + uSq * (-128.0 + uSq * (74.0 - 47.0 * uSq)));
double cos2σM;
double sinσ;
double cosσ;
double Δσ;
double σ = dist / (c * A);
double σʹ;
double iterations = 0;
do {
cos2σM = Math.cos(2.0 * σ1 + σ);
sinσ = Math.sin(σ);
cosσ = Math.cos(σ);
Δσ = B * sinσ * (cos2σM + B / 4.0 * (cosσ * (-1.0 + 2.0 * cos2σM * cos2σM) -
B / 6.0 * cos2σM * (-3.0 + 4.0 * sinσ * sinσ) * (-3.0 + 4.0 * cos2σM * cos2σM)));
σʹ = σ;
σ = dist / (c * A) + Δσ;
} while (Math.abs(σ - σʹ) > Vector.MINIMUM_ANGULAR_RESOLUTION && ++iterations < 200);
double x = sinU1 * sinσ - cosU1 * cosσ * cosα1;
double φ2 = Math.atan2(sinU1 * cosσ + cosU1 * sinσ * cosα1, (1.0 - flattening) * Math.sqrt(sinα * sinα + x * x));
double λ = Math.atan2(sinσ * sinα1, cosU1 * cosσ - sinU1 * sinσ * cosα1);
double C = flattening / 16.0 * cosSqα * (4.0 + flattening * (4.0 - 3.0 * cosSqα));
double L = λ - (1.0 - C) * flattening * sinα *
(σ + C * sinσ * (cos2σM + C * cosσ * (-1.0 + 2.0 * cos2σM * cos2σM)));
double λ2 = (lon + L + 3.0 * Math.PI) % (2.0 * Math.PI) - Math.PI; // normalise to -180..+180
return new GeoPoint(this, φ2, λ2);
}
@Override @Override
public boolean equals(final Object o) { public boolean equals(final Object o) {
if (!(o instanceof PlanetModel)) if (!(o instanceof PlanetModel))