LUCENE-3846: add new FuzzySuggester

git-svn-id: https://svn.apache.org/repos/asf/lucene/dev/trunk@1403779 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Michael McCandless 2012-10-30 16:47:17 +00:00
commit d8e44bd09d
11 changed files with 1654 additions and 111 deletions

View File

@ -49,6 +49,10 @@ New Features
for better search performance. for better search performance.
(Han Jiang, Adrien Grand, Robert Muir, Mike McCandless) (Han Jiang, Adrien Grand, Robert Muir, Mike McCandless)
* LUCENE-3846: New FuzzySuggester, like AnalyzingSuggester except it
also finds completions allowing for fuzzy edits in the input string.
(Robert Muir, Simon Willnauer, Mike McCandless)
API Changes API Changes
* LUCENE-4399: Deprecated AppendingCodec. Lucene's term dictionaries * LUCENE-4399: Deprecated AppendingCodec. Lucene's term dictionaries

View File

@ -833,7 +833,7 @@
<assertions> <assertions>
<enable package="org.apache.lucene"/> <enable package="org.apache.lucene"/>
<enable package="org.apache.solr"/> <enable package="org.apache.solr"/>
</assertions> </assertions>
<!-- JVM arguments and system properties. --> <!-- JVM arguments and system properties. -->
<jvmarg line="${args}"/> <jvmarg line="${args}"/>

View File

@ -22,6 +22,7 @@ import java.io.IOException;
import java.io.OutputStreamWriter; import java.io.OutputStreamWriter;
import java.io.Writer; import java.io.Writer;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.PositionIncrementAttribute; import org.apache.lucene.analysis.tokenattributes.PositionIncrementAttribute;
import org.apache.lucene.analysis.tokenattributes.PositionLengthAttribute; import org.apache.lucene.analysis.tokenattributes.PositionLengthAttribute;
import org.apache.lucene.analysis.tokenattributes.TermToBytesRefAttribute; import org.apache.lucene.analysis.tokenattributes.TermToBytesRefAttribute;
@ -88,6 +89,7 @@ public class TokenStreamToAutomaton {
final TermToBytesRefAttribute termBytesAtt = in.addAttribute(TermToBytesRefAttribute.class); final TermToBytesRefAttribute termBytesAtt = in.addAttribute(TermToBytesRefAttribute.class);
final PositionIncrementAttribute posIncAtt = in.addAttribute(PositionIncrementAttribute.class); final PositionIncrementAttribute posIncAtt = in.addAttribute(PositionIncrementAttribute.class);
final PositionLengthAttribute posLengthAtt = in.addAttribute(PositionLengthAttribute.class); final PositionLengthAttribute posLengthAtt = in.addAttribute(PositionLengthAttribute.class);
final BytesRef term = termBytesAtt.getBytesRef(); final BytesRef term = termBytesAtt.getBytesRef();
in.reset(); in.reset();

View File

@ -240,6 +240,20 @@ final public class BasicAutomata {
a.deterministic = true; a.deterministic = true;
return a; return a;
} }
public static Automaton makeString(int[] word, int offset, int length) {
Automaton a = new Automaton();
a.setDeterministic(true);
State s = new State();
a.initial = s;
for (int i = offset; i < offset+length; i++) {
State s2 = new State();
s.addTransition(new Transition(word[i], s2));
s = s2;
}
s.accept = true;
return a;
}
/** /**
* Returns a new (deterministic and minimal) automaton that accepts the union * Returns a new (deterministic and minimal) automaton that accepts the union

View File

@ -33,12 +33,13 @@ public class LevenshteinAutomata {
/** @lucene.internal */ /** @lucene.internal */
public static final int MAXIMUM_SUPPORTED_DISTANCE = 2; public static final int MAXIMUM_SUPPORTED_DISTANCE = 2;
/* input word */ /* input word */
final String input;
final int word[]; final int word[];
/* the automata alphabet. */ /* the automata alphabet. */
final int alphabet[]; final int alphabet[];
/* the maximum symbol in the alphabet (e.g. 255 for UTF-8 or 10FFFF for UTF-32) */
final int alphaMax;
/* the unicode ranges outside of alphabet */ /* the ranges outside of alphabet */
final int rangeLower[]; final int rangeLower[];
final int rangeUpper[]; final int rangeUpper[];
int numRanges = 0; int numRanges = 0;
@ -50,17 +51,26 @@ public class LevenshteinAutomata {
* Optionally count transpositions as a primitive edit. * Optionally count transpositions as a primitive edit.
*/ */
public LevenshteinAutomata(String input, boolean withTranspositions) { public LevenshteinAutomata(String input, boolean withTranspositions) {
this.input = input; this(codePoints(input), Character.MAX_CODE_POINT, withTranspositions);
int length = Character.codePointCount(input, 0, input.length()); }
word = new int[length];
for (int i = 0, j = 0, cp = 0; i < input.length(); i += Character.charCount(cp)) { /**
word[j++] = cp = input.codePointAt(i); * Expert: specify a custom maximum possible symbol
} * (alphaMax); default is Character.MAX_CODE_POINT.
*/
public LevenshteinAutomata(int[] word, int alphaMax, boolean withTranspositions) {
this.word = word;
this.alphaMax = alphaMax;
// calculate the alphabet // calculate the alphabet
SortedSet<Integer> set = new TreeSet<Integer>(); SortedSet<Integer> set = new TreeSet<Integer>();
for (int i = 0; i < word.length; i++) for (int i = 0; i < word.length; i++) {
set.add(word[i]); int v = word[i];
if (v > alphaMax) {
throw new IllegalArgumentException("alphaMax exceeded by symbol " + v + " in word");
}
set.add(v);
}
alphabet = new int[set.size()]; alphabet = new int[set.size()];
Iterator<Integer> iterator = set.iterator(); Iterator<Integer> iterator = set.iterator();
for (int i = 0; i < alphabet.length; i++) for (int i = 0; i < alphabet.length; i++)
@ -81,9 +91,9 @@ public class LevenshteinAutomata {
lower = higher + 1; lower = higher + 1;
} }
/* add the final endpoint */ /* add the final endpoint */
if (lower <= Character.MAX_CODE_POINT) { if (lower <= alphaMax) {
rangeLower[numRanges] = lower; rangeLower[numRanges] = lower;
rangeUpper[numRanges] = Character.MAX_CODE_POINT; rangeUpper[numRanges] = alphaMax;
numRanges++; numRanges++;
} }
@ -94,6 +104,15 @@ public class LevenshteinAutomata {
}; };
} }
private static int[] codePoints(String input) {
int length = Character.codePointCount(input, 0, input.length());
int word[] = new int[length];
for (int i = 0, j = 0, cp = 0; i < input.length(); i += Character.charCount(cp)) {
word[j++] = cp = input.codePointAt(i);
}
return word;
}
/** /**
* Compute a DFA that accepts all strings within an edit distance of <code>n</code>. * Compute a DFA that accepts all strings within an edit distance of <code>n</code>.
* <p> * <p>
@ -106,8 +125,9 @@ public class LevenshteinAutomata {
* </p> * </p>
*/ */
public Automaton toAutomaton(int n) { public Automaton toAutomaton(int n) {
if (n == 0) if (n == 0) {
return BasicAutomata.makeString(input); return BasicAutomata.makeString(word, 0, word.length);
}
if (n >= descriptions.length) if (n >= descriptions.length)
return null; return null;

View File

@ -22,6 +22,8 @@ import java.util.*;
import org.apache.lucene.util.BytesRef; import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.IntsRef; import org.apache.lucene.util.IntsRef;
import org.apache.lucene.util.fst.FST.Arc;
import org.apache.lucene.util.fst.FST.BytesReader;
/** Static helper methods. /** Static helper methods.
* *
@ -304,7 +306,10 @@ public final class Util {
path.input.ints[path.input.length++] = path.arc.label; path.input.ints[path.input.length++] = path.arc.label;
final int cmp = bottom.input.compareTo(path.input); final int cmp = bottom.input.compareTo(path.input);
path.input.length--; path.input.length--;
// We should never see dups:
assert cmp != 0; assert cmp != 0;
if (cmp < 0) { if (cmp < 0) {
// Doesn't compete // Doesn't compete
return; return;
@ -846,4 +851,93 @@ public final class Util {
w.close(); w.close();
} }
*/ */
/**
* Reads the first arc greater or equal that the given label into the provided
* arc in place and returns it iff found, otherwise return <code>null</code>.
*
* @param label the label to ceil on
* @param fst the fst to operate on
* @param follow the arc to follow reading the label from
* @param arc the arc to read into in place
* @param in the fst's {@link BytesReader}
*/
public static <T> Arc<T> readCeilArc(int label, FST<T> fst, Arc<T> follow,
Arc<T> arc, BytesReader in) throws IOException {
// TODO maybe this is a useful in the FST class - we could simplify some other code like FSTEnum?
if (label == FST.END_LABEL) {
if (follow.isFinal()) {
if (follow.target <= 0) {
arc.flags = FST.BIT_LAST_ARC;
} else {
arc.flags = 0;
// NOTE: nextArc is a node (not an address!) in this case:
arc.nextArc = follow.target;
arc.node = follow.target;
}
arc.output = follow.nextFinalOutput;
arc.label = FST.END_LABEL;
return arc;
} else {
return null;
}
}
if (!FST.targetHasArcs(follow)) {
return null;
}
fst.readFirstTargetArc(follow, arc, in);
if (arc.bytesPerArc != 0 && arc.label != FST.END_LABEL) {
// Arcs are fixed array -- use binary search to find
// the target.
int low = arc.arcIdx;
int high = arc.numArcs - 1;
int mid = 0;
// System.out.println("do arc array low=" + low + " high=" + high +
// " targetLabel=" + targetLabel);
while (low <= high) {
mid = (low + high) >>> 1;
in.pos = arc.posArcsStart;
in.skip(arc.bytesPerArc * mid + 1);
final int midLabel = fst.readLabel(in);
final int cmp = midLabel - label;
// System.out.println(" cycle low=" + low + " high=" + high + " mid=" +
// mid + " midLabel=" + midLabel + " cmp=" + cmp);
if (cmp < 0) {
low = mid + 1;
} else if (cmp > 0) {
high = mid - 1;
} else {
arc.arcIdx = mid-1;
return fst.readNextRealArc(arc, in);
}
}
if (low == arc.numArcs) {
// DEAD END!
return null;
}
arc.arcIdx = (low > high ? high : low);
return fst.readNextRealArc(arc, in);
}
// Linear scan
fst.readFirstRealTargetArc(follow.target, arc, in);
while (true) {
// System.out.println(" non-bs cycle");
// TODO: we should fix this code to not have to create
// object for the output of every arc we scan... only
// for the matching arc, if found
if (arc.label >= label) {
// System.out.println(" found!");
return arc;
} else if (arc.isLast()) {
return null;
} else {
fst.readNextRealArc(arc, in);
}
}
}
} }

View File

@ -31,6 +31,7 @@ import java.util.Set;
import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.TokenStreamToAutomaton; import org.apache.lucene.analysis.TokenStreamToAutomaton;
import org.apache.lucene.analysis.tokenattributes.TermToBytesRefAttribute;
import org.apache.lucene.search.spell.TermFreqIterator; import org.apache.lucene.search.spell.TermFreqIterator;
import org.apache.lucene.search.suggest.Lookup; import org.apache.lucene.search.suggest.Lookup;
import org.apache.lucene.search.suggest.fst.Sort; import org.apache.lucene.search.suggest.fst.Sort;
@ -310,7 +311,7 @@ public class AnalyzingSuggester extends Lookup {
} }
} }
private TokenStreamToAutomaton getTokenStreamToAutomaton() { TokenStreamToAutomaton getTokenStreamToAutomaton() {
if (preserveSep) { if (preserveSep) {
return new EscapingTokenStreamToAutomaton(); return new EscapingTokenStreamToAutomaton();
} else { } else {
@ -332,6 +333,7 @@ public class AnalyzingSuggester extends Lookup {
BytesRef scratch = new BytesRef(); BytesRef scratch = new BytesRef();
TokenStreamToAutomaton ts2a = getTokenStreamToAutomaton(); TokenStreamToAutomaton ts2a = getTokenStreamToAutomaton();
// analyzed sequence + 0(byte) + weight(int) + surface + analyzedLength(short) // analyzed sequence + 0(byte) + weight(int) + surface + analyzedLength(short)
boolean success = false; boolean success = false;
byte buffer[] = new byte[8]; byte buffer[] = new byte[8];
@ -339,29 +341,8 @@ public class AnalyzingSuggester extends Lookup {
ByteArrayDataOutput output = new ByteArrayDataOutput(buffer); ByteArrayDataOutput output = new ByteArrayDataOutput(buffer);
BytesRef surfaceForm; BytesRef surfaceForm;
while ((surfaceForm = iterator.next()) != null) { while ((surfaceForm = iterator.next()) != null) {
Set<IntsRef> paths = toFiniteStrings(surfaceForm, ts2a);
// Analyze surface form:
TokenStream ts = indexAnalyzer.tokenStream("", new StringReader(surfaceForm.utf8ToString()));
// Create corresponding automaton: labels are bytes
// from each analyzed token, with byte 0 used as
// separator between tokens:
Automaton automaton = ts2a.toAutomaton(ts);
ts.end();
ts.close();
replaceSep(automaton);
assert SpecialOperations.isFinite(automaton);
// Get all paths from the automaton (there can be
// more than one path, eg if the analyzer created a
// graph using SynFilter or WDF):
// TODO: we could walk & add simultaneously, so we
// don't have to alloc [possibly biggish]
// intermediate HashSet in RAM:
Set<IntsRef> paths = SpecialOperations.getFiniteStrings(automaton, maxGraphExpansions);
maxAnalyzedPathsForOneInput = Math.max(maxAnalyzedPathsForOneInput, paths.size()); maxAnalyzedPathsForOneInput = Math.max(maxAnalyzedPathsForOneInput, paths.size());
for (IntsRef path : paths) { for (IntsRef path : paths) {
@ -510,27 +491,10 @@ public class AnalyzingSuggester extends Lookup {
} }
//System.out.println("lookup key=" + key + " num=" + num); //System.out.println("lookup key=" + key + " num=" + num);
final BytesRef utf8Key = new BytesRef(key);
try { try {
// TODO: is there a Reader from a CharSequence? Automaton lookupAutomaton = toLookupAutomaton(key);
// Turn tokenstream into automaton:
TokenStream ts = queryAnalyzer.tokenStream("", new StringReader(key.toString()));
Automaton automaton = getTokenStreamToAutomaton().toAutomaton(ts);
ts.end();
ts.close();
// TODO: we could use the end offset to "guess"
// whether the final token was a partial token; this
// would only be a heuristic ... but maybe an OK one.
// This way we could eg differentiate "net" from "net ",
// which we can't today...
replaceSep(automaton);
// TODO: we can optimize this somewhat by determinizing
// while we convert
BasicOperations.determinize(automaton);
final CharsRef spare = new CharsRef(); final CharsRef spare = new CharsRef();
@ -538,8 +502,7 @@ public class AnalyzingSuggester extends Lookup {
// Intersect automaton w/ suggest wFST and get all // Intersect automaton w/ suggest wFST and get all
// prefix starting nodes & their outputs: // prefix starting nodes & their outputs:
final List<FSTUtil.Path<Pair<Long,BytesRef>>> prefixPaths; //final PathIntersector intersector = getPathIntersector(lookupAutomaton, fst);
prefixPaths = FSTUtil.intersectPrefixPaths(automaton, fst);
//System.out.println(" prefixPaths: " + prefixPaths.size()); //System.out.println(" prefixPaths: " + prefixPaths.size());
@ -549,6 +512,8 @@ public class AnalyzingSuggester extends Lookup {
final List<LookupResult> results = new ArrayList<LookupResult>(); final List<LookupResult> results = new ArrayList<LookupResult>();
List<FSTUtil.Path<Pair<Long,BytesRef>>> prefixPaths = FSTUtil.intersectPrefixPaths(lookupAutomaton, fst);
if (exactFirst) { if (exactFirst) {
int count = 0; int count = 0;
@ -593,9 +558,9 @@ public class AnalyzingSuggester extends Lookup {
// nodes we have and the // nodes we have and the
// maxSurfaceFormsPerAnalyzedForm: // maxSurfaceFormsPerAnalyzedForm:
for(MinResult<Pair<Long,BytesRef>> completion : completions) { for(MinResult<Pair<Long,BytesRef>> completion : completions) {
spare.grow(completion.output.output2.length); if (utf8Key.bytesEquals(completion.output.output2)) {
UnicodeUtil.UTF8toUTF16(completion.output.output2, spare); spare.grow(completion.output.output2.length);
if (CHARSEQUENCE_COMPARATOR.compare(spare, key) == 0) { UnicodeUtil.UTF8toUTF16(completion.output.output2, spare);
results.add(new LookupResult(spare.toString(), decodeWeight(completion.output.output1))); results.add(new LookupResult(spare.toString(), decodeWeight(completion.output.output1)));
break; break;
} }
@ -630,9 +595,7 @@ public class AnalyzingSuggester extends Lookup {
// In exactFirst mode, don't accept any paths // In exactFirst mode, don't accept any paths
// matching the surface form since that will // matching the surface form since that will
// create duplicate results: // create duplicate results:
spare.grow(output.output2.length); if (utf8Key.bytesEquals(output.output2)) {
UnicodeUtil.UTF8toUTF16(output.output2, spare);
if (CHARSEQUENCE_COMPARATOR.compare(spare, key) == 0) {
// We found exact match, which means we should // We found exact match, which means we should
// have already found it in the first search: // have already found it in the first search:
assert results.size() == 1; assert results.size() == 1;
@ -644,6 +607,8 @@ public class AnalyzingSuggester extends Lookup {
} }
}; };
prefixPaths = getFullPrefixPaths(prefixPaths, lookupAutomaton, fst);
for (FSTUtil.Path<Pair<Long,BytesRef>> path : prefixPaths) { for (FSTUtil.Path<Pair<Long,BytesRef>> path : prefixPaths) {
searcher.addStartPaths(path.fstNode, path.output, true, path.input); searcher.addStartPaths(path.fstNode, path.output, true, path.input);
} }
@ -654,6 +619,10 @@ public class AnalyzingSuggester extends Lookup {
spare.grow(completion.output.output2.length); spare.grow(completion.output.output2.length);
UnicodeUtil.UTF8toUTF16(completion.output.output2, spare); UnicodeUtil.UTF8toUTF16(completion.output.output2, spare);
LookupResult result = new LookupResult(spare.toString(), decodeWeight(completion.output.output1)); LookupResult result = new LookupResult(spare.toString(), decodeWeight(completion.output.output1));
// TODO: for fuzzy case would be nice to return
// how many edits were required
//System.out.println(" result=" + result); //System.out.println(" result=" + result);
results.add(result); results.add(result);
@ -670,6 +639,63 @@ public class AnalyzingSuggester extends Lookup {
} }
} }
/** Returns all prefix paths to initialize the search. */
protected List<FSTUtil.Path<Pair<Long,BytesRef>>> getFullPrefixPaths(List<FSTUtil.Path<Pair<Long,BytesRef>>> prefixPaths,
Automaton lookupAutomaton,
FST<Pair<Long,BytesRef>> fst)
throws IOException {
return prefixPaths;
}
final Set<IntsRef> toFiniteStrings(final BytesRef surfaceForm, final TokenStreamToAutomaton ts2a) throws IOException {
// Analyze surface form:
TokenStream ts = indexAnalyzer.tokenStream("", new StringReader(surfaceForm.utf8ToString()));
// Create corresponding automaton: labels are bytes
// from each analyzed token, with byte 0 used as
// separator between tokens:
Automaton automaton = ts2a.toAutomaton(ts);
ts.end();
ts.close();
replaceSep(automaton);
assert SpecialOperations.isFinite(automaton);
// Get all paths from the automaton (there can be
// more than one path, eg if the analyzer created a
// graph using SynFilter or WDF):
// TODO: we could walk & add simultaneously, so we
// don't have to alloc [possibly biggish]
// intermediate HashSet in RAM:
return SpecialOperations.getFiniteStrings(automaton, maxGraphExpansions);
}
final Automaton toLookupAutomaton(final CharSequence key) throws IOException {
// TODO: is there a Reader from a CharSequence?
// Turn tokenstream into automaton:
TokenStream ts = queryAnalyzer.tokenStream("", new StringReader(key.toString()));
Automaton automaton = (getTokenStreamToAutomaton()).toAutomaton(ts);
ts.end();
ts.close();
// TODO: we could use the end offset to "guess"
// whether the final token was a partial token; this
// would only be a heuristic ... but maybe an OK one.
// This way we could eg differentiate "net" from "net ",
// which we can't today...
replaceSep(automaton);
// TODO: we can optimize this somewhat by determinizing
// while we convert
BasicOperations.determinize(automaton);
return automaton;
}
/** /**
* Returns the weight associated with an input string, * Returns the weight associated with an input string,
* or null if it does not exist. * or null if it does not exist.

View File

@ -26,6 +26,7 @@ import org.apache.lucene.util.automaton.Automaton;
import org.apache.lucene.util.automaton.State; import org.apache.lucene.util.automaton.State;
import org.apache.lucene.util.automaton.Transition; import org.apache.lucene.util.automaton.Transition;
import org.apache.lucene.util.fst.FST; import org.apache.lucene.util.fst.FST;
import org.apache.lucene.util.fst.Util;
// TODO: move to core? nobody else uses it yet though... // TODO: move to core? nobody else uses it yet though...
@ -62,57 +63,78 @@ public class FSTUtil {
} }
} }
/** Enumerates all paths in the automaton that also /**
* intersect the FST, accumulating the FST end node and * Enumerates all minimal prefix paths in the automaton that also intersect the FST,
* output for each path. */ * accumulating the FST end node and output for each path.
public static<T> List<Path<T>> intersectPrefixPaths(Automaton a, FST<T> fst) throws IOException { */
public static <T> List<Path<T>> intersectPrefixPaths(Automaton a, FST<T> fst)
throws IOException {
assert a.isDeterministic();
final List<Path<T>> queue = new ArrayList<Path<T>>(); final List<Path<T>> queue = new ArrayList<Path<T>>();
final List<Path<T>> endNodes = new ArrayList<Path<T>>(); final List<Path<T>> endNodes = new ArrayList<Path<T>>();
queue.add(new Path<T>(a.getInitialState(), fst
queue.add(new Path<T>(a.getInitialState(), .getFirstArc(new FST.Arc<T>()), fst.outputs.getNoOutput(),
fst.getFirstArc(new FST.Arc<T>()), new IntsRef()));
fst.outputs.getNoOutput(),
new IntsRef()));
final FST.Arc<T> scratchArc = new FST.Arc<T>(); final FST.Arc<T> scratchArc = new FST.Arc<T>();
final FST.BytesReader fstReader = fst.getBytesReader(0); final FST.BytesReader fstReader = fst.getBytesReader(0);
//System.out.println("fst/a intersect");
while (queue.size() != 0) { while (queue.size() != 0) {
final Path<T> path = queue.remove(queue.size()-1); final Path<T> path = queue.remove(queue.size() - 1);
//System.out.println(" cycle path=" + path);
if (path.state.isAccept()) { if (path.state.isAccept()) {
endNodes.add(path); endNodes.add(path);
// we can stop here if we accept this path,
// we accept all further paths too
continue;
} }
IntsRef currentInput = path.input; IntsRef currentInput = path.input;
for(Transition t : path.state.getTransitions()) { for (Transition t : path.state.getTransitions()) {
final int min = t.getMin();
// TODO: we can fix this if necessary: final int max = t.getMax();
if (t.getMin() != t.getMax()) { if (min == max) {
throw new IllegalStateException("can only handle Transitions that match one character"); final FST.Arc<T> nextArc = fst.findTargetArc(t.getMin(),
} path.fstNode, scratchArc, fstReader);
if (nextArc != null) {
//System.out.println(" t=" + (char) t.getMin()); final IntsRef newInput = new IntsRef(currentInput.length + 1);
newInput.copyInts(currentInput);
final FST.Arc<T> nextArc = fst.findTargetArc(t.getMin(), path.fstNode, scratchArc, fstReader); newInput.ints[currentInput.length] = t.getMin();
if (nextArc != null) { newInput.length = currentInput.length + 1;
//System.out.println(" fst matches"); queue.add(new Path<T>(t.getDest(), new FST.Arc<T>()
// Path continues: .copyFrom(nextArc), fst.outputs
IntsRef newInput = new IntsRef(currentInput.length + 1); .add(path.output, nextArc.output), newInput));
newInput.copyInts(currentInput); }
newInput.ints[currentInput.length] = t.getMin(); } else {
newInput.length = currentInput.length + 1; // TODO: if this transition's TO state is accepting, and
// it accepts the entire range possible in the FST (ie. 0 to 255),
queue.add(new Path<T>(t.getDest(), // we can simply use the prefix as the accepted state instead of
new FST.Arc<T>().copyFrom(nextArc), // looking up all the ranges and terminate early
fst.outputs.add(path.output, nextArc.output), // here. This just shifts the work from one queue
newInput)); // (this one) to another (the completion search
// done in AnalyzingSuggester).
FST.Arc<T> nextArc = Util.readCeilArc(min, fst, path.fstNode,
scratchArc, fstReader);
while (nextArc != null && nextArc.label <= max) {
assert nextArc.label <= max;
assert nextArc.label >= min : nextArc.label + " "
+ min;
final IntsRef newInput = new IntsRef(currentInput.length + 1);
newInput.copyInts(currentInput);
newInput.ints[currentInput.length] = nextArc.label;
newInput.length = currentInput.length + 1;
queue.add(new Path<T>(t.getDest(), new FST.Arc<T>()
.copyFrom(nextArc), fst.outputs
.add(path.output, nextArc.output), newInput));
final int label = nextArc.label; // used in assert
nextArc = nextArc.isLast() ? null : fst.readNextRealArc(nextArc,
fstReader);
assert nextArc == null || label < nextArc.label : "last: " + label
+ " next: " + nextArc.label;
}
} }
} }
} }
return endNodes; return endNodes;
} }
} }

View File

@ -0,0 +1,226 @@
package org.apache.lucene.search.suggest.analyzing;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.Writer;
import java.util.Arrays;
import java.util.List;
import java.util.Set;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.TermToBytesRefAttribute; // javadocs
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.IntsRef;
import org.apache.lucene.util.automaton.Automaton;
import org.apache.lucene.util.automaton.BasicAutomata;
import org.apache.lucene.util.automaton.BasicOperations;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
import org.apache.lucene.util.automaton.SpecialOperations;
import org.apache.lucene.util.fst.FST;
import org.apache.lucene.util.fst.PairOutputs.Pair;
/**
* Implements a fuzzy {@link AnalyzingSuggester}. The similarity measurement is
* based on the Damerau-Levenshtein (optimal string alignment) algorithm, though
* you can explicitly choose classic Levenshtein by passing <code>false</code>
* for the <code>transpositions</code> parameter.
* <p>
* At most, this query will match terms up to
* {@value org.apache.lucene.util.automaton.LevenshteinAutomata#MAXIMUM_SUPPORTED_DISTANCE}
* edits. Higher distances are not supported. Note that the
* fuzzy distance is measured in "byte space" on the bytes
* returned by the {@link TokenStream}'s {@link
* TermToBytesRefAttribute}, usually UTF8. By default
* the analyzed bytes must be at least 3 {@link
* #DEFAULT_MIN_FUZZY_LENGTH} bytes before any edits are
* considered. Furthermore, the first 1 {@link
* #DEFAULT_NON_FUZZY_PREFIX} byte is not allowed to be
* edited. We allow up to 1 (@link
* #DEFAULT_MAX_EDITS} edit.
*
* <p>
* NOTE: This suggester does not boost suggestions that
* required no edits over suggestions that did require
* edits. This is a known limitation.
*
* <p>
* Note: complex query analyzers can have a significant impact on the lookup
* performance. It's recommended to not use analyzers that drop or inject terms
* like synonyms to keep the complexity of the prefix intersection low for good
* lookup performance. At index time, complex analyzers can safely be used.
* </p>
*/
public final class FuzzySuggester extends AnalyzingSuggester {
private final int maxEdits;
private final boolean transpositions;
private final int nonFuzzyPrefix;
private final int minFuzzyLength;
/**
* The default minimum length of the key passed to {@link
* #lookup} before any edits are allowed.
*/
public static final int DEFAULT_MIN_FUZZY_LENGTH = 3;
/**
* The default prefix length where edits are not allowed.
*/
public static final int DEFAULT_NON_FUZZY_PREFIX = 1;
/**
* The default maximum number of edits for fuzzy
* suggestions.
*/
public static final int DEFAULT_MAX_EDITS = 1;
/**
* Creates a {@link FuzzySuggester} instance initialized with default values.
*
* @param analyzer the analyzer used for this suggester
*/
public FuzzySuggester(Analyzer analyzer) {
this(analyzer, analyzer);
}
/**
* Creates a {@link FuzzySuggester} instance with an index & a query analyzer initialized with default values.
*
* @param indexAnalyzer
* Analyzer that will be used for analyzing suggestions while building the index.
* @param queryAnalyzer
* Analyzer that will be used for analyzing query text during lookup
*/
public FuzzySuggester(Analyzer indexAnalyzer, Analyzer queryAnalyzer) {
this(indexAnalyzer, queryAnalyzer, EXACT_FIRST | PRESERVE_SEP, 256, -1, DEFAULT_MAX_EDITS, true,
DEFAULT_NON_FUZZY_PREFIX, DEFAULT_MIN_FUZZY_LENGTH);
}
/**
* Creates a {@link FuzzySuggester} instance.
*
* @param indexAnalyzer Analyzer that will be used for
* analyzing suggestions while building the index.
* @param queryAnalyzer Analyzer that will be used for
* analyzing query text during lookup
* @param options see {@link #EXACT_FIRST}, {@link #PRESERVE_SEP}
* @param maxSurfaceFormsPerAnalyzedForm Maximum number of
* surface forms to keep for a single analyzed form.
* When there are too many surface forms we discard the
* lowest weighted ones.
* @param maxGraphExpansions Maximum number of graph paths
* to expand from the analyzed form. Set this to -1 for
* no limit.
* @param maxEdits must be >= 0 and <= {@link LevenshteinAutomata#MAXIMUM_SUPPORTED_DISTANCE} .
* @param transpositions <code>true</code> if transpositions should be treated as a primitive
* edit operation. If this is false, comparisons will implement the classic
* Levenshtein algorithm.
* @param nonFuzzyPrefix length of common (non-fuzzy) prefix (see default {@link #DEFAULT_NON_FUZZY_PREFIX}
* @param minFuzzyLength minimum length of lookup key before any edits are allowed (see default {@link #DEFAULT_MIN_FUZZY_LENGTH})
*/
public FuzzySuggester(Analyzer indexAnalyzer, Analyzer queryAnalyzer,
int options, int maxSurfaceFormsPerAnalyzedForm, int maxGraphExpansions,
int maxEdits, boolean transpositions, int nonFuzzyPrefix,
int minFuzzyLength) {
super(indexAnalyzer, queryAnalyzer, options, maxSurfaceFormsPerAnalyzedForm, maxGraphExpansions);
if (maxEdits < 0 || maxEdits > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE) {
throw new IllegalArgumentException("maxEdits must be between 0 and " + LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE);
}
if (nonFuzzyPrefix < 0) {
throw new IllegalArgumentException("nonFuzzyPrefix must not be >= 0 (got " + nonFuzzyPrefix + ")");
}
if (minFuzzyLength < 0) {
throw new IllegalArgumentException("minFuzzyLength must not be >= 0 (got " + minFuzzyLength + ")");
}
this.maxEdits = maxEdits;
this.transpositions = transpositions;
this.nonFuzzyPrefix = nonFuzzyPrefix;
this.minFuzzyLength = minFuzzyLength;
}
@Override
protected List<FSTUtil.Path<Pair<Long,BytesRef>>> getFullPrefixPaths(List<FSTUtil.Path<Pair<Long,BytesRef>>> prefixPaths,
Automaton lookupAutomaton,
FST<Pair<Long,BytesRef>> fst)
throws IOException {
// TODO: right now there's no penalty for fuzzy/edits,
// ie a completion whose prefix matched exactly what the
// user typed gets no boost over completions that
// required an edit, which get no boost over completions
// requiring two edits. I suspect a multiplicative
// factor is appropriate (eg, say a fuzzy match must be at
// least 2X better weight than the non-fuzzy match to
// "compete") ... in which case I think the wFST needs
// to be log weights or something ...
Automaton levA = toLevenshteinAutomata(lookupAutomaton);
/*
Writer w = new OutputStreamWriter(new FileOutputStream("out.dot"), "UTF-8");
w.write(levA.toDot());
w.close();
System.out.println("Wrote LevA to out.dot");
*/
return FSTUtil.intersectPrefixPaths(levA, fst);
}
Automaton toLevenshteinAutomata(Automaton automaton) {
final Set<IntsRef> ref = SpecialOperations.getFiniteStrings(automaton, -1);
Automaton subs[] = new Automaton[ref.size()];
int upto = 0;
for (IntsRef path : ref) {
if (path.length <= nonFuzzyPrefix || path.length < minFuzzyLength) {
subs[upto] = BasicAutomata.makeString(path.ints, path.offset, path.length);
upto++;
} else {
Automaton prefix = BasicAutomata.makeString(path.ints, path.offset, nonFuzzyPrefix);
int ints[] = new int[path.length-nonFuzzyPrefix];
System.arraycopy(path.ints, path.offset+nonFuzzyPrefix, ints, 0, ints.length);
// TODO: maybe add alphaMin to LevenshteinAutomata,
// and pass 1 instead of 0? We probably don't want
// to allow the trailing dedup bytes to be
// edited... but then 0 byte is "in general" allowed
// on input (but not in UTF8).
LevenshteinAutomata lev = new LevenshteinAutomata(ints, 255, transpositions);
Automaton levAutomaton = lev.toAutomaton(maxEdits);
Automaton combined = BasicOperations.concatenate(Arrays.asList(prefix, levAutomaton));
combined.setDeterministic(true); // its like the special case in concatenate itself, except we cloneExpanded already
subs[upto] = combined;
upto++;
}
}
if (subs.length == 0) {
return BasicAutomata.makeEmpty(); // matches nothing
} else if (subs.length == 1) {
return subs[0];
} else {
Automaton a = BasicOperations.union(Arrays.asList(subs));
// TODO: we could call toLevenshteinAutomata() before det?
// this only happens if you have multiple paths anyway (e.g. synonyms)
BasicOperations.determinize(a);
// Does not seem to help (and hurt maybe a bit: 6-9
// prefix went from 19 to 18 kQPS):
// a.reduce();
return a;
}
}
}

View File

@ -36,6 +36,7 @@ import org.apache.lucene.analysis.MockAnalyzer;
import org.apache.lucene.analysis.MockTokenizer; import org.apache.lucene.analysis.MockTokenizer;
import org.apache.lucene.search.suggest.Lookup; // javadocs import org.apache.lucene.search.suggest.Lookup; // javadocs
import org.apache.lucene.search.suggest.analyzing.AnalyzingSuggester; import org.apache.lucene.search.suggest.analyzing.AnalyzingSuggester;
import org.apache.lucene.search.suggest.analyzing.FuzzySuggester;
import org.apache.lucene.search.suggest.fst.FSTCompletionLookup; import org.apache.lucene.search.suggest.fst.FSTCompletionLookup;
import org.apache.lucene.search.suggest.fst.WFSTCompletionLookup; import org.apache.lucene.search.suggest.fst.WFSTCompletionLookup;
import org.apache.lucene.search.suggest.jaspell.JaspellLookup; import org.apache.lucene.search.suggest.jaspell.JaspellLookup;
@ -51,17 +52,20 @@ import org.junit.Ignore;
public class LookupBenchmarkTest extends LuceneTestCase { public class LookupBenchmarkTest extends LuceneTestCase {
@SuppressWarnings("unchecked") @SuppressWarnings("unchecked")
private final List<Class<? extends Lookup>> benchmarkClasses = Arrays.asList( private final List<Class<? extends Lookup>> benchmarkClasses = Arrays.asList(
FuzzySuggester.class,
AnalyzingSuggester.class,
JaspellLookup.class, JaspellLookup.class,
TSTLookup.class, TSTLookup.class,
FSTCompletionLookup.class, FSTCompletionLookup.class,
WFSTCompletionLookup.class, WFSTCompletionLookup.class
AnalyzingSuggester.class);
);
private final static int rounds = 15; private final static int rounds = 15;
private final static int warmup = 5; private final static int warmup = 5;
private final int num = 7; private final int num = 7;
private final boolean onlyMorePopular = true; private final boolean onlyMorePopular = false;
private final static Random random = new Random(0xdeadbeef); private final static Random random = new Random(0xdeadbeef);
@ -212,8 +216,9 @@ public class LookupBenchmarkTest extends LuceneTestCase {
final List<String> input = new ArrayList<String>(benchmarkInput.size()); final List<String> input = new ArrayList<String>(benchmarkInput.size());
for (TermFreq tf : benchmarkInput) { for (TermFreq tf : benchmarkInput) {
String s = tf.term.utf8ToString(); String s = tf.term.utf8ToString();
input.add(s.substring(0, Math.min(s.length(), String sub = s.substring(0, Math.min(s.length(),
minPrefixLen + random.nextInt(maxPrefixLen - minPrefixLen + 1)))); minPrefixLen + random.nextInt(maxPrefixLen - minPrefixLen + 1)));
input.add(sub);
} }
BenchmarkResult result = measure(new Callable<Integer>() { BenchmarkResult result = measure(new Callable<Integer>() {
@ -250,7 +255,9 @@ public class LookupBenchmarkTest extends LuceneTestCase {
} }
return new BenchmarkResult(times, warmup, rounds); return new BenchmarkResult(times, warmup, rounds);
} catch (Exception e) { } catch (Exception e) {
e.printStackTrace();
throw new RuntimeException(e); throw new RuntimeException(e);
} }
} }