Rewrite tree handling to actually work.

This commit is contained in:
Karl Wright 2016-04-28 08:12:42 -04:00
parent 86be6a67db
commit d990d975ac
1 changed files with 211 additions and 189 deletions

View File

@ -16,11 +16,9 @@
*/
package org.apache.lucene.spatial3d.geom;
import java.util.ArrayList;
import java.util.BitSet;
import java.util.List;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.HashSet;
/**
* GeoComplexPolygon objects are structures designed to handle very large numbers of edges.
@ -130,7 +128,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
// Use the XZ plane exclusively.
final LinearCrossingEdgeIterator crossingEdgeIterator = new LinearCrossingEdgeIterator(testPointXZPlane, testPointXZAbovePlane, testPointXZBelowPlane, testPoint, thePoint);
// Traverse our way from the test point to the check point. Use the y tree because that's fixed.
if (!yTree.traverse(crossingEdgeIterator, testPoint.y, testPoint.y)) {
if (!yTree.traverse(crossingEdgeIterator, testPoint.y)) {
// Endpoint is on edge
return true;
}
@ -139,7 +137,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
// Use the YZ plane exclusively.
final LinearCrossingEdgeIterator crossingEdgeIterator = new LinearCrossingEdgeIterator(testPointYZPlane, testPointYZAbovePlane, testPointYZBelowPlane, testPoint, thePoint);
// Traverse our way from the test point to the check point. Use the x tree because that's fixed.
if (!xTree.traverse(crossingEdgeIterator, testPoint.x, testPoint.x)) {
if (!xTree.traverse(crossingEdgeIterator, testPoint.x)) {
// Endpoint is on edge
return true;
}
@ -148,7 +146,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
// Use the XY plane exclusively.
final LinearCrossingEdgeIterator crossingEdgeIterator = new LinearCrossingEdgeIterator(testPointXYPlane, testPointXYAbovePlane, testPointXYBelowPlane, testPoint, thePoint);
// Traverse our way from the test point to the check point. Use the z tree because that's fixed.
if (!zTree.traverse(crossingEdgeIterator, testPoint.z, testPoint.z)) {
if (!zTree.traverse(crossingEdgeIterator, testPoint.z)) {
// Endpoint is on edge
return true;
}
@ -280,11 +278,11 @@ class GeoComplexPolygon extends GeoBasePolygon {
assert bestDistance < Double.MAX_VALUE : "Couldn't find an intersection point of any kind";
final DualCrossingEdgeIterator edgeIterator = new DualCrossingEdgeIterator(firstLegPlane, firstLegAbovePlane, firstLegBelowPlane, secondLegPlane, testPoint, thePoint, intersectionPoint);
if (!firstLegTree.traverse(edgeIterator, firstLegValue, firstLegValue)) {
if (!firstLegTree.traverse(edgeIterator, firstLegValue)) {
return true;
}
edgeIterator.setSecondLeg();
if (!secondLegTree.traverse(edgeIterator, secondLegValue, secondLegValue)) {
if (!secondLegTree.traverse(edgeIterator, secondLegValue)) {
return true;
}
return ((edgeIterator.crossingCount & 1) == 0)?testPointInSet:!testPointInSet;
@ -304,6 +302,9 @@ class GeoComplexPolygon extends GeoBasePolygon {
// First, compute the bounds for the the plane
final XYZBounds xyzBounds = new XYZBounds();
p.recordBounds(planetModel, xyzBounds, bounds);
for (final GeoPoint point : notablePoints) {
xyzBounds.addPoint(point);
}
// Figure out which tree likely works best
final double xDelta = xyzBounds.getMaximumX() - xyzBounds.getMinimumX();
final double yDelta = xyzBounds.getMaximumY() - xyzBounds.getMinimumY();
@ -387,6 +388,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
this.planeBounds.addPoint(startPoint);
this.planeBounds.addPoint(endPoint);
this.plane.recordBounds(pm, this.planeBounds, this.startPlane, this.endPlane);
System.err.println("Recording edge from "+startPoint+" to "+endPoint+"; bounds = "+planeBounds);
}
}
@ -403,39 +405,6 @@ class GeoComplexPolygon extends GeoBasePolygon {
public boolean matches(final Edge edge);
}
/**
* Comparison interface for tree traversal. An object implementing this interface
* gets to decide the relationship between the Edge object and the criteria being considered.
*/
private static interface TraverseComparator {
/**
* Compare an edge.
* @param edge is the edge to compare.
* @param minValue is the minimum value to compare (bottom of the range)
* @param maxValue is the maximum value to compare (top of the range)
* @return -1 if "less" than this one, 0 if overlaps, or 1 if "greater".
*/
public int compare(final Edge edge, final double minValue, final double maxValue);
}
/**
* Comparison interface for tree addition. An object implementing this interface
* gets to decide the relationship between the Edge object and the criteria being considered.
*/
private static interface AddComparator {
/**
* Compare an edge.
* @param edge is the edge to compare.
* @param addEdge is the edge being added.
* @return -1 if "less" than this one, 0 if overlaps, or 1 if "greater".
*/
public int compare(final Edge edge, final Edge addEdge);
}
/**
* An instance of this class represents a node in a tree. The tree is designed to be given
* a value and from that to iterate over a list of edges.
@ -448,207 +417,249 @@ class GeoComplexPolygon extends GeoBasePolygon {
*
*/
private static class Node {
public final double minimumValue;
public final double maximumValue;
public final Edge edge;
public Node lesser = null;
public Node greater = null;
public Node overlaps = null;
public Node within = null;
public Node(final Edge edge) {
public Node(final Edge edge, final double minimumValue, final double maximumValue) {
this.edge = edge;
this.minimumValue = minimumValue;
this.maximumValue = maximumValue;
}
public void add(final Edge newEdge, final AddComparator edgeComparator) {
Node currentNode = this;
while (true) {
final int result = edgeComparator.compare(currentNode.edge, newEdge);
if (result < 0) {
if (currentNode.lesser == null) {
currentNode.lesser = new Node(newEdge);
return;
}
currentNode = currentNode.lesser;
} else if (result > 0) {
if (currentNode.greater == null) {
currentNode.greater = new Node(newEdge);
return;
}
currentNode = currentNode.greater;
} else {
if (currentNode.overlaps == null) {
currentNode.overlaps = new Node(newEdge);
return;
}
currentNode = currentNode.overlaps;
}
}
}
public boolean traverse(final EdgeIterator edgeIterator, final TraverseComparator edgeComparator, final double minValue, final double maxValue) {
Node currentNode = this;
while (currentNode != null) {
final int result = edgeComparator.compare(currentNode.edge, minValue, maxValue);
if (result < 0) {
currentNode = currentNode.lesser;
} else if (result > 0) {
currentNode = currentNode.greater;
} else {
if (!edgeIterator.matches(currentNode.edge)) {
return false;
}
currentNode = currentNode.overlaps;
}
}
return true;
}
}
/** An interface describing a tree.
*/
private static interface Tree {
private static abstract class Tree {
private Node rootNode = null;
public void add(final Edge edge);
protected static final int CONTAINED = 0;
protected static final int WITHIN = 1;
protected static final int OVERLAPS_MINIMUM = 2;
protected static final int OVERLAPS_MAXIMUM = 3;
protected static final int LESS = 4;
protected static final int GREATER = 5;
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue);
/** Add a new edge to the tree.
* @param edge is the edge to add.
*/
public void add(final Edge edge) {
rootNode = addEdge(rootNode, edge, getMinimum(edge), getMaximum(edge));
}
/** Get the minimum value from the edge.
* @param edge is the edge.
* @return the minimum value.
*/
protected abstract double getMinimum(final Edge edge);
/** Get the maximum value from the edge.
* @param edge is the edge.
* @return the maximum value.
*/
protected abstract double getMaximum(final Edge edge);
/** Worker method for adding an edge.
* @param node is the node to add into.
* @param newEdge is the new edge to add.
* @param minimumValue is the minimum limit of the subrange of the edge we'll be adding.
* @param maximumValue is the maximum limit of the subrange of the edge we'll be adding.
* @return the updated node reference.
*/
protected Node addEdge(final Node node, final Edge newEdge, final double minimumValue, final double maximumValue) {
if (node == null) {
// Create and return a new node
return new Node(newEdge, minimumValue, maximumValue);
}
// Compare with what's here
int result = compareForAdd(node.minimumValue, node.maximumValue, minimumValue, maximumValue);
switch (result) {
case CONTAINED:
// The node is contained in the range provided. We need to create a new node and insert
// it into the "within" chain.
final Node rval = new Node(newEdge, minimumValue, maximumValue);
rval.within = node.within;
return rval;
case WITHIN:
// The new edge is within the node provided
node.within = addEdge(node.within, newEdge, minimumValue, maximumValue);
return node;
case OVERLAPS_MINIMUM:
// The new edge overlaps the minimum value, but not the maximum value.
// Here we need to create TWO entries: one for the lesser side, and one for the within chain.
final double lesserMaximum = Math.nextDown(node.minimumValue);
node.lesser = addEdge(node.lesser, newEdge, minimumValue, lesserMaximum);
return addEdge(node, newEdge, node.minimumValue, maximumValue);
case OVERLAPS_MAXIMUM:
// The new edge overlaps the maximum value, but not the minimum value.
// Need to create two entries, one on the greater side, and one back into the current node.
final double greaterMinimum = Math.nextUp(node.maximumValue);
node.greater = addEdge(node.greater, newEdge, greaterMinimum, maximumValue);
return addEdge(node, newEdge, minimumValue, node.maximumValue);
case LESS:
// The new edge is clearly less than the current node.
node.lesser = addEdge(node.lesser, newEdge, minimumValue, maximumValue);
return node;
case GREATER:
// The new edge is clearly greater than the current node.
node.greater = addEdge(node.greater, newEdge, minimumValue, maximumValue);
return node;
default:
throw new RuntimeException("Unexpected comparison result: "+result);
}
}
/** Traverse the tree, finding all edges that intersect the provided value.
* @param edgeIterator provides the method to call for any encountered matching edge.
* @param value is the value to match.
* @return false if the traversal was aborted before completion.
*/
public boolean traverse(final EdgeIterator edgeIterator, final double value) {
// Since there is one distinct value we are looking for, we can just do a straight descent through the nodes.
Node currentNode = rootNode;
while (currentNode != null) {
if (value < currentNode.minimumValue) {
currentNode = currentNode.lesser;
} else if (value > currentNode.maximumValue) {
currentNode = currentNode.greater;
} else {
// We're within the bounds of the node. Call the iterator, and descend
if (!edgeIterator.matches(currentNode.edge)) {
return false;
}
currentNode = currentNode.within;
}
}
return true;
}
/** Traverse the tree, finding all edges that intersect the provided value range.
* @param edgeIterator provides the method to call for any encountered matching edge.
* Edges will not be invoked more than once.
* @param minValue is the minimum value.
* @param maxValue is the maximum value.
* @return false if the traversal was aborted before completion.
*/
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
// This is tricky because edges are duplicated in the tree (where they got split).
// We need to eliminate those duplicate edges as we traverse. This requires us to keep a set of edges we've seen.
// Luckily, the number of edges we're likely to encounter in a real-world situation is small, so we can get away with it.
return traverseEdges(rootNode, edgeIterator, minValue, maxValue, new HashSet<>());
}
protected boolean traverseEdges(final Node node, final EdgeIterator edgeIterator, final double minValue, final double maxValue, final Set<Edge> edgeSet) {
if (node == null) {
return true;
}
if (maxValue < node.minimumValue) {
return traverseEdges(node.lesser, edgeIterator, minValue, maxValue, edgeSet);
} else if (minValue > node.maximumValue) {
return traverseEdges(node.greater, edgeIterator, minValue, maxValue, edgeSet);
} else {
// There's overlap with the current node, and there may also be overlap with the lesser side and greater side
if (minValue < node.minimumValue) {
if (!traverseEdges(node.lesser, edgeIterator, minValue, maxValue, edgeSet)) {
return false;
}
}
if (!edgeSet.contains(node.edge)) {
if (!edgeIterator.matches(node.edge)) {
return false;
}
edgeSet.add(node.edge);
}
if (maxValue > node.maximumValue) {
if (!traverseEdges(node.greater, edgeIterator, minValue, maxValue, edgeSet)) {
return false;
}
}
return traverseEdges(node.within, edgeIterator, minValue, maxValue, edgeSet);
}
}
/** Compare a node against a subrange of a new edge.
* @param node is the node to compare.
* @param newEdge is the edge being added.
* @param minimumValue is the minimum value for the edge being added.
* @param maximumValue is the maximum value for the edge being added.
* @return the comparison result.
*/
protected int compareForAdd(final double nodeMinimumValue, final double nodeMaximumValue, final double minimumValue, final double maximumValue) {
if (minimumValue <= nodeMinimumValue && maximumValue >= nodeMaximumValue) {
return CONTAINED;
} else if (nodeMinimumValue <= minimumValue && nodeMaximumValue >= maximumValue) {
return WITHIN;
} else if (maximumValue < nodeMinimumValue) {
return LESS;
} else if (minimumValue > nodeMaximumValue) {
return GREATER;
} else if (minimumValue < nodeMinimumValue) {
return OVERLAPS_MINIMUM;
} else {
return OVERLAPS_MAXIMUM;
}
}
}
/** This is the z-tree.
*/
private static class ZTree implements Tree, TraverseComparator, AddComparator {
private static class ZTree extends Tree {
public Node rootNode = null;
public ZTree() {
}
@Override
public void add(final Edge edge) {
if (rootNode == null) {
rootNode = new Node(edge);
} else {
rootNode.add(edge, this);
}
protected double getMinimum(final Edge edge) {
return edge.planeBounds.getMinimumZ();
}
@Override
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
if (rootNode == null) {
return true;
}
return rootNode.traverse(edgeIterator, this, minValue, maxValue);
protected double getMaximum(final Edge edge) {
return edge.planeBounds.getMaximumZ();
}
@Override
public int compare(final Edge edge, final Edge addEdge) {
if (edge.planeBounds.getMaximumZ() < addEdge.planeBounds.getMinimumZ()) {
return 1;
} else if (edge.planeBounds.getMinimumZ() > addEdge.planeBounds.getMaximumZ()) {
return -1;
}
return 0;
}
@Override
public int compare(final Edge edge, final double minValue, final double maxValue) {
if (edge.planeBounds.getMinimumZ() > maxValue) {
return -1;
} else if (edge.planeBounds.getMaximumZ() < minValue) {
return 1;
}
return 0;
}
}
/** This is the y-tree.
*/
private static class YTree implements Tree, TraverseComparator, AddComparator {
public Node rootNode = null;
private static class YTree extends Tree {
public YTree() {
}
@Override
public void add(final Edge edge) {
if (rootNode == null) {
rootNode = new Node(edge);
} else {
rootNode.add(edge, this);
}
protected double getMinimum(final Edge edge) {
return edge.planeBounds.getMinimumY();
}
@Override
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
if (rootNode == null) {
return true;
}
return rootNode.traverse(edgeIterator, this, minValue, maxValue);
}
@Override
public int compare(final Edge edge, final Edge addEdge) {
if (edge.planeBounds.getMaximumY() < addEdge.planeBounds.getMinimumY()) {
return 1;
} else if (edge.planeBounds.getMinimumY() > addEdge.planeBounds.getMaximumY()) {
return -1;
}
return 0;
}
@Override
public int compare(final Edge edge, final double minValue, final double maxValue) {
if (edge.planeBounds.getMinimumY() > maxValue) {
return -1;
} else if (edge.planeBounds.getMaximumY() < minValue) {
return 1;
}
return 0;
protected double getMaximum(final Edge edge) {
return edge.planeBounds.getMaximumY();
}
}
/** This is the x-tree.
*/
private static class XTree implements Tree, TraverseComparator, AddComparator {
public Node rootNode = null;
private static class XTree extends Tree {
public XTree() {
}
@Override
public void add(final Edge edge) {
if (rootNode == null) {
rootNode = new Node(edge);
} else {
rootNode.add(edge, this);
}
protected double getMinimum(final Edge edge) {
return edge.planeBounds.getMinimumX();
}
@Override
public boolean traverse(final EdgeIterator edgeIterator, final double minValue, final double maxValue) {
if (rootNode == null) {
return true;
}
return rootNode.traverse(edgeIterator, this, minValue, maxValue);
}
@Override
public int compare(final Edge edge, final Edge addEdge) {
if (edge.planeBounds.getMaximumX() < addEdge.planeBounds.getMinimumX()) {
return 1;
} else if (edge.planeBounds.getMinimumX() > addEdge.planeBounds.getMaximumX()) {
return -1;
}
return 0;
}
@Override
public int compare(final Edge edge, final double minValue, final double maxValue) {
if (edge.planeBounds.getMinimumX() > maxValue) {
return -1;
} else if (edge.planeBounds.getMaximumX() < minValue) {
return 1;
}
return 0;
protected double getMaximum(final Edge edge) {
return edge.planeBounds.getMaximumX();
}
}
@ -924,8 +935,10 @@ class GeoComplexPolygon extends GeoBasePolygon {
@Override
public boolean matches(final Edge edge) {
System.err.println("Processing edge "+edge);
// Early exit if the point is on the edge.
if (thePoint != null && edge.plane.evaluateIsZero(thePoint) && edge.startPlane.isWithin(thePoint) && edge.endPlane.isWithin(thePoint)) {
System.err.println(" Check point is on edge: isWithin = true");
return false;
}
// If the intersection point lies on this edge, we should still be able to consider crossing points only.
@ -942,11 +955,15 @@ class GeoComplexPolygon extends GeoBasePolygon {
for (final GeoPoint crossingPoint : crossingPoints) {
countCrossingPoint(crossingPoint, edge);
}
System.err.println(" All crossing points processed");
} else {
System.err.println(" No crossing points!");
}
return true;
}
private void countCrossingPoint(final GeoPoint crossingPoint, final Edge edge) {
System.err.println(" Crossing point "+crossingPoint);
// We consider crossing points only in this method.
// Unlike the linear case, there are additional cases when:
// (1) The crossing point and the intersection point are the same, but are not the endpoint of an edge;
@ -960,12 +977,14 @@ class GeoComplexPolygon extends GeoBasePolygon {
// In either case, we have to be sure to count each edge only once, since it might appear in both the
// first leg and the second. If the first leg can process it, it should, and the second should skip it.
if (crossingPoint.isNumericallyIdentical(intersectionPoint)) {
System.err.println(" Crosses intersection point.");
if (isSecondLeg) {
// See whether this edge would have been processed in the first leg; if so, we skip it.
final GeoPoint[] firstLegCrossings = testPointPlane.findCrossings(planetModel, edge.plane, testPointCutoffPlane, testPointOtherCutoffPlane, edge.startPlane, edge.endPlane);
for (final GeoPoint firstLegCrossing : firstLegCrossings) {
if (firstLegCrossing.isNumericallyIdentical(intersectionPoint)) {
// We already processed it, so we're done here.
System.err.println(" Already processed on previous leg: exit");
return;
}
}
@ -994,6 +1013,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
}
if (crossingPoint.isNumericallyIdentical(edge.startPoint)) {
System.err.println(" Crossing point = edge.startPoint");
// We have to figure out if this crossing should be counted.
// Does the crossing for this edge go up, or down? Or can't we tell?
@ -1062,6 +1082,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
}
} else if (crossingPoint.isNumericallyIdentical(edge.endPoint)) {
System.err.println(" Crossing point = edge.endPoint");
// Figure out if the crossing should be counted.
// Does the crossing for this edge go up, or down? Or can't we tell?
@ -1115,6 +1136,7 @@ class GeoComplexPolygon extends GeoBasePolygon {
crossingCount++;
}
} else {
System.err.println(" Not a special case: incrementing crossing count");
// Not a special case, so we can safely count a crossing.
crossingCount++;
}